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Splay-induced order in systems of hard tapers
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The main objective of this work is to clarify the role that taper-shaped elongated molecules, i.e., molecules
with one end wider than the other, can play in stabilizing orientational order. The focus is exclusively on
entropy-driven self-organization induced by purely excluded volume interactions. Drawing an analogy to RM734
(4-[(4-nitrophenoxy)carbonyl]phenyl-2,4-dimethoxybenzoate), which is known to stabilize ferroelectric nematic
(NF) and nematic splay (NS) phases, and assuming that molecular biaxiality is of secondary importance, we
consider monodisperse systems composed of hard molecules. Each molecule is modeled using six collinear
tangent spheres with linearly decreasing diameters. Through hard-particle, constant-pressure Monte Carlo
simulations, we study the emergent phases as functions of the ratio between the smallest and largest diameters
of the spheres (denoted as d) and the packing fraction (η). To analyze global and local molecular orderings, we
examine molecular configurations in terms of nematic, smectic, and hexatic order parameters. Additionally, we
investigate the radial pair distribution function, polarization correlation function, and the histogram of angles
between molecular axes. The last characteristic is utilized to quantify local splay. The findings reveal that
splay-induced deformations drive unusual long-range orientational order at relatively high packing fractions
(η > 0.5), corresponding to crystalline phases. When η < 0.5, only short-range order is affected, and in addition
to the isotropic liquid, only the standard nematic and smectic-A liquid crystalline phases are stabilized. However,
for η > 0.5, apart from the ordinary nonpolar hexagonal crystal, three additional frustrated crystalline polar blue
phases with long-range splay modulation are observed: antiferroelectric splay crystal (CrSPA), antiferroelectric
double-splay crystal (CrDSPA), and ferroelectric double-splay crystal (CrDSPF). Finally, we employ Onsager-
Parsons-Lee local density functional theory to investigate whether any sterically induced (anti)ferroelectric
nematic or smectic-A type of ordering is possible for our system, at least in a metastable regime.

DOI: 10.1103/PhysRevE.108.054701

I. INTRODUCTION

The most spectacular discovery of the last decade in the
field of liquid crystal research has been the identification of
the ferroelectric nematic (NF) [1–4], antiferroelectric nematic
splay (NS) [5], and nematic twist-bend (NTB) [6–8] phases, all
characterized by various forms of long-range polar order.

Based on current experimental observations, it seems that
the stabilization of these new nematic phases is linked to
the strong softening (i.e., reduction by one to two orders of
magnitude) of one of the Frank elastic constants, Kii [9], in
the parent, uniaxial nematic (N) phase, near the transition
to one of the polar nematics. Here Kiis (i = 1, 2, 3) weight
elementary deformations of splay (K11), twist (K22), and bend
(K33) types of the undistorted, reference uniaxial nematic state
(N) in the Oseen-Zocher-Frank free energy [9–11]

F = 1

2V

∫
V

[K11[n̂(∇ · n̂)]2 + K22[n̂ · (∇ × n̂)]2]

+ K33[n̂ × (∇ × n̂)]2], (1)

where n̂ denotes the locally preferred orientation of molecules
referred to as the director, and V is the system’s volume.

While each Frank elastic constant is typically positive and
on the order of 10 pN, the observed softening of Kii suggests
that the lack of orientational modulation of N is no longer
energetically favored, and it can promote the appearance of

orientationally modulated phase. Effectively, it means that the
softened elastic constant may become negative. An important
observation made by Meyer many years ago [12] was that
this softening can be attributed to the entropy of packing of
molecules with specific shape of nonzero steric dipole. In
fact, the dipolar asymmetry of these molecules is expected to
induce a flexopolarization effect, which couples to splay and
bend director deformations [13] and effectively reduces the
K11 and/or K33 elastic constants [14]. For instance, molecules
with a bow (banana) shape can reduce the K33 bend elastic
constant, leading to the formation of twist-bent and splay-bent
phases [15]. Greco and Ferrarini were the first to explicitly
demonstrate this phenomenon through molecular dynamics
simulation on a system of bow-shaped molecules that interact
solely through steric interactions [16].

Further studies on bow-shaped molecules, focusing on
steric interactions, have not only provided successful explana-
tions for the formation of the NTB phase [17,18] but have also
demonstrated the potential for stabilizing various intermediate
polar states between NTB and NSB [17].

It is well known that even slight differences in the geometry
of molecules can have a significant impact on the resulting
liquid-crystalline self-assembly. For example, a smectic-A
phase is observed in a system consisting of spherocylin-
ders [19], whereas ellipsoids with a very similar shape do
not exhibit this behavior [20]. This principle also applies to
the recently discovered NF and NS phases. These phases rely

2470-0045/2023/108(5)/054701(18) 054701-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7008-4498
https://orcid.org/0000-0002-4918-6518
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.054701&domain=pdf&date_stamp=2023-11-09
https://doi.org/10.1103/PhysRevE.108.054701
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on both taperlike molecular anisotropy and a strong, nearly
longitudinal total molecular dipole moment as crucial molec-
ular characteristics contributing to their stability. Specifically,
the taperlike molecular shapes can result in a negative K11

splay constant [21], thereby contributing to the formation
of the polar splay nematic [14,22,23] and related smectic
phases [24,25].

Numerical simulations of systems composed of wedge-
like (e.g., pear-shaped, tapered, etc.) molecules began in
the late 1990s [26,27]. In these simulations, shape polar-
ity at the molecular level was induced by a soft interaction
potential between molecules, which combined two rigidly
connected centers: an ellipsoidal Gay-Berne potential [28]
and a spherical Lennard-Jones potential. The reported liquid
crystalline phases in these simulations were only ordinary uni-
axial nematic and smectic phases, without any macroscopic
polarization, as they exhibited a preference for antiparallel
local arrangement.

Berardi, Ricci, and Zannoni developed a general-
ized single-site Gay-Berne potential to model the attrac-
tive and repulsive interactions between elongated tapered
molecules [29]. Through parameter adjustments and Monte
Carlo simulations, they observed stable NF and ferroelectric
smectic liquid crystals. However, while the introduction of a
weak axial dipole did not qualitatively impact these observa-
tions, an increase in dipole strength resulted in the destruction
of long-range ferroelectric ordering. It is worth noting that
using a standard Gay-Berne potential with an axial dipole
at one end of the molecule resulted in the formation of a
bilayer smectic phase [30–32]. Similar mesophase formation
was observed in simulations of single-site hard pears [33].

Purely entropic systems constructed of pear-shaped
molecules also exhibit a cubic gyroid phase [34,35]. Inter-
estingly, the stability of this phase is highly sensitive to the
details of the hard-core interaction. Specifically, the cubic
gyroid phase is observed when describing the pear shape
using two Bézier curves with the pear hard Gaussian overlap
(PHGO) model. However, it vanishes when the hard pears
of revolution (HPR) model is used. In the PHGO model,
a bilayer smectic phase is also observed, whereas the HPR
model exhibits isotropic and nematic phases [36].

Finally, we should mention sno-cone-shaped particles stud-
ied using Monte Carlo simulations by Chen, Zhang, and
Glotzer [37]. At low packing fractions (0.1–0.3), they ob-
served the self-assembly of molecules into nanoclusters of
shape solely determined by the cone angle. The conical ex-
cluded volume forced the particles to assemble into curved,
closed polyhedral convex shapes.

In this paper, we seek to explore the fundamental mech-
anisms that can lead to the emergence of long-range splay
and potentially polar order in liquid crystal systems. Specif-
ically, we focus on the interactions among hard taper-shaped
molecules in the absence of dipolar electrostatic or dispersion
forces. By investigating whether such long-range order can be
stabilized solely through entropic interactions, we aim to ad-
vance our understanding of the essential features of molecular
interactions responsible for stabilizing NF and NS phases.

To achieve this goal, we utilize a model consisting of six
collinear tangent spheres, resulting in a molecule with C∞v

(cone) symmetry [Fig. 1(a)]. The diameters of the spheres fol-

FIG. 1. (a) Family of tapers used in the study; they are built of
six collinear tangent spheres with diameters increasing linearly from
d to 1 (d � 1 is a parameter). (b) Taper-shaped RM734 molecule
known to form a polar nematic phase. Reprinted from Ref. [4] with
the permission of the Royal Society of Chemistry.

low an arithmetic sequence, starting from d and progressing
to 1. Specifically, the diameters are given by d , (4d + 1)/5,
(3d + 2)/5, (2d + 3)/5, (d + 4)/5, and 1. Here, the parame-
ter d represents the diameter of the smallest sphere and serves
as a descriptor for the shape of the molecule. When d = 1,
the molecule reduces to the linear tangent hard-sphere (LTHS)
model as described by Vega et al. [38]. The molecule’s length
is equal to 3(d + 1), while the mean ball diameter is (d +
1)/2. Thus, the molecular aspect ratio is 6 regardless of d .
Alternatively, if we use the maximal ball diameter instead of
its mean value, the aspect ratio is 3(d + 1) and consequently
lies in the range [3, 6] for d ∈ [0, 1].

We have chosen this model to capture essential features
of the effective shape exhibited by the RM734 molecule
(4-[(4-nitrophenoxy)carbonyl]phenyl-2,4-dimethoxybenzoate)
[Fig. 1(b)]. As previously mentioned, the RM734 mesogen
has been shown to stabilize NF and NS phases [3,4]. By
utilizing a model with similar shape characteristics, we aim to
gain further insight into the relationship between the entropy
of packing and the resulting self-organization in liquid crystal
systems. To this end, we investigate the phase diagram and
properties of stable structures using Monte Carlo integration.
Additionally, we compare our results with those obtained
from previous studies on soft- and hard-core pear models.
Furthermore, we examine how the gradient of a molecule’s
diameter influences the presence and extent of the observed
phases.

Finally, we recognize that the anisotropic polar shape of the
molecules may give rise to nontrivial dense configurations.
We are particularly interested in exploring whether these
configurations exhibit crystal-like or glasslike structures, con-
sidering the potential competition between different types of
lattices [39–41].

The remainder of this paper is organized as follows: In
Sec. II A we provide a brief description of the Monte Carlo
integrator used. In Secs. II B and II C, we introduce the order
parameters and correlation functions used to monitor prop-
erties of equilibrium structures. The results obtained from
Monte Carlo simulations are presented in Sec. III. In Sec. IV,
we formulate the Parsons-Lee density functional theory to
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study polar ordering in the liquid-crystalline regime. We
analyze some equilibrium and metastable phases in detail.
Last, we provide a discussion and outlook in Sec. V. The
Appendix contains remarks about nontilted hexagonal config-
urations of close-packed linear tangent hexamers.

II. METHODS

A. Monte Carlo simulations

We assumed hard-core interactions between molecules.
The equilibrium phases were classified as a function of the
shape parameter d and the packing fraction η. The latter one
is defined as a ratio of the total volume of all molecules to the
volume of a simulation box, and is a natural choice for purely
steric repulsion. System snapshots were obtained numerically
using the Monte Carlo (MC) scheme [42] implemented in our
RAMPACK software package. Integration was carried out in
the N-p-T ensemble. For hard-core interactions, only a ratio
p/T of pressure and temperature is an independent parameter
and can be used to control the packing fraction η. To allow
relaxation of the full viscous stress tensor (including the sheer
part), we used a triclinic simulation box with periodic bound-
ary conditions. For a system of N molecules, a full MC cycle
consisted of N rototranslation moves, N/10 flip moves, and
a single box move. In a rototranslation move, a single shape
was chosen at random, translated by a random vector, and
rotated around the random axis by a random angle (clockwise
and anticlockwise rotations were equally probable to preserve
the detailed balance condition). If the move introduced an
overlap, it was always rejected and accepted otherwise. Flip
moves were performed in a similar way to rototranslation
moves; however, instead of random translation and rotation,
the molecule was rotated by 180◦ around its geometric center.
This type of move facilitated easier sampling of the phase
space of the system, especially for high η. For a box move, the
three vectors b1, b2, b3 that span the box were perturbed by
small random vectors. The move was rejected if any overlaps
were introduced. Otherwise, it was accepted according to the
Metropolis-Wood criterion with probability [43,44]

min

{
1, exp

(
N log

V

V0
− p�V

T

)}
, (2)

where �V = (V − V0) and V0 and V are, respectively, the
volume of the box before and after the move. The perturba-
tion ranges were adjusted during the thermalization phase to
achieve an acceptance probability of around 0.15. To accel-
erate simulations in a modern multithreaded environment, we
used the domain decomposition technique [45] for molecule
moves and we parallelized independent overlap checks for
volume moves.

To scan the full phase sequence, from isotropic liquid to
crystal, we used p/T ratios corresponding to packing fraction
covering η ∈ [0.3, 0.58] for d ∈ [0.4, 1.0]. First, to roughly
determine the phase boundaries, preliminary simulations were
performed by gradually compressing a small system of N =
400 molecules in a cubic box from a highly diluted simple
cubic lattice. For each p/T , the integration consisted of the
thermalization run with 9.5×106 full MC cycles and the pro-
duction run with 0.5×106 cycles to gather averages. The final

snapshot of a run was used as a starting point for the next with
a slightly higher p/T . Using the results as guidance, the main
simulations were performed on a much larger system with
N > 5000 in a triclinic box. The initial configuration in the
whole range of d was smectic A with η ≈ 0.45 (see Sec. III
for the description of phases) prepared by thermalizing dif-
ferent types of slightly diluted crystals for (1–5)×108 cycles.
Initial configurations were then independently compressed
or expanded to all target densities in parallel. Thermaliza-
tion runs were performed for (0.9–4.5)×108 cycles, while
production runs were performed for (0.1–0.5)×108 cycles.
Additionally, in order to estimate maximal packing fractions,
the densest configurations for each d were compressed under
exponentially increasing pressure for 3×108 cycles, reaching
p/T = 104 at the end.

B. Order parameters

Phases in the system can be easily classified using a
carefully chosen set of order parameters, whose values have
jumps on the boundaries of phase transitions. The nematic
order along the director n̂ is detected by the average value
〈P2(â · n̂)〉 of the second-order Legendre polynomial, where
â is the long axis of the molecule. Director n̂ can be inferred
directly from the system using the second-rank Q tensor [46],
which can be numerically computed as

Q = 1

N

N∑
i=1

3

2

(
âi ⊗ âi − 1

3

)
, (3)

where the summation is done over all molecules in a single
snapshot. P2 is then the eigenvalue of Q with the highest
magnitude, and n̂ the corresponding eigenvector. Ensemble-
averaged 〈P2〉 is calculated by averaging P2 over noncorrelated
system snapshots. The nematic order parameter has a minimal
value −0.5, when all molecules are perpendicular to n̂, and
reaches its maximum 1 for molecules perfectly aligned with
n̂ (please note that n̂ and −n̂ directions are equivalent). In a
disordered system 〈P2〉 = 0.

Density modulation can be quantitatively described by the
smectic order parameter 〈τ 〉 [47]. It is defined as

〈τ 〉 = 1

N

〈∣∣∣∣∣
N∑

i=1

exp(ik · ri )

∣∣∣∣∣
〉
, (4)

where k is the modulation wave vector compatible with pe-
riodic boundary conditions (PBCs) and ri is the center of the
ith molecule. More precisely, by molecule’s center we refer
to the middle point of a molecule’s length. As the drift of
the whole system is a Goldstone mode, the absolute value
| · · · | is taken before the ensemble averaging to eliminate
it. All possible k can be enumerated using reciprocal box
vectors g1, g2, g3 [48] and taking linear combinations of them
with integer coefficients h, k, l (Miller indices [49]): k =
hg1 + kg2 + lg3. Here, as the initial configuration is always
a smectic with six layers stacked along the z axis, hkl = 006.
The smectic order ranges from 0 for a homogeneous system
to 1 for a perfectly layered one.

Another feature of the system that is measured in the study
is the hexatic order appearing for high packing fractions η,
where molecules tend to form hcp-like structures. The local
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hexatic order can be measured using the so-called hexatic
bond order parameter 〈ψ6〉 [50]. For a two-dimensional sys-
tem, it is defined as

〈ψ6〉 = 1

N

〈
N∑

i=1

1

6

∣∣∣∣∣
6∑

j=1

exp(6iφi j )

∣∣∣∣∣
〉
, (5)

where φi j is the angle between an arbitrary axis in the plane
and the vector that joins the center of the ith molecule
with its jth-nearest neighbor. It can be generalized to three-
dimensional systems by projecting the positions of molecules
onto the nearest smectic layers and computing ψ6 within the
planes defined by them. Random points give 〈ψ6〉 ≈ 0.37,
while a perfect hexatic order yields 〈ψ6〉 = 1. The local hex-
atic order can also be computed for a system without layers
by projecting all centers on a single plane.

C. Correlation functions

Additional insight into both global properties and
supramolecular structures is given by correlation functions.
For all correlation functions, the distance is measured between
molecules’ centers, i.e., midpoints of molecules’ lengths. The
first is a standard radial distribution function [51], which can
be defined in a computationally friendly way as

ρ(r) =
〈〈

dN (r, r + dr)

4πr2dr · (N/V )

〉
N

〉
, (6)

where dN (r, r + dr) is the number of molecules whose dis-
tance from a selected single molecule lies in the range (r, r +
dr), dr is the numerical size of the bin, N is the total number
of molecules, and V is the volume of the system. It is then
averaged over all molecules, 〈· · · 〉N , and over independent
snapshots, 〈· · · 〉. It is normalized in such a way that, for a
disordered isotropic system, it approaches 1 for r → ∞. In
systems with long-range translational order, ρ(r) has a series
of numerous minima and maxima.

In a layered system, one can also measure the layerwise
radial distribution function in the direction orthogonal to k,

ρ⊥(r⊥) = 1

nL

〈
nL∑

i=1

〈
dNi(r⊥, r⊥ + dr⊥)

2πr⊥dr⊥ · (N/S)

〉
Ni

〉
, (7)

where nL is the number of layers, dNi(r⊥, r + dr⊥) is the
number of molecules in the ith layer whose distance from a
selected single molecule calculated along the layer’s plane
lies in the range (r⊥, r⊥ + dr⊥), and S is the total surface
area of all layers [52]. In the end, it is averaged over all
molecules in the layer, 〈· · · 〉Ni , all layers, (1/nL )

∑nL
i=1 · · · ,

and uncorrelated system snapshots, 〈· · · 〉.
As the results will show, the system develops a nontrivial

polar metastructure. To quantify it, we use the layerwise radial
polarization correlation [51], defined like ρ⊥(r⊥):

S110
⊥ (r⊥) = 1

nL

〈
nL∑

i=1

〈
âi j · âik

〉
i j ik

〉
, (8)

where 〈· · · 〉i j ik denotes the average over all molecules in the
ith layer, whose centers’ distance along this layer lies in the
(r⊥, r + dr⊥) range.

FIG. 2. Phase diagram of the system in (d, η) space. The liquid
phases, isotropic (Iso), nematic (N), and smectic A (SmA), as well as
crystalline ones, hexagonal crystal (Crhex), antiferroelectric double-
splay crystal (CrDSPA), antiferroelectric splay crystal (CrSPA), and
ferroelectric double-splay crystal (CrDSPF), were recognized. The
black solid line at the top boundary of the phase diagram represents
the maximal packing fraction η for a given d value. The illustrative
shapes above the diagram were normalized to have the same mean
ball diameter.

The range of splay correlations can be quantified by the
conditional probability P(θ |r⊥) of finding two molecules with
angle θ between their molecular axes âi at a transversal dis-
tance r⊥, normalized as∫ 90◦

0◦
P(θ |r⊥)dθ = 1, ∀r⊥. (9)

To be consistent with the polarization correlation function,
this quantity will also be calculated layerwise. As splay cor-
responds to the radial spread of director field lines, the most
probable angle θ should grow with r⊥ in systems with nonzero
splay deformation mode.

III. RESULTS

Using the method described in Sec. II A, we were able
to recognize all phases for d ∈ [0.4, 1.0] and η ∈ [0.3, 0.58].
There are three liquid phases, isotropic liquid (Iso), nematic
(N), and smectic A (SmA), and four crystalline phases, hexag-
onal crystal (Crhex), antiferroelectric splay crystal (CrSPA),
antiferroelectric double-splay crystal (CrDSPA), and ferro-
electric double-splay crystal (CrDSPF). The phase diagram is
presented in Fig. 2, the order parameters are shown in Fig. 3,
while Figs. 4–6 contain correlation functions. Moreover, rep-
resentative equilibrium snapshots of all phases can be seen
in Figs. 8 and 9. The phases for all sampled pairs (d, η)
were manually classified using order parameters and visual
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FIG. 3. Ensemble averages of observables as a function of the
smallest sphere’s diameter d and packing fraction η. (a) Nematic
order 〈P2〉, (b) smectic order 〈τ 〉, and (c) local hexatic order 〈ψ6〉.

inspection of system snapshots. They are thoroughly analyzed
in the following sections.

A. Liquid phases

For the lowest packing densities η, the system forms an
isotropic liquid phase without any long-range translational or

FIG. 4. Radial distribution function ρ(r) for (a) Iso [(d, η) =
(0.6, 0.34)], (b) N [(d, η) = (0.5, 0.39)], (c) SmA [(d, η) =
(0.5, 0.46)], and (d) Crhex [(d, η) = (0.95, 0.51)] phases. Distance
r is scaled by the average diameter of balls in the molecule: d̄ =
(d + 1)/2. Correlation peaks are clipped on panels (c) and (d); how-
ever, their values are shown inside the plots.

orientational ordering. An example snapshot of this phase is
shown in Fig. 8(a). In this phase, the values of the nematic
order parameter 〈P2〉 and smectic order parameter 〈τ 〉 are
close to zero, indicating the absence of alignment or layering.
The hexatic order parameter 〈ψ6〉 also has a minimal value
(see Fig. 3), indicating a lack of hexagonal arrangement.
The radial distribution function [Fig. 4(a)] shows only local
correlations, which disappear for distances r/d̄ > 4, where
d̄ = (1 + d )/2 is the average diameter of balls that build
the molecule. The maxima and minima are around integer
multiples of d̄: r/d̄ = 1, 2, . . . , which can be attributed to the
excluded volume effects.

Upon compression, in the range of d ∈ [0.5, 1] the ne-
matic phase appears stable [see Fig. 8(b)]. In this phase,
the molecules orient, on average, along a preferred direction
called the director n̂, while maintaining liquidlike positions
of their centers of mass. The nematic order parameter 〈P2〉
exhibits a sharp increase at the phase boundary, jumping from
0 to 0.5–0.6 [Fig. 3(a)]. The smectic order parameter 〈τ 〉
and the hexatic order parameter 〈ψ6〉, however, remain nearly
minimal [Figs. 3(b) and 3(c)]. The range of the nematic phase
in terms of packing fraction (�η) is approximately �η ≈ 0.03
for all d , but it drops to zero for the lowest values of d . The
Iso-N phase boundary reaches a minimal value of η at around
η ≈ 0.35 for the highest value of d and then moves upward
towards a triple point (d, η) = (0.5, 0.4) as d decreases.

It is expected that as the value of d decreases, the molecules
become shorter (less anisotropic). Consequently, a higher
pressure is needed to induce ordering in the system. As η

increases, the nematic order parameter 〈P2〉 reaches values
of 0.6–0.8. These values are relatively high compared to the
typical range observed in experiments [0.3, 0.7] [53]. How-
ever, they are comparable to values reported in computational
studies of other hard-shaped molecules [18,38,54].
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FIG. 5. Layerwise distribution function ρ⊥(r⊥) for (a) SmA
[(d, η) = (0.5, 0.46)], (b) Crhex [(d, η) = (0.95, 0.51)], (c) CrDSPA

[(d, η) = (0.75, 0.52)], (d) CrDSPF [(d, η) = (0.6, 0.51)], and (e)
CrSPA [(d, η) = (0.9, 0.68)] phases. (f) Magnification of a part of
panel (b). Distance r⊥ is scaled by the average diameter of balls in the
molecule: d̄ = (d + 1)/2. Correlation peaks are clipped on panels
(b), (c), and (d); however, their values are shown inside the plots.

The radial distribution function ρ(r) [Fig. 4(b)] exhibits a
series of maxima and minima around r/d̄ = 1, 2, . . . , which
is typical for liquids [42]. However, compared to the Iso phase,
the first maximum is more than two times higher, indicating
stronger correlations. These correlations diminish at larger
distances, for r/d̄ > 6.

In the ferroelectric nematic (NF) and splay nematic (NS)
phases, a long-range polarization order is present. Thus, it is
imperative to quantify it in our system. Although layers are
not present in the nematic phase, it is still possible to com-
pute S110

⊥ (r⊥). The simplest solution would be to project all
molecules onto a single plane. However, in order to facilitate
capturing local correlations, we divided the box into six iden-

FIG. 6. Layerwise correlation function S110
⊥ (r⊥) for (a) N

[(d, η) = (0.5, 0.34)], (b) SmA [(d, η) = (0.5, 0.46)], (c) Crhex

[(d, η) = (0.95, 0.51)], (d) CrSPA [(d, η) = (0.9, 0.68)], (e) CrDSPA

[(d, η) = (0.75, 0.52)], and (f) CrDSPF [(d, η) = (0.6, 0.51)] phases.
Distance r⊥ is scaled by the average diameter of balls in the
molecule: d̄ = (d + 1)/2. Due to excluded volume, there are
scarcely any molecules in range r⊥ ∈ [0, d̄]; therefore, this area is
grayed out.

tical slices (consistent with the number of layers in smectic
and crystalline phase) and proceeded to compute S110

⊥ (r⊥) as it
would be done for layered structures. The results are presented
in Fig. 6(a). It is evident that the polarization correlations
are relatively weak and short ranged, vanishing completely
for r⊥ > 2d̄ . Similarly, the splay correlations [Fig. 7(a)] also
exhibit a local range. The most probable angle in the system
is approximately θ ≈ 25◦, although the maximum has a broad
distribution.

The type-A smectic phase (SmA) is formed over the
Iso phase for r ∈ [0.4, 0.5) and over the N phase for r ∈
[0.5, 1.0]. This phase is characterized by a significant jump
in the smectic order parameter 〈τ 〉 [Fig. 3(b)] to around 0.5,
indicating the emergence of well-defined layers [as seen in
the snapshot from Fig. 8(c)]. The director n̂ is parallel to the
smectic wave vector k, indicating the preferred orientation of
the molecules within the layers.

In the SmA phase, there is a slight increase in the value
of the parameter 〈ψ6〉 compared to the isotropic and nematic
phases, ranging from 0.38 to 0.45. In the high packing frac-
tion regime of this phase, 〈ψ6〉 reaches values of 0.6–0.65,
indicating some degree of local hexatic ordering within the
layers. However, it is important to note that long-range bond
order is not present in this phase [55], distinguishing it from
other smectic phases such as type-B smectic [56]. The nematic
order parameter 〈P2〉 in SmA increases with increasing η,
approaching a value close to 1. However, there is no sudden
jump in 〈P2〉 at the N-SmA boundary. Similar to the N phase,
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FIG. 7. The conditional probability P(θ |r⊥) for (a) N [(d, η) =
(0.5, 0.34)], (b) SmA [(d, η) = (0.5, 0.46)], (c) Crhex [(d, η) =
(0.95, 0.51)], (d) CrSPA [(d, η) = (0.9, 0.68)] (e) CrDSPA [(d, η) =
(0.75, 0.52)], and (f) CrDSPF [(d, η) = (0.6, 0.51)] phases.

the boundary moves upward with decreasing d , which can
again be explained by a lower anisotropy of the molecules.

The radial distribution function ρ(r) [see Fig. 4(c)] in SmA
exhibits a more complex structure compared to the Iso and
N phases. It shows two superimposed sequences of minima
and maxima. The first sequence, covering the entire range of

r/d̄ , exhibits maxima at r/d̄ ≈ 7 and 14, corresponding to
the distances between the layers. The second sequence has
a spacing of approximately d̄ and vanishes for r/d̄ > 6. The
first maximum in the second sequence is sharp and has a
value of ρ(r) = 6.7, corresponding to short-range ordering of
molecules within the layers.

The layerwise distribution function ρ⊥(r⊥) [Fig. 5(a)] con-
firms the local translational order within the layers. It shows
maxima at r⊥/d̄ = 1, 2, . . . , indicating correlations between
molecules within the same layer. However, these correlations
phase out for r⊥/d̄ > 9, indicating that the translational order
is only local within the layers.

The correlation function S110
⊥ (r⊥) [Fig. 6(b)] shows no

long-range correlation of molecular polarization vectors in
SmA. For r⊥/d̄ ≈ 1 a slight anticorrelation [S110

⊥ (r⊥) < 0]
is visible due to entropic reasons, where nearest-neighbor
molecules tend to orient in opposite ways to increase pack-
ing density. However, these correlations vanish for r⊥/d̄ > 4.
Similarly, the splay correlations [Fig. 7(b)] remain only local
within the smectic-A phase. The preferred angle for splay
correlations is lower (θ ≈ 12◦) compared to the N phase, and
the spread of angles is also lower, which is consistent with
the higher value of the nematic order parameter 〈P2〉 in the
smectic phase.

Both sequences of phase transitions displayed by the
system, (1) Iso ↔ N ↔ SmA and (2) Iso ↔ SmA, are promi-
nent and well recognized in systems of elongated molecules,
both in computational studies [17,18,38,54], and in experi-
ments [57–59], although the second sequence is less common
in physical systems.

For asymmetric molecules, modulated and/or polar liquid
crystalline phases may form (see the Introduction section).
However, in our model, such phases were not observed.
The absence of ferroelectric long-range order, even in the
metastable regime, is further confirmed by bifurcation analy-
sis using Parsons-Lee density functional theory (see Sec. IV).
Two possible reasons for this absence can be considered: the
first one is the moderate length of the molecule, which may
hinder the formation of long-range ferroelectric-like order,
and the second one is the concavities between the beads in
the molecular structure. We, however, note that preliminary
studies of analogous systems of taper-shaped molecules built
of up to 11 beads as well as ones with the smooth, convex sur-
face show no considerable change in the predictions presented
by the current study.

B. Crystalline phases

Over η ≈ 0.5, four distinct types of hexagonally ordered
solids that retain the SmA layered structure appear.

1. Hexagonal nonpolar crystal Crhex

For d ∈ [0.75, 1.0], SmA is adjacent to a hexagonal non-
polar crystal phase denoted Crhex, whose snapshot is shown in
Fig. 9(a). Both 〈P2〉 and 〈τ 〉 are almost equal to 1 in the entire
range, as seen in Figs. 3(a) and 3(b). Additionally, there is a
sharp jump in the local hexatic order parameter, as depicted
in Fig. 3(c), confirming the presence of a locally hexatic
structure within a layer. The long-range translational order
becomes apparent when observing the radial and layerwise
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FIG. 8. System snapshots of all liquid phases in the system. Rows correspond to (a) Iso [(d, η) = (0.6, 0.34)], (b) N [(d, η) = (0.5, 0.39)],
and (c) SmA [(d, η) = (0.5, 0.46)] phases. The first column presents the top view of the snapshot (xy plane), and the second one the side view
(xz) plane in a way that the bottom edge of the top view corresponds to the top edge of the side view. Molecules are color coded according
to orientation of their long axis âi with respect to the global director n̂ as per first-order Legendre polynomial P1(âi · n̂) = âi · n̂, allowing one
to discern opposite polarizations. In the third column midpoints of molecules’ lengths are marked as black dots, and the simulation box is
oriented in the same way as the second column (side view).

pair distribution functions ρ(r) and ρ⊥(r⊥), respectively, as
shown in Figs. 4(d) and 5(b). In the case of ρ(r), we observe
two sequences of maxima. Similar to SmA, the first sequence
with larger spacing corresponds to layering, while the second
sequence with a smaller peak-to-peak distance corresponds to
in-layer order. However, unlike SmA, the second sequence
does not vanish quickly and extends throughout the entire
plotted range of r/d̄ . Similarly, ρ⊥(r⊥) also exhibits long-
range correlations. Additionally, the structure of the first few
peaks of ρ⊥(r⊥), as shown in Fig. 5(f), agrees with the one ob-
served for the hexagonal honeycomb lattice (see, e.g., Fig. 3 of

Ref. [60]). The S110
⊥ (r⊥) correlations, as depicted in Fig. 6(c),

indicate weak and extremely short-range polarization order,
which disappears for r⊥/d̄ > 2. A similar observation can be
made for the splay correlations shown in Fig. 7(c), where the
preferred angle is close to 0◦ with a very narrow spread. The
presence of a series of additional vertical lines is possibly a
result of lattice defects.

For d = 1, the taper reduces to a well-known linear tangent
hard-sphere (LTHS) hexamer. The equilibrium phases in the
LTHS model have been studied in Ref. [38]. The ground-state
configuration in this case is a close-packed arrangement of
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FIG. 9. System snapshots of all crystalline phases in the system. Rows correspond to, respectively, (a) Crhcp [(d, η) = (0.95, 0.51)],
(b) CrSPA [(d, η) = (0.9, 0.68)], (c) CrDSPA [(d, η) = (0.75, 0.52)], and (d) CrDSPF [(d, η) = (0.6, 0.51)] phases. Columns’ order and color
coding are the same as in Fig. 8. From the left: top view, side view, and side view of molecules lengths’ midpoints. The average number of
molecules in clusters is as follows: (b) ≈7 per stripe per XZ section, (c) ≈110 per cluster, and (d) ≈220 per column per layer.

spheres [61], with a packing fraction of η = π/
√

18 ≈ 0.74.
In our simulations, we were able to achieve a packing fraction
of approximately η ≈ 0.73 upon compression, which is in
good agreement with the exact value, taking into account the

presence of a small number of defects in the Monte Carlo
configuration. There are various ways to arrange LTHS chains
into a close-packed configuration. One obvious choice is to
form face-centered cubic (fcc) or hexagonal close-packed

054701-9
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(hcp) layers of molecules with a 30◦ tilt (e.g., the CP1 lattice in
Ref. [62], also utilized in the previously mentioned Ref. [38]).
However, these configurations are unlikely to form during the
compression route from SmA layers.

More probable are nontilted variants with a partial hex-
atic order. We have identified two such structures referred
to as fccB and hcpB (see the Appendix). In these structures,
six nearest neighbors within a layer form slightly deformed
regular hexagons. This deformation is consistent with the
values of 〈ψ6〉 below 0.8 for d = 1, compared to over 0.8 for
d = 0.85. In the fccB and hcpB lattices, the polymers arrange
themselves into infinite columns that can be translated by
integer multiples of the diameter d = 1 of the monomers. Our
results exhibit a slight off-layer spread [observed in the last
column of Fig. 9(a)], which also contributes to lowering the
value of 〈τ 〉.

2. Antiferroelectric splay crystal CrSPA

When d is decreased and the variation of bead diameters
increases, the preference for a closed-packed configuration di-
minishes, and crystalline analogs of polar blue phases emerge.
The first one is visible in a range around d = 0.85–0.95 (see
Fig. 2). The corresponding snapshot is presented in Fig. 9(b).
As clearly visible in the snapshot, within each layer, clusters
with macroscopic polarization spontaneously emerge and ar-
range themselves in a striped metastructure. Adjacent clusters
exhibit opposite polarization and are separated by planar de-
fects in the polarization field.

Within a cluster, the molecules have a long-range trans-
lational order, which is indicated by the correlation function
ρ⊥(r⊥) [Fig. 5(e)] and they form a hexagonal structure,
reflected in a high value of 〈ψ6〉 [Fig. 3(c)]. The density
correlations exhibit a complex structure. First, there is a series
of wide maxima and minima separated by �r⊥ ≈ 6d̄ , which
corresponds to the width of the stripes. Around these wide
maxima, there are three or four sharper ones separated by
�r⊥ ≈ d̄ , representing correlations between particular rows
of shapes across the stripes. Additionally, numerous small
maxima represent correlations between individual beads in
a highly regular lattice. However, this phase appears only
for very high values of η close to the maximal packing.
The macroscopic polarization of the cluster is confirmed by
S110

⊥ (r⊥) correlations [see Fig. 6(d)]. Similarly, for ρ⊥(r⊥),
we observe minima and maxima, but with a twofold smaller
separation, as the adjacent stripes have opposite polarizations.
Furthermore, there is a similar series of additional maxima as
observed in ρ⊥(r⊥).

The nematic order 〈P2〉 remains above 0.8 but is slightly
lower than for Crhex. This can be explained by the observation
that clusters exhibit a splay modulation in the polarization
field. Specifically, the polarization is parallel to the director in
the middle of the stripe and gradually leans when one moves
towards the boundary. However, the preferred direction does
not change along the length of a stripe. This observation is
supported by the P(θ |r⊥) histogram [Fig. 7(d)], where, for the
first time, a linear growth of the preferred angle θ with r⊥
is observed until r⊥ ≈ 7d̄ . After this point, a linear decline
follows. The ascending part of the histogram corresponds

to correlations within a single stripe, while the falling part
corresponds to correlations between adjacent stripes.

The entropically promoted pure splay, inherently related
to the shape of the taper, cannot be extended globally with-
out introducing energetically expensive defects. The observed
two-dimensional splay modulation serves as a solution to
this difficulty (frustration), enabling a more efficient filling
of space. Notably, the pattern of clusters in adjacent layers
continues, but their polarization always has an opposite sign.
The same sign reversal applies to the direction of splay modu-
lation. Consequently, the stripes (y-axis columns) are arranged
in a two-dimensional checkerboard pattern. The largest and
smallest balls that form the molecules create hexagonal lat-
tices with different lattice constants. The polarization switch
in a neighboring layer facilitates a more compatible arrange-
ment of adjacent layers.

The compatibility of lattice constants between adjacent
beads can also be invoked to explain why molecules splay
instead of forming an antiferroelectric interdigitated lattice,
as observed in previous studies of pearlike shapes. When two
adjacent tapers are antiparallel, the beads in contact have dif-
ferent radii, resulting in suboptimal local packing. In contrast,
when the molecules are parallel, equally sized beads from
adjacent molecules can be tangent, allowing them to form a
nearly optimal local configuration.

To capture the most important properties of the structure,
we refer to it as the antiferroelectric splay crystal, denoted as
CrSPA. The term antiferroelectric refers to the opposite polar-
ization of the clusters in adjacent layers. It is worth noting that
the CrSPA phase emerges even when the value of d is close to
1. However, the phase boundary significantly increases as d
grows. This behavior can be attributed to the requirement of
higher densities to induce polar order when the gradient of
ball diameters is smaller. In the entire range, the system first
crystallizes into the Crhex structure, followed by a transition
to the CrSPA phase. Therefore, there is no direct SmA-CrSPA

phase transition present.

3. Antiferroelectric double-splay crystal CrDSPA

Above Crhex, another polar phase is observed for 0.75 �
d � 0.8. The corresponding snapshot is shown in Fig. 9(c). In
this phase, polarization clusters form again, but they arrange
themselves within a layer in a checkerboard pattern instead
of stripes. Each square domain is surrounded by four domains
with opposite polarization. When moving to an adjacent layer,
the polarizations of the clusters flip, similar to CrSPA. This
indicates that the checkerboard pattern is actually three di-
mensional.

The splay pattern also changes in this phase. It becomes
three dimensional, where the direction of the splay vec-
tor n̂(∇·n̂) is correlated with the polarization field. The
molecules within the cluster are parallel to the z axis in the
middle and gradually lean as the distance from the center
increases. This structure is referred to as the antiferroelectric
double-splay crystal (CrDSPA). Importantly, the magnitude
of the splay vector in the double-splay structure is higher
compared to that in the single splay structure (assuming the
same maximal curvature). This higher splay deformation is
facilitated by molecules with smaller values of d , which
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promotes a stronger modulation of the director field ultimately
leading to the formation of the checkerboard pattern observed
in CrDSPA. It is also reflected in a slightly lower value of 〈P2〉
compared to CrSPA.

In the CrDSPA phase, the transversal density correlation
ρ⊥(r⊥) [Fig. 5(c)] exhibits a similar behavior as in the Crhex

[Fig. 5(b)], but with higher damping. The angle histogram
P(θ |r⊥) [Fig. 7(e)] in the CrDSPA phase is also similar to
that in the CrSPA phase [Fig. 7(d)], but with larger preferred
angles. Again, the difference is a result of stronger splay
deformation in CrDSPA compared to CrSPA. Regarding the
polarization correlation function S110

⊥ (r⊥) [Fig. 6(e)], it shows
positive correlations up to r⊥ ≈ 6.5d̄ , and then negative cor-
relations up to r⊥ ≈ 13d̄ . This behavior is consistent with the
snapshot in Fig. 9(c), where the cluster radius is estimated to
be approximately six to seven times the average diameter of
balls that build the molecule (6d̄–7d̄).

It is important to note that for a moderate number of
molecules used in our study, the cluster radius may not be able
to relax to its equilibrium value. The structure must adhere
to periodic boundary conditions, which necessitates a single
layer enclosing an even number of clusters. This requirement
quantifies the surface area of the simulation box base. Simul-
taneously, the box height is constrained by the layer’s width,
and its volume is determined by the packing fraction. These
parameters cannot be relaxed independently, even in a general
triclinic simulation box. Consequently, the cluster radius is
subject to systematic error. For a system in Fig. 9(c), the box
accommodates eight clusters with a radius of approximately
6.5d̄ . The two closest values are approximately 5.6d̄ and 7.3d̄ ,
corresponding to six and ten clusters, respectively. Thus, the
estimated uncertainty range of the radius can be approximated
as [(6.5 + 5.6)d̄/2, (7.3 + 6.5)d̄/2] ≈ [6.0d̄, 6.9d̄]. It is im-
portant to bear in mind that the slight nonequilibrium cluster
radius can introduce frustration, potentially affecting other
characteristic lengths, and consequently altering the uncer-
tainty range. Finally, it should be noted that this issue did not
arise in the two-dimensional CrSPA metastructure, where all
structural dimensions could be relaxed independently.

4. Ferroelectric double-splay crystal CrDSPF

For d < 0.75, the third frustrated polar structure, called the
ferroelectric double-splay crystal (CrDSPF), is formed directly
above the SmA phase. Similar to CrDSPA, the CrDSPF phase
also exhibits the formation of polar clusters arranged in a
checkerboard pattern [cf. Fig. 9(d)]. However, unlike CrDSPA,
where the clusters alternate between neighboring layers, in
CrDSPF the clusters form vertical columns along the z axis that
extend throughout the entire height of the simulation box.

The formation of these columns is accompanied by the
bending of layers, as seen in the second and third panels
of Fig. 9(d). Additionally, the decrease in the smectic order
parameter 〈τ 〉 to the range 0.4–0.7 further indicates a curved
layer structure. These curved layers cause the hexatic arrange-
ment to deform when orthogonally projected, resulting in a
lower hexatic order parameter 〈ψ6〉 in the range 0.65–0.75.
The weaker nematic order 〈P2〉 in the range 0.5–0.8 is also
consistent with the observed curved layers, which induce sig-
nificant splay modulation.

Why is the CrDSPF structure stabilized for d < 0.75? For
a simple explanation, please note that in CrSPA and CrDSPA

the opposite interlayer polarization allows for the adjacency
of compatible hexagonal bead lattices. However, this ar-
rangement enforces flat layers, which becomes inefficient
for smaller values of d . An efficient packing arrangement
that leads to higher packing densities involves clusters that
resemble fragments of a spherical shell. Achieving such an
arrangement would require a ferroelectric alignment in the
direction of the vector k to match the signs of curvatures.
Interestingly, this is precisely what happens in the transition
from CrDSPA to CrDSPF. The formation of columns in CrDSPF

allows for layer bending and the emergence of a mutually
coupled ferroelectric arrangement in this phase. Although this
ordering sacrifices the compatibility of the lattice constants
of the beads, the packing microstructure remains similar to
CrDSPA.

There are long-range correlations observed in the transver-
sal density correlation ρ⊥(r⊥) [Fig. 5(d)], which, however,
vanish faster than for CrDSPA or Crhex. This can be attributed
to more irregular domain walls, which weaken the correlations
between adjacent clusters. The polarization correlation func-
tion S110

⊥ (r⊥) [Fig. 6(f)] in CrDSPF is similar to that in CrDSPA,
and the cluster radius estimated at seven to eight molecule
diameters agrees with a visual inspection of Fig. 9(d). The
preferred angles on the angle histogram P(θ |r⊥) [Fig. 7(f)]
grow linearly with r⊥, confirming the presence of long-range
splay correlations. However, unlike in Figs. 7(d) and 7(e),
a linear descent in the angle histogram is not observed in
CrDSPF.

Finally, with decreasing d the variation of ball diameters
grows larger, which hinders the optimal filling of the space.
As a result, the estimated maximal packing fraction η (see
black solid line in Fig. 2) falls monotonically with d , reaching
η ≈ 0.61 for d = 0.4.

IV. DENSITY FUNCTIONAL ANALYSIS OF LIQUID
CRYSTALLINE ORDER

Simulations show that the shape-induced splay deforma-
tions in the system of taper-shaped hard molecules can lead
to unusually complex long-range orientational ordering in
crystalline phases. What is somewhat unexpected is that the
observed long-range orientational order in the liquid crys-
talline phases is not affected much. That is, only the ordinary
uniaxial nematic and smectic-A phases are found at equi-
librium. The question remains of whether liquid crystalline
phases of non-nontrivial orientational ordering, such as e.g.
ferroelectric nematic, ferroelectric smectic A, antiferroelectric
smectic A, splay nematic or splay smectic, can form subject
to purely steric interactions. Although we did not observe
these in simulations as equilibrium states, it is imperative
to assess whether such polar liquids are formed at least in
a metastable regime. The simplest way to approach this is-
sue is to perform density functional bifurcation analysis, in
which the form of stable or metastable states can be selected
at the start. In the following, we concentrate on the poten-
tial (meta)stability of ferroelectric nematic (NF), smectic-A
(SmA), and (anti)ferroelectric smectic-A (SmAAF) phases us-
ing the second-virial density functional theory corrected by
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the Parsons-Lee term (DFTPL) [63–65]. We will seek to gain
a better understanding of the ability of taper-shaped molecules
to form liquid phases with polar order. The study of the N-
SmA bifurcation here serves as a reference.

The use of the DFTPL approach proved especially useful
in the analysis of (meta)stable structures for hard molecules
of complex shapes (see, e.g., Ref. [16]). We start with a
brief summary of DFTPL for hard uniaxial molecules. More
details can be found, e.g., in Refs. [16,66,67]. According to
this theory, the Helmholtz free energy F of a system of N
molecules in volume V at temperature T is a functional of
the single-molecule probability density distribution function
P(Xi ), where Xi ≡ {xi, âi} represents the position and orienta-
tion of the ith molecule. The distribution P(Xi ) is normalized
so that

Tr(Xi )P(Xi ) = 1, Tr(Xi ) =
∫

V
d3ri

∫
d2â. (10)

After disregarding terms that can be made independent of P,
the relevant part of the free energy per molecule for hard
uniaxial molecules of arbitrary shape can be written as

f (P) ≡ F[P]

NkBT
= Tr

(X )
[P(X ) ln P(X )]

+C(η)
ρ̄

2
Tr
(X )

[P(X )Heff(X, [P])] + · · · , (11)

where ρ̄ = N
V is the average density. Heff is the effective ex-

cluded volume averaged over the probability distribution of
molecule “2” (X ≡ X1):

Heff(X1, [P]) = V Tr
(X2 )

{
[ξ (X1, X2) − r12] P(X2)}, (12)

where ξ (·) is the contact distance between two molecules,

(·) is the Heaviside 
 function, and kB is the Boltzmann
constant. The factor C(η) = (1/4) 4−3η

(1−η)2 renormalizes the
second-order virial expansion [63] to take into account the
higher-order terms of the expansion [64,65]. Finally, r12 is
the distance between two molecules, η = vmolN

V = vmolρ̄ is the
packing fraction, and vmol is the volume of a molecule.

The equilibrium states correspond to the minimum of the
free energy functional, Eq. (11), with respect to P(X ), subject
to the normalization condition, Eq. (10). The procedure is
equivalent to solving the self-consistent integral equation for
the stationary distributions Ps(X ):

Ps(X ) = Z−1 exp[−ρ̄C(η)Heff(X, [Ps])], (13)

where

Z = Tr
(X )

exp[−ρ̄C(η)Heff(X, [Ps])] (14)

and selecting the solution that minimizes the free energy (11)
for a given set of control parameters. In general, for taper-
shaped molecules, it is important to know whether they can
stabilize states with some kind of polar order, such as polar
nematics or smectics. The effective method for exploring this
problem is the bifurcation analysis of Eq. (13) about the ref-
erence state, usually the isotropic or uniaxial nematic phase.
Since tapers orient their steric dipole, on average, along the
director n̂(r), different local polar order of the predefined
polarization profile p̂(r) (|p̂(r)| = 1, p̂(r) = ±n̂(r)) can be
tested against the instability of the reference state.

Here, we focus on bifurcation studies from the reference
uniaxial nematic phase. As simulations show, the nematic
order is high in both the uniaxial nematic and at the transi-
tion from the uniaxial nematic to higher-ordered phases (see
Fig. 2), so we can further simplify the analysis by assuming
that the orientational order is saturated. Consequently, the
orientational degrees of freedom of the ith polar molecule can
be described by a discrete pseudospin variable, si = ±1. It
tells whether the steric molecular dipole is parallel (si = 1)
or antiparallel (si = −1) to the preferred local orientational
ordering, which is assumed to be positionally independent:

ai = sip̂. (15)

In this case, the integration of orientational degrees of freedom
is reduced to the sum over si = ±1, which means that

Tr(Xi )[· · · ] = Tr(ri,si )[· · · ] ≡ Tr(xi,yi,zi,si )[· · · ]

=
∫

V
d3ri

∑
si=±1

(· · · ). (16)

A more complex case of the nematic splay and smectic splay
is left for an in-depth discussion elsewhere.

In practical calculations, we model the stationary distri-
bution function Ps ≡ P(r, s) ≡ P(z, s) by expanding this to
leading order in order parameters that describe the structures
of interest. By limiting to nematic and smectic polar orderings
of the constant p̂ (parallel to the z axis), this gives

P(z, s) = 1

V

[
1

2
+ 1

2
〈s〉s + 〈cos〉 cos

(
2πz

d ′

)

+ 〈sin〉 sin

(
2πz

d ′

)
+ 〈s cos〉s cos

(
2πz

d ′′

)

+ 〈s sin〉s sin

(
2πz

d ′′

)
+ · · ·

]
, (17)

where

{〈s〉, 〈cos〉, . . . , 〈s sin〉}

= Tr(ri,si )P(z, s)

{
s, cos

(
2πz

d ′

)
, . . . , s sin

(
2πz

d ′′

)}
(18)

are the order parameters and where the length of the box (V
1
3 )

is assumed to be a multiple of the smectic periods d ′ and d ′′.
Note that in expansion, Eq. (17), the order parameter 〈s〉

represents the long-range polar order of the molecules in
the nematic, smectic, and crystalline phases, while 〈s〉p̂ is
the average polarization. In the case of SmA with density
modulation along the z axis of the laboratory frame, only the
order parameter 〈cos〉 is not zero while d ′ is the period of the
structure. This phase is always stable in simulations and will
therefore serve as a test for bifurcation theory. The remaining
order parameters can be combined to form antiferroelectric
smectic phases, but detailed predictions depend on the solu-
tions of Eq. (13).

The calculations can now proceed by pointing out that the
order parameters are small near the bifurcation point. This
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enables us to linearize Eq. (13) for a very small nonzero value of δP(z, s), where δP(z, s) = P(z, s) − P0; P0 = 1
2V takes into

account the probability distribution of the ideally oriented uniaxial nematic phase. The resulting linear homogeneous equation
for δP(z, s) is given by

δP(z1, s1) = −ηC(η)

(
1

2vmol

)
Tr(z,s2 )[
(z, s1, s2) δP(z + z1, s2)]. (19)

Here 
(z, s1, s2) = Tr(x12,y12 )
[ξ (r12, s1, s2) − r12] (z ≡ z12), and vmol is the volume of the molecule.
Before identifying the phases that can bifurcate from N , we observe that the excluded interval 
(z, s1, s2) has a partic-

ularly simple form in relation to the variables {s1, s2}. Specifically, observing the symmetry of 
(z, s1, s2), 
(z,−1, 1) =

(−z, 1,−1) and 
(z,−1,−1) = 
(z, 1, 1) = 
(−z, 1, 1), we can replace 
(z, s1, s2) with the sum


(z, s1, s2) = 
0(z) + s1s2
1(z) + (s1 − s2)
2(z), (20)

where


0(z) = 
0(−z) = 1
4 [2 
(z, 1, 1) + 
(z, 1,−1) + 
(−z, 1,−1)], (21)


1(z) = 
1(−z) = 1
4 [2 
(z, 1, 1) − 
(z, 1,−1) − 
(−z, 1,−1)], (22)

and where

4
2(z) = −4
2(−z) = 
(z, 1,−1) − 
(−z, 1,−1). (23)

It should be noted that the term proportional to (s1 + s2) disappears due to the symmetries mentioned above of 
(z, s1, s2).
Now, the homogeneous Eq. (19) can be solved for δP(z1, s1), and the solutions are parametrized by the corresponding packing

fraction η = ηb. More specifically, for P(z, s) given by Eq. (17), Eq. (19) becomes reduced to a set of homogeneous equations for
the order parameters. They are given by

〈s〉 = 〈s〉ψ (ηb) 
1,s, (24)

( 〈cos〉
〈s sin〉

)
= ψ (ηb)

(

0,c(d ′) −
2,s(d ′′)δd ′,d ′′

−
2,s(d ′′)δd ′,d ′′ 
1,c(d ′′)

)( 〈cos〉
〈s sin〉

)
,

( 〈sin〉
〈s cos〉

)
= ψ (ηb)

(

0,c(d ′) 
2,s(d ′′)δd ′,d ′′


2,s(d ′′)δd ′,d ′′ 
1,c(d ′′)

)( 〈sin〉
〈s cos〉

)
, (25)

where


1,s =
∫ l

−l

1(z)dz,


0,c(d ′) =
∫ l

l

0(z) cos

(
2πz

d ′

)
,


2,s(d
′) =

∫ l

l

2(z) sin

(
2πz

d ′

)
,


1,c(d ′′) =
∫ l

l

1(z) cos

(
2πz

d ′′

)
, (26)

and where ψ = − 2π
vmol

ηC(η); l is the molecular length. We
should add that with Wolfram Mathematica the formulas for
the coefficients 
α,β can be found exactly for rational diame-
ters of the spheres.

A priori one expects four types of bifurcating states from
Eq. (25). The first is the ferroelectric phase (F ), where only 〈s〉
becomes nonzero at ηb. Due to the symmetry of the reference
state P0 and of the excluded interval, Eq. (20), first-order
bifurcation analysis does not lead to a coupling between 〈s〉
and the smectic or crystalline order. Thus, if any F results
from Eq. (25), it cannot be fully identified and can actually
correspond to a ferroelectric order of a nematic, smectic, or

crystal phase. To resolve which of the cases applies, a higher-
order bifurcation analysis is needed in this case. For d ′ �= d ′′
we expect classical smectic A (SmA) phase with nonzero
〈cos〉 (equivalently 〈sin〉 �= 0) and antiferroelectric smectic A
(SmAAF) phase where 〈s cos〉 �= 0 (equivalently 〈s sin〉 �= 0).
The final possibility is where d ′ = d ′′. In this case, we expect
the SmAd phase, where 〈cos〉 �= 0 and 〈s sin〉 �= 0, (equiva-
lently 〈sin〉 �= 0 and 〈s cos〉 �= 0). The phase would be similar
to SmA, but with d ′ incommensurate with l . As two order
parameters condense at the bifurcation to SmAd the corre-
sponding phase transition should generally be of first order.

The structure to stabilize as a result of the phase transition
from uniaxial nematic is usually (but not always) the one that
leads to the minimum value of ηb. In the case of smectics,
the bifurcation packing fraction ηb also depends on d ′, which
requires additional minimization of ηb with respect to the
smectic period. The hierarchy of ηbs gives an idea of possible
(meta)stable states that the model can predict.

We begin our detailed analysis by determining whether
any type of long-range polar order can occur in our model.
The solution 〈s〉 �= 0 bifurcates from N at ηb satisfying the
equation [see Eq. (24)]

1 = ψ (ηb) 
1,s. (27)
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Only the solution with ηb > 0, where ηb is smaller than the
maximal packing fraction, corresponds to a physically ac-
ceptable ferroelectric state. Clearly, it satisfies the integral
equation (13) for η > ηb. Note that for 
1,s > 0 no physical
solution of Eq. (27) for ηb exists. In this case, the excluded
volume of the parallel arrangement of the steric dipoles pre-
vails over that of the antiferroelectric one, suggesting that
the preferred local ordering should be of an antiferroelectric
type. The calculations reveal that for all d parameters studied,
the bifurcating packing fraction is always negative (ηb < 0),
which means that the ferroelectric polar order is globally
unstable at the expense of some kind of antiferroelectric or-
dering. Interestingly, the same conclusions can be drawn for
model molecules composed of one sphere of diameter 1 and
five spheres with their diameter chosen at random between 1
and 0.4. We have checked this for a sample of about 10 000
different molecules. Overall, these results suggest that, within
the assumptions and simplifications adopted, the density func-
tional theory does not predict the existence of global polar
ordering in the hard model systems built out of six spheres.

A similar analysis can be performed to study the bi-
furcation to SmA and SmAAF. Here, the bifurcation equa-
tions (d ′ �= d ′′), analogous to Eq. (27), are given by

1 = ψ (ηb) 
0,c(d ′) for N-SmA, (28)

1 = ψ (ηb) 
1,c(d ′′) for N-SmAAF. (29)

A more complex case of SmAd (d ′ = d ′′) requires diago-
nalization of the symmetric 2×2 matrix(


0,c(d ′) 
2,s(d ′)


2,s(d ′) 
1,c(d ′)

)
. (30)

It allows us to reduce the matrix equations in Eq. (25) to
independent linear equations. For example, taking the first of
Eqs. (25) we obtain two independent linear relations similar
to Eq. (24), where 
1,s is replaced by one of the eigenvalues
of the matrix, Eq. (30), and 〈s〉 by a linear combination of
order parameters, 〈cos〉 + o12

o11
〈s sin〉; oi js are elements of the

orthogonal matrix o that brings Eq. (30) into the diagonal
form. By inspecting Eqs. (25) and (30) we find that in our
case the corresponding bifurcation equation along with the
bifurcating state becomes

2

ψ (ηb)
= 
0,c + 
1,c −

√
4
2

2,s + (
0,c − 
1,c)2 (31)

δP(z, s)

ε
= 〈cos〉 + 2
2,s


1,c − 
0,c+
√

4
2
2,s+(
0,c−
1,c)2

〈s sin〉, (32)

where ε is an arbitrary parameter. As previously, the physi-
cal solution is one that leads to a minimum of ηb > 0 with
respect to d ′.

In Fig. 10 shown are ηbs found by numerically solving
Eqs. (28), (29), and (31). Out of the assumed model structures,
the one that bifurcates first is SmAd (continuous orange line
in Fig. 10). It differs from SmA (black line in Fig. 10), char-
acterized by 〈cos〉, by the presence of the extra term o12

o11
〈s sin〉

that accounts for the polarization wave. However, the relative
importance of this last term is of the order of 1% of the

FIG. 10. Bifurcations from ideally oriented nematic phase. The
black and orange dashed line denotes two practically overlapping
N-SmA and N-SmAd bifurcation lines, the blue dotted line is the
N-SmAAF bifurcation line, and the gray area is an inaccessible region
of packing fractions above the optimal packing. Moreover, a black
point is the N-SmA transition packing fraction η ≈ 0.33 for d = 0.7
obtained from numerical simulation with axis-aligned molecules,
while green triangles are N-SmA transition packing fractions from
simulations without restricting molecule orientations (cf. Fig. 2).

leading smectic term. The reason for detecting only N-SmA in
simulations is probably the nature of the N-SmAd transition,
which should generally be first order due to the simultaneous
condensation of two order parameters, unlike N-SmA. When
comparing the simulation results with the N-SmA bifurcation,
we find that the packing fraction of the bifurcation analysis is
always lower than predicted by the simulations. This is due to
the underestimation of the orientational entropy by the ideal
nematic order, as opposed to the full spectrum of orientational
degrees of freedom present in simulations. However, if an
ideal nematic order is also assumed in the simulations, a very
good agreement between simulation and theory for N-SmA is
obtained (black dot shown in Fig. 10). A good agreement is
obtained from simulations without restricting molecule orien-
tations (green triangles shown in Fig. 10). A similar analysis
for N-SmAAF shows that ηb is generally of the order of 0.8,
which exceeds the physically accessible packing fractions for
our systems.

V. SUMMARY AND FINAL COMMENTS

One of the most significant discoveries in the field of
liquid crystals in recent years is the identification of the fer-
roelectric nematic phase (NF) and the nematic phase with
periodic long-range splay order (NS). These phases were ini-
tially observed in the RM734 molecular system. While several
systems known to exhibit stable polar nematic phases already
exist, the key features of molecular interactions responsible
for their stability are still under intensive study. Based on
observations of molecular self-organization in the RM734
system, two factors appear to play a crucial role in stabi-
lizing these phases: the conelike symmetry of the elongated
molecule and the notably large net axial dipole moment of the
molecule, exceeding 10 Debye units.

This research represents a systematic effort to uncover the
essential features of molecular self-organization that can be
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attributed to molecular shape asymmetry, as represented by
RM734. We concentrated on a molecular system compris-
ing hard taper-shaped molecules constructed from tangent
spheres, where the molecular symmetry is controlled by
a parameter called d , representing the ratio between the
smallest and largest diameters of the spheres. An analogous
hard-sphere model was previously investigated by Greco and
Ferrarini [16], as well as by some of us [18]. It involved
modeling bend-core-like mesogens using hard crescentlike
molecules composed of identical beads. Through purely en-
tropic interactions, this model stabilized another remarkable
nematogenic phase known as the twist-bend nematic phase.
Our goal was to explore the type of long-range orienta-
tional order stabilized by molecular systems exhibiting similar
molecular asymmetry to RM734. Similar to the work of Greco
and Ferrarini [16] and our own work [18], we focused on
examining the role that packing entropy can play in stabilizing
such order.

Using Monte Carlo (MC) simulations, we computationally
obtained and analyzed self-organization for hard taper-shaped
molecules consisting of six tangent spheres. We simulated
a wide range of packing densities, spanning from those ob-
served in ordinary liquids to the maximum packing fractions
achievable for a given value of d . These maximal packings are
represented by continuous lines in Figs. 2 and 3.

More systematically, for packing fractions below η ≈ 0.5,
which correspond to the liquid phase, we observed isotropic
(Iso), nematic (N), and smectic-A (SmA) phases, as expected
for systems built with calamitic molecules. However, we did
not observe any polar or splay nematic or smectic phases.
This observation was further supported by density functional
theory (DFT) calculations and remains valid even in the
metastable regime. Moreover, the DFT study suggests that the
polar nematic phase is unstable not only for our system but
also for other similar systems composed of six tangent balls
with a nonzero steric dipole. Our preliminary MC simulations
also indicate that even for analogous molecules consisting of
up to 11 tangent beads or molecules with a smooth taper sur-
face, there are no significant changes in the predictions. The
absence of sterically induced ferroelectric long-range order
still persists in these systems.

While a polar smectic-A phase is theoretically possible, it
would require unphysically high packing fractions, approxi-
mately η ≈ 0.8. An intriguing theoretical prediction involves
the potential stabilization of a bilayer smectic phase (SmAd) at
practically the same packing densities characterizing SmA. A
similar mesophase was observed in simulations of single-site
hard pears [33], but not in our simulations for taper-shaped
molecules.

The most striking observation was the presence of complex
orientational periodic superstructures, involving hundreds of
molecules as depicted in Fig. 9, that couple to the underlying
crystalline order of molecular centers at high packing frac-
tions. We label these phases as crystalline polar blue phases.
Specifically, for η > 0.5, the system crystallizes while re-
taining the layered structure of SmA. Entropically promoted
splay, inherently related to the shape of the taper, competes
here with the tendency of layers to stay flat. The efficient
filling of space depends on the actual value of the parameter d .

For d � 0.75, when the molecule is not far from the lin-
ear tangent hard-sphere (LTHS) hexamer, SmA transforms
into a standard nonpolar hexagonal crystal (Crhex). How-
ever, for all 0.75 � d < 1, further compression produces two
other crystalline phases with frustrated polar order and peri-
odic splay modulation. For d values around 0.85–0.95 (see
Fig. 2), the striped antiferroelectric splay crystal (CrSPA)
phase emerges. Within each layer, clusters with macroscopic
polarization spontaneously form, but in the adjacent clusters,
the polarization is of opposite sign. The clusters are sepa-
rated by planar defects in the polarization field. For lower
values of the d parameter (0.75 � d � 0.8), periodic polar
stripes appear, arranged in a checkerboard mesostructure. This
structure is referred to as the antiferroelectric double-splay
crystal (CrDSPA). Again, the alternating polarization pattern
facilitates a more efficient molecular packing.

While the splay pattern, coupled with a slight layer defor-
mation, also changes in these two phases, the stabilization
of the third phase, called ferroelectric double-splay crystal
(CrDSPF), relies entirely on significant splay modulation, lead-
ing to strongly curved layers. In the CrDSPF phase, which is
stabilized for d < 0.75 directly from SmA, the ferroelectri-
cally polarized splayed clusters form long columns arranged
in a checkerboard pattern.

To our knowledge, none of these phases have been
previously reported, but theoretical arguments support the
existence of related mesophases in a liquid crystalline
domain [22,23]. Specifically, Rosseto and Selinger [23] em-
ployed the Oseen-Zocher-Frank free energy model, enhanced
by the inclusion of flexoelectric coupling between splay and
polar order aligned with the director. Additionally, they incor-
porated a standard Landau free energy expansion based on the
polar order parameter. With their theory, they investigated the
stability of long-range splay ordering within nematic systems.
Their analysis involved evaluating the relative stability of two
nematic phases characterized by one-dimensional (1D) and
two-dimensional (2D) splay modulations of the director field,
respectively. In the 1D case, the system exhibited alternat-
ing (infinite) domains of splay and polar order. At interfaces
where opposing domains met, both the polar order and splay
diminished to zero, resulting in a local director characterized
by pure bend deformation. In the 2D case, the double-splay
structure was arranged in a 2D checkerboard pattern of alter-
nating polar and splay order. Similarly, along the interfaces,
both the polar order and splay went to zero. Both phases were
shown to have their range of stability on the phase diagram
although the 1D region was fairly small.

Referring to our simulations, none of the predicted orienta-
tional splay orderings for nematics have been observed, even
though the orientational order of CrDSPF resembles that of the
nematic double-splay structure. The fundamental difference
in orientational ordering becomes apparent at the interfaces. In
our case, we observe domain walls, while for the double-splay
nematics, the splay and polar orderings decrease to zero, and
a pure bend deformation of the director emerges.

The data sets generated and/or analyzed during the current
study are available from P.K. upon reasonable request. The
source code of an original RAMPACK simulation package used
to perform Monte Carlo sampling is available in [68].
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APPENDIX: NONTILTED HEXAGONAL
CONFIGURATIONS IN A CLOSE PACKING

OF LTHS POLYMERS

We want to establish how one can arrange LTHS poly-
mers in a maximally packed manner, assuming that they
form hexatic layers without a tilt (with long molecular axes
perpendicular to the layers). A naïve approach would be to
prepare hexagonal honeycomb layers and stack them as in
the type-B crystal [69], which is observed in systems of
spherocylinders [19,54]. However, this configuration is not
maximally packed. Therefore, we need to relax two condi-
tions: molecules can deviate slightly from the layers, and
hexagons can be slightly deformed. We have identified two
such configurations on the basis of the fcc and hcp lattices.

The first configuration is constructed from an fcc lat-
tice of spheres [see Fig. 11(a)]. For polymers consisting
of beads k with diameter d , the unit cell has dimensions
d×d

√
2×kd , and it contains two molecules with geometric

FIG. 11. (a) fccB and (b) hcpB configurations of trimers (k = 3).
First column is a top view with a visible deformed hexatic arrange-
ment, while the second one is a side view. Colors are to visually
separate the molecules.

centers: (0, 0, kd/2 − d/4) and (d/2,
√

2/2, kd/2 + d/4).
We refer to this configuration as fccB.

The second configuration is based on the hcp
lattice [see Fig. 11(b)]. The unit cell has dimen-
sions d

√
3 × 2d

√
6/3 × kd , and it contains four

molecules with geometric centers: (0, 0, kd/2 − d/4),
(d

√
3/3, d

√
6/3, kd/2 − d/4), (d

√
3/2, 0, kd/2 + d/4),

and (5d/2
√

3, d
√

6/3, kd/2 + d/4). We refer to this
structure as hcpB.
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