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Survival probabilities and first-passage distributions of self-propelled particles in spherical cavities
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A model of self-propelled motion in a closed compartment containing simple or complex fluids is formulated
in this paper in terms of the dynamics of a point particle moving in a spherical cavity under the action of random
thermal forces and exponentially correlated noise. The particle’s time evolution is governed by a generalized
Langevin equation (GLE) in which the memory function, connected to the thermal forces by a fluctuation-
dissipation relation, is described by Jeffrey’s model of viscoelasticity (which reduces to a model of ordinary
viscous dynamics in a suitable limit). The GLE is transformed exactly to a Fokker-Planck equation that in
spherical polar coordinates is in turn found to admit of an exact solution for the particle’s probability density
function under absorbing boundary conditions at the surface of the sphere. The solution is used to derive an
expression (that is also exact) for the survival probability of the particle in the sphere, starting from its center,
which is then used to calculate the distribution of the particle’s first-passage times to the boundary. The behavior
of these quantities is investigated as a function of the Péclet number and the persistence time of the athermal
forces, providing insight into the effects of nonequilibrium fluctuations on confined particle motion in three
dimensions.
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I. INTRODUCTION

The motion of particles through living cells is one of sev-
eral stochastic processes with important implications for the
cells’ biochemical functioning [1]. Viral infection—whereby
an endocytosed virus particle makes its way from a cell’s
periphery to the interior of its nucleus—represents an espe-
cially consequential outcome of the interplay between particle
motion and cellular viability [2–5]. The process often involves
a combination of passive diffusion, driven by thermal fluc-
tuations in the surroundings, and active transport, in which
microtubules, motor proteins, or other energy-transducing
molecules are recruited to produce directed movement.

Efforts to uncover the microscopic roots of such processes
have been wide ranging, and have proceeded along many
different lines of experimental, numerical, and analytical
enquiry, including studying self-propelled diffusion through
complex heterogeneous media [6–18], developing models of
free or confined active Brownian transport [19–28], and ana-
lyzing random particle entry into or egress from small patches
embedded in aqueous compartments [29–37]. The last set of
approaches, which broadly address what are often referred to
as narrow escape problems, is especially relevant to the study
of viral and intracellular trafficking. But the treatment of such
problems appears to have so far been limited to situations in
which particle dynamics takes place in purely Newtonian liq-
uids, or under conditions of reduced dimensionality. As far as
can be ascertained, the more realistic situation of escape from
or diffusion through three-dimensional regions that enclose
the kind of non-Newtonian liquids that characterize cellular

*cherayil@iisc.ac.in

interiors has yet to be fully explored. In an effort to enlarge
our understanding of such situations, a study is undertaken in
this paper of a model of active particle transport in a spherical
cavity containing a viscous or a viscoelastic medium. (The
former is a special case of the latter.) The model is formulated
in terms of the overdamped motion of a spherically confined
point particle that experiences forces from both thermal fluc-
tuations (which satisfy a fluctuation-dissipation theorem) and
exponentially damped external noise (which does not). The
particle’s dynamics are therefore those of a thermally driven
active Ornstein-Uhlenbeck particle (AOUP) [38]. The effects
of viscoelasticity are incorporated into the model through a
memory function in the generalized Langevin equation (GLE)
that is assumed to govern the particle’s time evolution [39].
The equation is used to calculate—via an exact transformation
to an equivalent Fokker-Planck equation in spherical polar
coordinates—the survival probability of the particle in the
sphere when it starts off from the sphere’s center and is ab-
sorbed at its boundary. The survival probability, in turn, is
used to calculate the distribution of the particle’s first-passage
times to the boundary.

First-passage times convey information about the likely
duration of stochastic events that terminate on attaining a
critical threshold [40], and in the case of spatially confined
self-propelled particles whose motion ceases on arriving at
a boundary, they are also measures of escape or capture
times [41]. The calculations in this paper complement recent
work by Di Trapani et al. [42] on the dynamics of active
Brownian particles (ABPs) in circular disks with absorbing
boundaries, which also employs a Fokker-Planck formalism
to obtain survival probabilities and first-passage distributions.
In relation to that report, the work discussed here is significant
in the following respects: (i) It is more easily implemented,
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since AOUP dynamics do not explicitly consider the particle’s
directional fluctuations [38], which in the case of ABPs are
coupled to position coordinates [43], and which therefore
necessitate the use of the kind of elaborate matrix methods
employed in Ref. [42]. (ii) It yields exact results (which, for
our chosen system, bear strong qualitative similarities to the
findings in that reference). (iii) It is more directly relevant
to stochastic biological phenomena, being formulated in three
dimensions and applying to viscoelastic media. (iv) It allows
for the relatively straightforward incorporation of additional
realistic details into the model (such as external potentials
and power law correlations of the active fluctuations) that
may be important in the design and fabrication of synthetic
microswimmers with well-defined dynamical properties.

The paper is organized as follows. The next section reviews
the generalized Langevin equation that governs the parti-
cle’s time evolution in three dimensions (in Cartesian space)
under the action of random thermal and athermal forces.
Section III recasts this equation as a Fokker-Planck equation
in spherical polar coordinates, and then solves it under an
absorbing boundary condition at the surface of the sphere that
is imagined to confine the particle. The solution is used in
Sec. IV to calculate—analytically—the survival probability
of the particle in the sphere, and from there the distribution
of the particle’s first-passage times to the boundary. Section V
presents the results of these calculations, and discusses their
implications.

II. GLE MODEL OF PARTICLE DYNAMICS

The self-propelled particle in this study is assumed to
evolve in time in the absence of an external potential accord-
ing to the following generalized Langevin equation [39]:

ζ

∫ t

0
dt ′K (t − t ′)

·
xi(t

′) = θi(t ) + ξi(t ), i = 1, 2, 3. (1)

Here, x(t ) is the position of the particle in three dimensions
at time t , with xi(t ) its Cartesian component along the ith
axis, ζ is the particle’s friction coefficient, and θ (t ) and ξ (t )
are Gaussian random variables, the first representing thermal
fluctuations from the surrounding medium, and the second
representing athermal forces originating either in the particle’s
own internal energy or in an independent external source
[15]. The variable θ(t ) is defined completely by the moments
〈θi(t )〉 = 0 and 〈θi(t )θ j (t ′)〉 = ζkBT δi, jK (|t−t ′|), where kB is
Boltzmann’s constant, T is the temperature, and K (t ) is a
memory function (to be specified later), while ξ(t ) [which is
independent of θ(t )] is defined by the moments 〈ξi(t )〉 = 0
and 〈ξi(t )ξ j (t ′)〉 = εδi, jM(|t−t ′|), where

√
ε is a measure of

the strength of the self-driving force, and M(t ) is defined
as M(t ) = e−t/τ , with τ a decay constant. In this model of
ξ(t ), the athermal force has the same statistical correlations as
Ornstein-Uhlenbeck noise.

III. EQUIVALENT FOKKER-PLANCK DESCRIPTION

The calculation of survival probabilities and first-passage
distributions from Eq. (1) proceeds by converting the equation
to an equivalent Fokker-Planck equation for the probability
density, P(x, t ), of finding the particle at the point x at time

t , and then solving this equation under appropriate boundary
conditions. The conversion is effected by using Laplace trans-
forms and their inverses to first rewrite Eq. (1) in the form
[44,45]

·
xi(t ) = 1

ζ
[θ̄i(t ) + ξ̄i(t )], (2a)

where

θ̄i(t ) ≡ d

dt

∫ t

0
dt ′φ(t − t ′)θi(t

′), (2b)

ξ̄i(t ) ≡ d

dt

∫ t

0
dt ′φ(t − t ′)ξi(t

′), (2c)

and φ(t ) is the Laplace inverse of the function φ̂(s) =
1/[sK̂ (s)], the Laplace transform f̂ (s) of a function
f (t ) being defined through the operation Ls f (t ) ≡ f̂ (s) =∫ ∞
0 dte−st f (t ).

Then, from the definition

P(x, t ) =
〈

3∏
i=1

δ[xi − xi(t )]

〉
, (3)

where the angular brackets denote an average with respect to
different realizations of the noise, an equation for ∂P(x, t )/∂t
is derived by differentiating Eq. (3) with respect to t , invoking
the derivative property of the delta function [∂δ(x−y)/∂x =
−∂δ(x−y)/∂y], and substituting the relation for ẋi(t ) from
Eq. (2a); the result is

∂P(x, t )

∂t
= − 1

ζ

3∑
j=1

∂

∂x j

〈
3∏

i=1

δ[xi − xi(t )][θ̄ j (t ) + ξ̄ j (t )]

〉
.

(4)
The averages T1 ≡ 〈∏3

i=i δ[xi − xi(t )]θ̄ j (t )〉 and T2 ≡
〈∏3

i=i δ[xi − xi(t )]ξ̄ j (t )〉 that appear in Eq. (4) can each be re-
duced to simpler forms using Novikov’s theorem [46], which
when applied to T1 yields

T1 =
∫ t

0
dt ′〈θ̄ j (t )θ̄ j (t

′)〉
〈

δ

δθ̄ j (t ′)

3∏
i=1

δ[xi − xi(t )]

〉
. (5)

On applying the chain rule of differentiation to the second
term in angular brackets, along with the derivative property of
the delta function, Eq. (5) becomes

T1 = −
3∑

k=1

∂

∂xk

∫ t

0
dt ′〈θ̄ j (t )θ̄ j (t

′)〉
〈

3∏
i=1

δ[xi − xi(t )]
δxk (t )

δθ̄ j (t ′)

〉
.

(6)
From Eq. (2a), it follows that

d

dt

δxk (t )

δθ̄ j (t ′)
= 1

ζ
δ j,kδ(t − t ′),

and hence that
δxk (t )

δθ̄ j (t ′)
= 1

ζ
δ j,kH (t − t ′), (7)

where H (t−t ′) is the Heaviside step function. The substitution
of Eq. (7) into Eq. (6) leads to the following result:

T1 = − 1

ζ

∂

∂x j

∫ t

0
dt ′〈θ̄ j (t )θ̄ j (t

′)〉P(x, t ). (8)
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In the same way, it can be shown that

T2 = − 1

ζ

∂

∂x j

∫ t

0
dt ′〈ξ̄ j (t )ξ̄ j (t

′)〉P(x, t ). (9)

When the expressions for T1 and T2 are substituted into Eq. (4), the evolution equation for P(x, t ) assumes the form

∂P(x, t )

∂t
= 1

ζ 2

3∑
j=1

I1(t )
∂2

∂x2
j

P(x, t ) + 1

ζ 2

3∑
j=1

I2(t )
∂2

∂x2
j

P(x, t ), (10)

where I1(t ) ≡ ∫ t
0 dt ′〈θ̄ j (t )θ̄ j (t ′)〉 and I2(t ) ≡ ∫ t

0 dt ′〈ξ̄ j (t )ξ̄ j (t ′)〉. These two functions can be evaluated following well-known
methods discussed extensively elsewhere [44,45], but for completeness a few pertinent details of the relevant calculations are
sketched below, using the case of I1(t ) as an illustration. Its evaluation begins by substituting the expression for θ̄ j (t ) from
Eq. (2b) into its definition, which leads to

I1(t )=
〈(

d

dt

∫ t

0
dt1φ(t − t1)θ j (t1)

) ∫ t

0
dt ′ d

dt ′

∫ t ′

0
dt2φ(t ′ − t2)θ j (t2)

〉
=

〈(
d

dt

∫ t

0
dt1φ(t − t1)θ j (t1)

) ∫ t

0
dt2φ(t − t2)θ j (t2)

〉
.

(11a)
The product rule of differentiation in the form u d

dt v = d
dt uv−v d

dt u is now applied to Eq. (11a), with the identifications
u = ∫ t

0 dt2φ(t − t2)θ j (t2) and v = u = ∫ t
0 dt1φ(t − t1)θ j (t1), such that u d

dt v = 1
2

d
dt uv, and hence

I1(t ) = 1

2

d

dt

∫ t

0
dt1

∫ t

0
dt2φ(t − t1)φ(t − t2)〈θ j (t1)θ j (t2)〉

= 1

2

d

dt
lim
t ′→t

∫ t

0
dt1

∫ t ′

0
dt2φ(t − t1)φ(t ′ − t2)〈θ j (t1)θ j (t2)〉. (11b)

The convolution property of Laplace transforms now allows Eq. (11b) to be written as

I1(t ) = 1

2

d

dt
lim
t ′→t

L−1
s L−1

s′ φ̂(s)φ̂(s′)〈θ̂ j (s)θ̂ j (s
′)〉, (12)

where L−1
s and L−1

s′ are, respectively, the inverse Laplace transforms with respect to the variables s and s′, which are conjugate,
respectively, to the variables t and t ′. The substitution of the definition φ̂(s) = 1/[sK̂ (s)] into Eq. (12), along with the double
Laplace transform of the correlation function 〈θ j (t )θ j (t ′)〉 = ζkBT K (|t−t ′|), then produces

I1(t ) = 1

2
ζkBT

d

dt
lim
t ′→t

L−1
s L−1

s′

[
1

ss′(s + s′)

{
1

K̂ (s′)
+ 1

K̂ (s)

}]
. (13)

Along the same lines,

I2(t ) = 1

2
ε

d

dt
lim
t ′→t

L−1
s L−1

s′

[
1

ss′(s + s′)K̂ (s)K̂ (s′)

{
1

(s + τ−1)
+ 1

(s′ + τ−1)

}]
. (14)

Once a definite form of the memory function K (t ) is specified, the functions I1(t ) and I2(t ) can be determined (in principle.)
For the present calculations, K (t ) is taken to correspond to the Jeffrey’s model of viscoelasticity used by Ferrer et al. [47] to fit
the results of their experiments on the barrier crossing dynamics of optically trapped colloidal silica particles to the predictions
of Kramers’ theory. In this model (a variant of which was used by Ginot et al. [48]—under the name Maxwell model—in
simulations of related barrier crossing experiments), K (t ) is given by

K (t ) = 1

ζ

[
2γ∞δ(t ) + γs − γ∞

τs
e−t/τs

]
, (15)

where τs is the relaxation time of the fluid, and γ∞ and γs are friction coefficients related, respectively, to the solvent viscosity
and zero-shear viscosity, η∞ and ηs, by γ∞ = 3πdpη∞ and γs = 3πdpηs, with dp the diameter of the particle. From the results
reported by Ferrer et al. [47], the empirical parameters in Eq. (15) assume the values τs = 1.148 s, γ∞ = 3.732 × 10−8 N m−1 s, ,
and γs = 3.919 × 10−7 N m−1 s. These values are used in the subsequent calculations as an illustration of the kind of results that
might be obtained for a reasonably realistic description of an actual system [49].

With K (t ) defined by Eq. (15), I1(t ) and I2(t ) are easily found in closed form from Eqs. (13) and (14), and when these
expressions are then substituted into Eq. (10), the following Fokker-Planck equation is obtained:

∂P(x, t )

∂t
= D1(t )∇2

x P(x, t ) + D2(t )∇2
x P(x, t ), (16a)
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where

D1(t ) = kBT

γs

[
1 + (γs − γ∞)

γ∞
e−γst/γ∞τs

]
, (16b)

and

D2(t ) = ετ

γ 2
s

[
1 + (γs − γ∞)

γ∞
e−γst/γ∞τs

][
1 + τs(γ∞ − γs)

γsτ − γ∞τs
e−γst/γ∞τs − γs(τ − τs)

γsτ − γ∞τs
e−t/τ

]
. (16c)

After combining D1(t ) and D2(t ) into a single time-dependent diffusion coefficient D(t ), where D(t ) ≡ D1(t ) + D2(t ),
Eq. (16a) simplifies to

∂P(x, t )

∂t
= D(t )∇2

x P(x, t ), (17)

which is the starting point for the subsequent calculations.

IV. SURVIVAL PROBABILITY AND FIRST-PASSAGE DISTRIBUTION

As the next step in describing particle motion in a sphere, the diffusion equation of Eq. (17) is transformed from rectangular
coordinates x1, x2, x3 to spherical polar coordinates r, θ, φ; this leads to [50](

∂

∂t
− D(t )

{
∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

r2sin2θ

∂2

∂φ2

})
P = 0, (18)

where P = P(r, θ, φ, t ). After the change of variables μ = cos θ and F = √
rP, Eq. (18) becomes(

∂

∂t
− D(t )

{
∂2

∂r2
+ 1

r

∂

∂r
− 1

4r2
+ 1

r2

∂

∂μ
(1 − μ2)

∂

∂μ
+ 1

r2(1 − μ2)

∂2

∂φ2

})
F = 0, (19)

with F = F (r, μ, φ, t ). As shown in the Appendix, Eq. (19) can be solved by the method of separation of variables [51]. The
solution, on imposing the condition that P vanish at the surface of the sphere located at r = L, takes the form

P(r, μ, φ, t ) = 1√
r

∑
l,m,n

AlmneimφJn+1/2(ynl r/L)Pm
n (μ)exp

[
−y2

nl

L2

∫ t

0
dt ′D

(
t ′)]. (20)

Here Almn is an as yet unknown expansion coefficient, Jν (x) is a Bessel function of order ν, ynl is the lth root of
Jn+1/2(x), i.e., Jn+1/2(ynl ) = 0, with l = 1, 2, . . ., and Pm

n (μ) is an associated Legendre function. The coefficient Almn is now
obtained by applying the initial condition P(r, μ, φ, 0) = r−2δ(r − r0)δ(μ − μ0)δ(φ − φ0) to Eq. (20), multiplying the result
by r3/2e−im′φJn′+1/2(yn′l ′r/L)Pm′

n′ (μ), and integrating over φ, μ, and r, from, respectively, 0 to 2π , −1 to +1, and 0 to L. The
orthogonality relations ∫ 2π

0
dφeiφ(m−m′ ) = 2πδm,m′

and ∫ 1

−1
dμPm′

n (μ)Pm′
n′ (μ) = 2

2n + 1

(n + m′)!
(n − m′)!

δn,n′

as well as the following equation (which is obtained from the application of the boundary condition to various Bessel identities
[52]), ∫ L

0
drrJn′+1/2(yn′l r/L)Jn′+1/2(yn′l ′r/L) = 1

2
L2J2

n′−1/2(yn′l )δl,l ′

then allow Almn to be determined in closed form. With Almn in hand, the distribution function is finally found to be

P(r, μ, φ, t ) = (2πL2)−1

√
rr0

∑
lmn

(n − m)!

(n + m)!

(2n + 1)

J2
n−1/2(ynl )

eim(φ−φ0 )Jn+ 1
2

(ynl r

L

)
Jn+ 1

2

(ynl r0

L

)
× Pm

n (μ)Pm
n (μ0)exp

[
−y2

nl

L2

∫ t

0
dt ′D

(
t ′)].

(21)
From this expression, the survival probability S(t |r0, μ0, φ0) that the particle remains in the interval between 0 and L up to

time t after having started from the point r0, μ0, φ0 can be determined as

S(t |r0, μ0, φ0) =
∫ L

0
dr

∫ 1

−1
dμ

∫ 2π

0
dφr2 P(r, μ, φ, t ). (22)
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When Eq. (21) for P(r, μ, φ, t ) is substituted into Eq. (22), and the integrals over, first φ, and then μ, are carried out, using
the results

∫ 2π

0 dφeimφ = 2πδm,0, P0
n (μ) = Pn(μ), where Pn(μ) is a Legendre polynomial,

∫ 1
−1 dμPn(μ) = 2δn,0, and P0(μ0) = 1,

the expression for the survival probability reduces to

S(t |r0, μ0, φ0) = 2

L2

∑
l

J1/2(y0l r0/L)√
r0J2

−1/2(y0l )

∫ L

0
drr3/2J1/2(y0l r/L)exp

[
−y2

0l

L2

∫ t

0
dt ′D(t ′)

]
. (23)

The integral over r in Eq. (23) can now be obtained in closed form as [52]∫ L

0
drr3/2J1/2(y0l r/L) =

√
2

π

(
L

y0l

)5/2

[−y0l cos y0l + sin y0l ]. (24)

From its definition, y0l is the solution to the equation J1/2(y0l ) = 0, and since J1/2(z) = √
2/(πz) sin z, it follows that y0l =

lπ, l = 1, 2, . . ., and therefore ∫ L

0
drr3/2J1/2(y0l r/L) =

√
2

π

(
L

lπ

)5/2

[−lπ (−1)l ]. (25)

If it is now assumed (for convenience) that the particle is initially located at r0 = 0, then the result lim
r0→0

J1/2(y0l r0/L)/
√

r0 =
√

2l/L along with the result J−1/2(y0l ) = (−1)l
√

2/(π2l ), leads to

S(t |0) = 2
∑

l

(−1)l+1exp

[
− l2π2

L2

∫ t

0
dt ′D(t ′)

]
. (26)

The sum in this expression can be evaluated analytically [52]; the result is

S(t |0) = 1 − ϑ4(0, e−g(t ) ), (27)

where g(t ) = (π2/L2)
∫ t

0 dt ′D(t ′) and ϑ4(0, z) is an elliptic theta function (specifically Jacobi’s fourth theta function), defined
as ϑ4(u, q) = 1 + 2

∑∞
n=1 (−1)nqn2

cos 2nu.
The first-passage distribution, f (t ), is now obtained from the relation [40]

f (t ) = −∂S(t |0)

∂t
. (28)

Once g(t ) is specified, both S(t |0) and f (t ) can be calculated as functions of t and the other parameters defining the system.
From the definitions of D1(t ) and D2(t ) in Eqs. (16b) and (16c), g(t ) is readily found to be

g(t ) = π2 kBT

γsL2

[
t + τs(γs − γ∞)

γs
(1 − e−B1t )

]
+ π2τε

γ 2
s L2

[
t + 1

B1
(A1 + A2)(1 − e−B1t ) + A1A2

2B1
(1 − e−2B1t )

− A1A3τ

(1 + τB1)
(1 − e−B1t−t/τ ) − τA3(1 − e−t/τ )

]
, (29a)

where A1 = (γs − γ∞)/γ∞, A2 = τs(γ∞ − γs)/(γsτ − γ∞τs), A3 = γs(τ − τs)/(γsτ − γ∞τs), and B1 = γs/(γ∞τs).
To highlight the effects of self-propulsion and viscoelasticity on S(t |0) and f (t ) it proves helpful, as a first step, to introduce

a characteristic time scale t0 that is a measure of the time taken by the particle, on average, to reach the boundary of the cavity
under passive diffusion. This time scale can be taken as t0 = L2/D [42], where D is the diffusion coefficient, which is given by
D = kBT/γs. The amplitude of the driving force, ε, determines the particle’s speed of self-propulsion v, the two being related
as ε = v2γ 2

s /3 [15]. The dimensionless combination vt0/L is then effectively the ratio of active to passive diffusion, and can be
identified with the Péclet number Pe [42]. In terms of this number and the scaled times t̄ ≡ t/t0 and τ̄ ≡ τ/t0, the function g(t )
assumes the form

g(t̄ ) = π2t̄

[
1 + τs(γs − γ∞)

t̄ t0γs
(1 − e−B1t0 t̄ )

]
+ π2Pe2τ̄ t̄

3

[
1 + 1

B1t̄ t0
(A1 + A2)(1 − e−B1t0 t̄ ) + A1A2

2B1t̄ t0
(1 − e−2B1t0 t̄ )

− A1A3τ̄

t̄ (1 + B1t0τ̄ )
(1 − e−B1t0 t̄−t̄/τ̄ ) − A3τ̄

t̄
(1 − e−t̄/τ̄ )

]
. (29b)

The contribution of viscoelasticity to active particle dynamics can be gauged by calculating S(t |0) and f (t ) for the case of
a Markovian (memoryless) fluid, for which K (t ) in Eq. (1) is given simply by 2δ(t ). The only effect of changing K (t ) to this
form is to modify the function g(t ), which, by passing to the limit τs → ∞ [cf. Eq. (15)] in Eq. (29), can be shown—in terms of
scaled variables—to be given by

g(t̄ ) = π2t̄γs

γ∞

[
1 + Pe2γsτ̄

3γ∞

{
1 − τ̄

t̄
(1 − e−t̄/τ̄ )

}]
. (30)
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FIG. 1. The survival probability S(t̄ |0) versus the scaled time t̄
for a viscoelastic liquid, as calculated from Eqs. (27) and (29b), at
fixed τ̄ = 1.0 and at the following values of the Péclet number Pe: 0
(blue curve), 4.0 (red), and 8.0 (purple). Inset. S(t̄ |0) versus time t̄ for
the same liquid at τ̄ = 0.001 and at the same Pe (and color-coded)
values as the main figure.

Equations (27) and (28) [along with Eqs. (29b) and (30)]
are the main result of this paper. For both simple and complex
liquids, they express the dependence of S(t |0) and f (t ) on
essentially just two parameters: the Péclet number Pe, which
characterizes the strength of the self-propulsive forces, and
the dimensionless relaxation time τ̄ , which characterizes (as a
fraction of the diffusion time t0) the interval over which these
forces can be said to persist. S(t |0) and f (t ) also depend on
the friction coefficients and relaxation time of the fluid, viz.,
γs, γ∞, and τs, but these parameters do not change for a given
fluid under specified conditions. (In the present case they
apply specifically to an equimolar solution of cetylpyridinium
chloride and sodium salicylate at 5 mM in deionized water
[47].)

After assigning values to Pe and τ̄ (and to γs, γ∞, τs, T,
and L) in g(t̄ ) in Eqs. (29) or (30), S(t |0) is calculated from
Eq. (27) and f (t ) from Eq. (28) using Mathematica [52].
The values assigned to γs, γ∞, and τs are those shown in the
paragraph following Eq. (15), while the temperature T is set
to 300 K and the radius of the cavity L is set to the arbitrary
(and freely adjustable) value of 1 μm (which is about the size
of at least some eukaryotic cells). The values of γs, γ∞, τs, T,
and L are kept fixed throughout the calculations.

V. RESULTS AND DISCUSSION

The results of these calculations are summarized in Figs.
1–4, which highlight different aspects of the motion of spher-
ically confined self-propelled particles.

Figure 1 shows plots of S(t̄ |0) versus t̄, as calculated
from Eqs. (27) and (29b), at three different values of

Pe (0, 4, and 8, corresponding, respectively, to the blue, red,
and purple curves) and at the fixed value τ̄ = 1.0. The values
chosen for Pe are the same as those used in Ref. [42], and
the decay curves of the survival probability at these values
exactly mirror the decay curves in Fig. 4 of that reference.
Each starts from 1.0 at t = 0 (when the survival of the particle
is guaranteed), and decays to 0 at long times (when particle
capture at the boundary becomes inevitable). The decay to 0
is fastest at the largest Péclet number (Pe = 8), and slowest
at the smallest (Pe = 0), with the decay for Pe = 4 lying
between the two extremes. These trends are in accord with
intuition: increasing Pe increases the speed of the particle’s
self-propulsion, making it more likely—in relation to passive
diffusion—that the particle will encounter (and be stopped at)
the boundary of the cavity in a given interval of time, and
making it less likely that it will survive within the cavity.

The decay curves in Fig. 1 are also found (data not shown)
to be largely independent of τ̄ when τ̄ is greater than 1
(meaning there is little qualitative or quantitative difference
between two decay curves with the same Pe value but different
τ̄ values, provided τ̄ � 1). By definition, τ̄ = τ/t0, so values
of τ̄ greater than 1 correspond to persistence times of the
athermal forces that exceed the time t0 for the particle to reach
the boundary under passive diffusion. In these circumstances,
when Pe is fixed, increasing τ̄ (beyond unity) has little effect
on the particle’s survival probability at a given time, since at
τ̄ = 1, the distance covered by the particle in the interval t0
for which its self-propulsion speed v persists already exceeds
the distance L at which absorption occurs. But the situation
is different when τ̄ < 1, that is, when the persistence time of
the athermal forces falls below t0. In this regime, the decay
curves at different Pe tend to approach the decay curve for
Pe = 0, a circumstance illustrated in the inset to Fig. 1, where
for τ̄ = 0.001, the decay curves corresponding to Pe = 4 and
8 collapse onto the curve at Pe = 0. This behavior originates
in the fact that as τ̄ tends to 0, the athermal forces increasingly
approach delta correlation, acting effectively in that limit as
the ordinary Gaussian white noise driving passive diffusion.

These trends are replicated for the case of a simple (Marko-
vian) fluid, as shown in Fig. 2, but the decays of S(t̄ |0) to
0—at the same three value of Pe used in Fig. 1 (viz., 0, 4,
and 8)—occur significantly faster. Again, these curves are τ̄

independent when τ̄ > 1 (data not shown) and approach the
Pe = 0 curve when τ̄ < 1, collapsing onto it (see the inset
to Fig. 2) when τ̄ = 0.0001 (or smaller). The differences
between the survival probabilities in Figs. 1 and 2 (which are
quantitative, not qualitative) highlight the pronounced slowing
down effect that viscoelasticity has on the particle’s motion.

Figure 3 shows plots of the first-passage distribution t0 f (t̄ )
versus t̄ for a viscoelastic fluid, as calculated from Eqs. (28),
(27), and (29b), at fixed τ̄ = 1 and at the following values
of Pe: 0, blue curve; 4.0, red curve; and 8.0, purple curve. In
the absence of self-propulsion, the distribution of first-passage
times to the boundary is seen to be broadly and asymmet-
rically distributed, reflecting the intrinsic randomness of the
particle’s motion through the sphere. Under the action of self-
propulsive forces, this motion becomes less random and more
directed, and the distributions correspondingly become nar-
rower and more symmetric. These trends are largely replicated
in the distributions calculated by Di Trapani et al. [42] (see
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FIG. 2. The survival probability S(t̄ |0) versus the scaled time t̄
for a simple liquid, as calculated from Eqs. (27) and (30), at fixed
τ̄ = 1.0 and at the following values of the Péclet number Pe: 0 (blue
curve), 4.0 (red), and 8.0 (purple). Inset. S(t̄ |0) versus time t̄ for
the same liquid at τ̄ = 0.0001 and at the same Pe (and color-coded)
values as the main figure.

Fig. 5 in that reference), though the latter appear to display
greater skewness overall.

Figure 4 shows plots of the first-passage distribution t0 f (t̄ )
versus t̄ for a simple fluid, as calculated from Eqs. (28), (27),

FIG. 3. The dimensionless waiting time distribution t0 f (t̄ ) ver-
sus the scaled time t̄ for a viscoelastic liquid, as calculated from
Eqs. (28), (27), and (29b), at fixed τ̄ = 1.0 and at the following
values of the Péclet number Pe: 0 (blue curve), 4.0 (red), and 8.0
(purple).

FIG. 4. The dimensionless waiting time distribution t0 f (t̄ ) versus
the scaled time t̄ for a simple liquid, as calculated from Eqs. (28),
(27), and (30), at fixed τ̄ = 1.0 and at the following values of the
Péclet number Pe: 0 (blue curve), 4.0 (red), and 8.0 (purple).

and (30), at fixed τ̄ = 1 and at the following values of Pe: 0,
blue curve; 4.0, red curve; and 8.0, purple curve. Qualitatively,
these curves are similar to the curves in Fig. 3, but they are
all more narrowly distributed (even at Pe = 0), suggesting
that viscoelastic effects may cause greater dispersion in the
particle’s trajectories, a possibility supported by the known
occurrence of subdiffusion and other anomalous behaviors in
the presence of such effects.

The findings presented here hint at the richness of the
dynamical behavior that underlies autonomous motion under
conditions of confinement. The model introduced in this pa-
per, though simpler and perhaps less realistic [38,43] than
the ABP model used in di Trapani et al.’s investigation [42],
appears to capture much the same physics, and can therefore
serve as a convenient, practical framework for exploring other
aspects of confined active dynamics.

The data that support the findings of this study are available
within the paper.
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APPENDIX: DERIVATION OF EQ. (20)

To show that the probability density function P(r, μ, φ, t )
is given by Eq. (20) under absorbing boundary conditions
at r = L, one must find the solution of Eq. (19) for the
function F = F (r, μ, φ, t ). This is done by first assuming
that F can be written as a product of functions that depend
separately on the variables r, μ, φ, and t , in other words, as
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F = G(t )R(r)M(μ)�(φ). When this assumed form of F is
substituted into Eq. (19), the resulting equation—after sup-
pressing the arguments of G, R, M, and � to save space—can
be rearranged to

1

D(t )G

∂G

∂t
= 1

R

(
∂2

∂r2
+1

r

∂

∂r
− 1

4r2

)
R+ 1

Mr2

∂

∂μ
(1−μ2)

∂M

∂μ

+ 1

r2(1 − μ2)�

∂2�

∂φ2
. (A1)

The left-hand side of this equation depends solely on t ,
while the right-hand side depends solely on r, μ, and φ, so it
must follow that each side is a constant, independent of these
variables, say, −λ2. Hence,

1

D(t )G

∂G

∂t
= −λ2 (A2)

and

1

R

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

4r2

)
R + 1

Mr2

∂

∂μ
(1 − μ2)

∂M

∂μ

+ 1

r2(1 − μ2)�

∂2�

∂φ2
= −λ2. (A3)

Equation (A3), in turn, can be rearranged to

− 1

�

∂2�

∂φ2
= r2(1 − μ2)

R

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

4r2

)
R

+ λ2 r2(1 − μ2) + (1 − μ2)

M

∂

∂μ
(1 − μ2)

∂M

∂μ
.

(A4)

Again, because the left-hand side of this equation is a
function of φ alone, and the right-hand side is independent

of it, each side must equal a constant, in this case, m2, say.
Accordingly,

1

�

∂2�

∂φ2
= −m2 (A5)

and

r2

R

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

4r2

)
R + λ2 r2

= m2

1 − μ2
− 1

M

∂

∂μ
(1 − μ2)

∂M

∂μ
. (A6)

The same reasoning applied to Eq. (A.6) now leads to two
further equations:

∂

∂μ
(1 − μ2)

∂M

∂μ
+

(
n(n + 1) − m2

1 − μ2

)
M = 0 (A7)

and

1

R

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

4r2

)
R + λ2 = n(n + 1)

r2
, (A8a)

or, equivalently,(
∂2

∂r2
+ 1

r

∂

∂r

)
R +

(
λ2 − (n + 1/2)2

r2

)
R = 0, (A8b)

Where n is another constant. Equations (A2), (A5), (A7), and
(A8b) for the functions G, �, M, and R are readily solved, the
solutions being G(t ) ∝ exp[−λ2

∫ t
0 dt ′D(t ′)], �(φ) ∝ eimφ ,

M(μ) ∝ Pm
n (μ), and R(r) ∝ Jn+1/2(λr), where Pm

n (x) is an
associated Legendre function, and Jα (x) is a Bessel function
of index α.

The requirement that the surface of the sphere at r = L be
an absorbing boundary fixes the constant λ as ynl/L, where ynl

is the lth zero of Jn+1/2(z), i.e., it is the solution of the equation
Jn+1/2(ynl ) = 0.

The foregoing results immediately identify Eq. (20) as
the most general form of the probability density function
P(r, μ, φ, t ) satisfying the given boundary conditions.
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