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Stability of sectored morphologies of polymer lamellae
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When a solution of interpenetrating and entangled long flexible polymer chains is cooled to low enough tem-
peratures, the chains crystallize into thin lamellae of nanoscopic thickness and microscopic lateral dimensions.
Depending on the nature of the solvent and growth conditions, the lamellae exhibit several sectors that have
differing growth kinetics and melting temperatures. Remarkably, these lamellae can spontaneously form tentlike
morphology. The experimentally well-documented phenomenology of lamellar sectorization and tent formation
has so far eluded a fundamental understanding of their origins. We present a theoretical model to explain this
longstanding challenge and derive conditions for the relative stabilities of planar, sectored, and tent morphologies
for polymer lamellae in terms of their elastic constants and interfacial tensions. While the present model offers an
explanation of the origin of the spontaneous formation of sectored tentlike morphology as well as sectored planar
morphology, in contrast to planar unsectored morphology, predictions are made for morphology transformations
based on the materials properties of the polymeric lamellae.
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I. INTRODUCTION

Polymer crystals are fascinating because they are formed
by long, entangled, and interpenetrating chains. There is
a topological frustration that the polymer chains need to
overcome for settling into crystalline order. The frustration
arises from the highly entangled collection of interpenetrating,
connected chains with long-ranged spatial and dynamic cor-
relations before crystallization begins. The chains have large
free-energy barriers to reorganize polymer conformations into
the ordered states [1]. Interestingly, the chains overcome the
barrier to form polymer crystals [2,3]. Because of the con-
nectedness, polymer crystals are different from regular atomic
and molecular crystals. In contrast to regular crystals in three
dimensions, polymer crystals are not periodic in all three
dimensions. The free energy of polymers, particularly the con-
figurational entropy of the polymer chains, compels polymer
crystals to form lamellae [4,5].

The adjacent-reentry fold model (proposed by Keller [6])
is widely accepted to explain the structure of lamellae through
polymer chains. According to this model, parts of polymer
chains form rigid stemlike structures attached to adjacent
stems by flexible folds in the polymer. These stems offer
crystalline order by arranging on a lattice [see Fig. 1(a)]. De-
pending on growth conditions, stems can align either along the
lamellar normal or at an angle with respect to it [2,3,7]. The
lamella also comprises flexible chains like cilia and hairlike
microscopic structures. For example, the crystalline state of
polyethylene (PE) lamellae is in base-centered orthorhombic
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symmetry. The stems are tilted with respect to lamella normal
by ∼30◦ [see Fig. 1(b)]. The stems are in the trans configura-
tion, and the folds are mainly in the gauche configurations.

Crystallization from a solution containing sufficiently long
and unentangled flexible polymer molecules is observed to
form diverse morphologies of single lamellar crystallites such
as flat sectors, hollow pyramids, disks, onionlike scrolls, and
twisted morphologies [7–11]. The typical thickness of a single
lamella is on the order of 10 nm and lateral dimensions of
about micrometers or above. The size, shape, and regularity
of the crystals depend on their growth conditions such as
solvent, temperature, concentration, and rate of growth. For
example, flat lozenge-shaped lamellae are formed when PE
is crystallized from a mixture of tetrachloroethylene and p-
xylene [3], and flat hexagonal-shaped lamellae are formed
when polyoxymethylene is crystallized from bromobenzene
[9].

Even though sectors and hollow pyramids (sometimes re-
ferred as tents; hereafter, we call them tents) are observed
experimentally, few theoretical models are used to investigate
them. A fascinating approach involving topological defects in
the folds was developed by Alageshan et al. [12] to study the
stability of the flat-sectored morphology of polymer crystals.
We use concepts borrowed from liquid-crystal physics and
the physics of crystalline membranes to study the flat-sector
morphology in Ref. [12].

For the stability of tents, a natural question arises why
deformed tents are favored when compared with planar struc-
tures such as flat sectors and flat uniform morphologies. In
this paper, we address this question based on the energetics
of polymer morphologies. We follow the same approach as
in Ref. [12] to investigate the stability of tent and flat-sector
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FIG. 1. (a) Cartoon of adjacent reentry model depicted in sec-
tored lamella. The hairpinlike structures on the lamellar surface
produce the fold field. (b) Schematic illustration of the unit cell of
a crystalline polyethylene lamella. The unit cell has base-centered
orthorhombic symmetry. Here, a, b, and c represent the crystal axes,
and lamella are xy plane, with lamellar normal along the z axis. Note
that the c axis of the unit cell is tilted with respect to the z axis. Blue
and orange shaded ellipsoids represent oriented stems formed by the
all-trans configurations. Folds are not shown.

morphologies in polymer crystals. However in Ref. [12], the
core energetics of the topological defect in the fold field of the
flat sector is not mentioned explicitly. Therefore, we correctly
account for this in the stability analysis of tent and flat-sector
morphologies.

In this paper, we present a minimal model to study a
spontaneous selection of tent morphology compared with flat-
sector and uniform morphologies in polymer crystals. Using
phenomenological theories, we evaluate the free energies cor-
responding to crystalline order and distortions in stem and
fold fields of a single polymer lamella. The surface tension,
line tensions (isotropic and anisotropic), and bending also
contribute to the free energy of a given polymer morphology.
As a result of the interplay between in-plane order, topolog-
ical defects, and geometry, topological defects in the flexible
crystalline [13] and hexatic [14] membranes buckle to reduce
in-plane stresses. Interestingly, positive and negative defects
of equal strength prefer locally positive (spherelike) and neg-
ative (saddlelike) Gaussian curvatures.

FIG. 2. Cartoon of a hollow tent morphology. Each face of the
tent has a uniform fold configuration.

The key result of this paper is that we extend the buckling
phenomenon to polymer crystalline lamellae and show that
tents are buckled sectors (Fig. 2). The competition between
the distortions in the fold, stem fields, and bending deforma-
tion determines the polymer configurations. The apex angle of
the tent configuration is determined by the tilt of the polymer
stems. Within the framework of the model, we study the
stability analysis and obtain a morphology diagram indicating
the stability of flat-uniform, flat-sector, and tent configurations
over suitable parameters such as anisotropic line tension and
elastic constants corresponding to folds, stems, and bending.
In what follows, we give details of the model in Sec. II
and present equilibrium equations and equilibrium configu-
rations, respectively, in Secs. III and IV. The energetics of
flat-uniform, flat-sector, and tent configuration are discussed
in Sec. V. In Sec. VI, we discuss the results of the numeri-
cally obtained morphology diagram, followed by a concluding
section.

II. MODEL

For simplicity, we focus on structural and topological as-
pects of the flat sectors and tent configurations but do not
address the detailed experimental conditions such as particular
solvents, growth rate, and temperature. We treat the polymer
configurations as mechanical and thermodynamical equilib-
rium structures. We also assume that the polymer lamella is a
thin crystalline plate or membrane that uses continuum elastic
theory (plate theory) [15].

Let R(x) be the parameterization of a given two-
dimensional (2D) polymer crystalline membrane embedded
in three dimensions with the internal coordinates x = (x1, x2).
In general, a single polymer crystal has in-plane (i) crystalline
order from polymer stems, (ii) tilt order of polymer stems,
and (iii) orientational order from the fold field. The distortions
in these in-plane orders play a significant role in the stabil-
ity of polymer morphologies. For nonplanar morphologies,
there are also bending deformations. Therefore, the competi-
tion between deformations in the underlying in-plane orders
and bending of the lamella—thus, the total free energy of
the system—dictates the stable configuration of the polymer
lamellae. In this section, we discuss the phenomenological
theories corresponding to the free energy of the polymer
lamellae.
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A. Crystalline order: Hookean elasticity

The Hookean elastic free energy of the lamella depends on
the symmetry of the point group that the underlying crystalline
lattice possesses. For example, the orthorhombic symmetry
of PE has nine independent elastic constants. To simplify
the problem, we consider homogeneous and isotropic crys-
talline order, which has two independent elastic constants. The
Hookean elastic free energy is given by [15,16]

Fu = Y

2(1 + νP )

∫ (
u2

μν + νP

1 − νP
u2

μμ

)
dA, (1)

where Y and νP are 2D Young’s modulus and Poisson’s
ratio, and the linearized strain tensor, by definition, uμν =
1
2 (∂νuμ + ∂μuν ). Here, u(x) = {u1(x), u2(x)} is the 2D dis-
placement vector for the in-plane crystalline order, and dA =√

gdx1dx2 is the area element with the metric g and notation
∂μ = ∂/∂xμ for {μ, ν} = {1, 2}.

B. Stem field

In addition to crystalline order from the stems, the polymer
lamella acquires a tilt order from the stems which are tilted
with respect to lamellar normal. The projection of stems onto
the tangent plane of the lamella formulates the tilt order.
Mathematically, the tilt order of the polymer stems is the unit
vector field given by ŝ = ĉ − (ĉ · N̂)N̂, where ĉ and N̂ are the
axis of the stem and lamellar normal, respectively [17,18]. For
a flat lamella with unit normal along the z axis, the projected
stem field simplifies to ŝ = {sx, sy} such that s2

x + s2
y = 1. The

elastic free energy due to deformations in the stem field is
given by [17–19]

Fs =
∫ [

K̃1

2
(∇ · ŝ)2 + K̃2

2
(∇ × ŝ)2

]
dA, (2)

where K̃1 and K̃2 are the splay and bend elastic constants, re-
spectively, for the stem field, and ∇ is the covariant derivative.

C. Fold field

The orientation of folds depends on the symmetry of the
underlying crystalline order of the polymer lamella. For PE,
there are two possible fold directions [see Fig. 3(a)]. Folds
along these two directions have different energies. More-
over, in the ground state configuration, folds at the two
fold surfaces are uniformly aligned. Thus, the ground state
of a lamella has up-down symmetry. The fold direction is
described by an apolar vector field n̂ f with −n̂ f ≡ n̂ f sym-
metry. For a flat lamella, the fold field is given by n̂ f (x, y) =
{cos φ(x, y), sin φ(x, y)}, where orientational field φ(x, y) is
the angle made by n̂ f with respect to the x axis. Because of
up-down symmetry, φ is measured modulo π . On a curved
surface, the angle φ(x) is measured modulo π with respect to
a local orthonormal frame [ê1(x), ê2(x)].

Unlike square or perfect hexagonal shapes, the side lengths
of each sector can, in general, be different. Typically, sectors
come in lozenge and hexagonal shapes depending on underly-
ing crystalline order and growth conditions [2,3,7]. To make
calculations tractable, we consider square-shaped sectors. A
square shape can be obtained if the two possible directions for
the PE folds shown in Fig. 3 have the same energy. To do this,

FIG. 3. Surface of the polyethylene (PE) lamella. (a) The black
and red lines represent the two possible folds. Energetically, the black
fold is favorable. (b) Viewed along the c axis. Illustration of the
lozenge-shaped, sectored lamella obtained by black lines.

we choose a potential that stabilizes square sectors as

Vφ (x) = h4

4

∫
cos 4φ(x)dA, (3)

where h4 is the strength of the potential.
This potential has four equal minima at φ =

π/4, 3π/4, 5π/4, and 7π/4 such that there are four
equivalent ground states. Each ground state corresponds to
a domain in the sector, and from one domain to another, the
folds deform smoothly. In general, folds can deviate from the
preferred direction, causing deformations in the fold field. To
estimate the free energy cost, we use 2D nematic free energy
as the lamella has up-down symmetry(−n̂ f ≡ n̂ f ), like the
symmetry on nematic order. The corresponding Frank free
energy is given by [19,20]

Fφ =
∫ {

K1

2
[∇ · n̂ f (x)]2 + K2

2
[∇ × n̂ f (x)]2

}
dA, (4)

where K1 and K2 are the splay and bend elastic constants for
the fold field, respectively. In one constant approximation,
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the free energy reduces to (for more details, see Appendix of
Ref. [21])

Fφ = 1

2
Kφ

∫
gμν (∂μφ − Aμ)(∂νφ − Aν )dA, (5)

where Kφ is elastic constant, gμν is the inverse of metric tensor
gμν , and Aμ is the spin-connection term. By definition, Aμ =
( 1

2 )(ê1 · ∂μê2 − ê2 · ∂μê1).

D. Coupling between crystalline order and folds

It is important to note that there is a coupling between the
crystalline order (ui j) and fold field (n̂ f ) as shear deformations
in crystalline order can change in fold orientation. Moreover,
this coupling should be invariant under up-down symmetry
(i.e., −n̂ f ≡ n̂ f ). Keeping these considerations, the simplest
coupling between ui j and n̂ f is [ui j − ( 1

2 )δi jukk]n f in f j [22].
Note that this coupling is nonlinear because it involves two n̂ f

fields and one u field.
To be consistent with the harmonic approximation, we con-

sider the de Gennes-type coupling used in nematic elastomers
[23]. We use this coupling in the context of the crystalline
and fold field (φ field) of polymer crystals. Rotations in the
crystalline lattice are given by � = ( 1

2 )(∂xuy − ∂yux ) [24]. It
is a z component of ( 1

2 )∇ × u. For rigid rotations, changes in
φ should match with �, i.e., δ� = δφ. The elastic free energy
from nonuniform rotations in � and φ fields takes the form:

F�φ = K�φ

2

∫
(δ� − δφ)2dA, (6)

where K�φ is a coupling constant. Note that F�φ is minimum
for δ� = δφ. This coupling ensures δ� ≈ δφ for the crys-
talline lamella. Therefore, disclinations in the fold field would
induce disclinations in crystalline order and vice versa. It is
important to note that the elastic free energy of an isolated
disclination in a flat crystalline membrane diverges as the
square of the system size [13]. In contrast, the elastic free
energy of an isolated disclination in nematic order diverges
logarithmically with the system size [14]. In what follows, we
ignore the coupling because of the prohibitively high elastic
free-energy cost for disclinations in crystalline order [12].

E. Bending: Helfrich free energy

Buckling involves the bending of polymer crystalline
lamellae. For the free-energy cost corresponding to the bend-
ing of the polymer lamellae, we consider the Helfrich term
[25]:

FH = κ

2

∫
H2dA, (7)

where κ is the bending rigidity of the lamella, and H is the
mean curvature of the buckled surface.

F. Coupling between stems and curvature

In addition to the above bulk free-energy terms, there is
an important coupling between polymer stems and curvature
due to the bending of the polymer lamella. The bending
of the polymer crystalline lamella can be achieved in two
possible mechanisms (see Fig. 4). In the first mechanism,

FIG. 4. Schematics of bending of the polymer crystalline
lamella. Two types of bending: (i) splaylike bending in which poly-
mer stems undergo splay deformation and (ii) slidelike bending in
which the stems point along the vertical direction via the sliding
mechanism.

splaylike bending, the polymer stems undergo splay deforma-
tion to bend the lamella, whereas in the second mechanism,
slidelike bending, the polymer stems are rearranged to be
along the vertical direction via sliding mechanism without
having splay deformation. The coupling between the polymer
stem field (ŝ) and curvature is given by [17,18]

FsH = C
∫

(∇ · ŝ) H dA, (8)

where C is the coupling constant. We note that the transforma-
tion: normal (N̂) → −N̂ implies ŝ → −ŝ and H → −H such
that the term (∇ · ŝ) H remains invariant (bilayer symmetry).

G. Surface and line tension energies

The polymer lamella has surface tension energy given by

Fσ = 2σ̃

∫
dA, (9)

where σ̃ is the surface tension. The factor 2 is for the upper
and lower surfaces of the lamella. For simplicity, we use the
notation σ = 2σ̃ to represent total surface tension.

For a polymer lamella with finite boundaries, the isotropic
line tension free energy is given by

Eiso = γ

∮
dl, (10)

where γ is isotropic line tension, and dl is the length element
on the boundary.

The anisotropic line tension generally prefers a particular
angle between the fold field and outward normal to the bound-
ary [26]. We model the anisotropic line tension as [26]

Ean = −γan

∮
[n̂ f · (cos φ0 n̂b + sin φ0 t̂b)]2 dl, (11)

where γan is anisotropic line tension, φ0 is the preferred
fold angle with boundary normal n̂b, and t̂b is tangent to the
boundary. To ensure −n̂ f ≡ n̂ f symmetry, the term inside the
integral is squared.

For the square sector, we choose φ0 = π/2, i.e., at the
boundary, the fold field is aligned parallel to tangent t̂b. With
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this choice, the anisotropic line tension takes the form:

Ean = −γan

∮
(n̂ f · t̂b)2dl

= −γan

∮
cos2 (φ − φb)dl

≡ γan

∮
sin2 (φ − φb)dl, (12)

where φb is the angle made by the tangent to the boundary
with respect to local ê basis.

The total bulk free energy (F ) of a buckled polymer crys-
talline lamella is

F = Fu + Fs + FH + FsH + Fφ + Vφ + Fσ . (13)

With this background, we discuss the Euler-Lagrange equa-
tions of equilibrium for the buckled polymer lamellae.

III. EQUILIBRIUM EQUATIONS

To obtain Euler-Lagrange equations of equilibrium, we
minimize the total free energy (F ) with respect to the stem
field (ŝ) and the fold field (φ). The minimization with respect
to ŝ gives

δF

δŝ
= −∇[K̃1(∇ · ŝ) + CH] − K̃2∇ × ∇ × ŝ = 0. (14)

The above vector equation is difficult to solve in general.
Therefore, we consider a simple situation of curl-free stem
configuration; that is ∇ × ŝ = 0. With this consideration,
Eq. (14) reduces to K̃1(∇ · ŝ) + CH = const. Without loss of
generality, we take const. = 0. Thus, the simplified equilib-
rium equation takes the form:

∇ · ŝ = − C

K̃1
H. (15)

After substituting the condition Eq. (15) into the total free-
energy expression [Eq. (13)], we get the modified total free
energy (F ) as

F = Fu + Fφ + Vφ + 1

2
κe f

∫
H2dA, (16)

where the effective bending rigidity κe f = κ − (C2/K̃1). We
note that the effect of coupling between polymer stems and
curvature reduces the bending rigidity.

The φ equation corresponding to the equilibrium fold field
on the surface is given by

δF

δφ
= −Kφ∇·(∂φ − A) − h4 sin(4φ) = 0, (17)

where ∇· represents covariant divergence. Note that the equa-
tion is a nonlinear partial differential equation in φ because
of the sin(4φ) term. These types of equations are known as
sine-Gordon equations [16]. The one-dimensional solution to
the sine-Gordon equation gives a wall or soliton solution.

Minimization of F with respect to displacement vector u
gives

δF

δuμ
= ∇νσμν = 0, (18)

FIG. 5. Square sector: Texture of fold field obtained from the
exact solution φs(x, y). Two shaded lines represent the soliton-type
walls of wall width w. The fold field follows streamlines of +1
disclination, and the disclination core is located at the center of the
square.

where the linearized stress tensor

σμν = Y

1 + νP

(
uμν + νP

1 − νP
uββδμν

)
.

The general procedure for obtaining the equilibrium shape
is to perform covariant minimization of the free energy (F )
with respect to shape. However, the shape equation will be
nonlinear and difficult to solve for general surfaces. For the
tent surface, we use the ansatz solution discussed in the next
section.

IV. EQUILIBRIUM CONFIGURATIONS

In this paper, we investigate three basic morphologies of
polymer crystals, namely, flat-uniform, flat-sector, and tent
configurations. For a flat lamella, we can assign a fixed co-
ordinate system such as x-y axes to measure fold field φ.
Thus, the spin connection terms are zero [see Eq. (5)]. The
φ equation reduces to

Kφ

(
∂2

x φ + ∂2
y φ

) + h4 sin(4φ) = 0. (19)

A trivial, uniform solution to the above equation corre-
sponds to one of the four minima. For example, we take the
solution:

φ(Uni) = π

4
. (20)

The nontrivial, soliton-type solution to Eq. (19) is [12]

φs(x, y) = arctan

[
tanh(y/w)

tanh(x/w)

]
− π

2
, (21)

where the length scale w =
√

Kφ/h4. Subtraction of π/2 in
the solution ensures that the boundary condition that the fold
field n̂ f is parallel to the tangent to the boundary (t̂b). The
streamlines of the fold field in the square sector are depicted
in Fig. 5. We note that the streamlines form a +1 disclination
in the fold field with two intersecting walls, of wall width w
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FIG. 6. (a) A hollow pyramid (tent) surface: A plot of the height
function h(x, y). The vertical black and blue lines represent the axis
and faces of the tent surface, respectively. (b) Schematics of apex
angle (2β): By definition, the angle between the axis and face of
the tent is β. The asymptotic slope of the tent face (blue line) is
tan(π/2 + β ).

each, along x and y axes, the point of intersection being the
core of the disclination.

A. Tent surface as an ansatz for shape equation

As mentioned in the previous section, we surmise the
height function based on symmetries of the flat squared sector
as that of a hollow pyramid (tent configuration). For that,
we consider the parameterization of the surface (Monge rep-
resentation) as R(x, y) = {x, y, h(x, y)}, where h(x, y) is the
height function. With this representation, we get the met-
ric g = 1 + (∇xyh)2, where (∇xyh)2 = (∂xh)2 + (∂yh)2. The
ansatz height function corresponding to the tent surface is
given by [see Fig. 6(a)]

h(x, y) = −a ln

(
cosh

[
x

w

]
cosh

[
y

w

])
, (22)

where parameter a is the slope of the tent and the wall width
of the flat sector w = √

(Kφ/h4). We note that the projec-
tion of the edges of the tent is along the x and y axes,
respectively, and each quadrant represents the projected plane
of the tent face. The asymptotic slope of the tent face is
limx→∞ dh(x, x)/dx = −2a/w. If the apex angle of the hol-
low pyramid (tent) is 2β, the slope is given by [see Fig. 6(b)]

−2a

w
= tan

(
π

2
+ β

)
. (23)

The buckling of the flat sector into a tent configuration
involves the rearrangement of polymer stems. An illustration
of polymer stems in tent configuration is shown in Fig. 7. We
believe that the slidinglike bending of the polymer lamella is
favorable. From the geometrical arguments, we can relate the
tilt angle (θ ) of the stem and apex angle (2β) of the tent as
follows (see Fig. 7):

θ + β = π

2
. (24)

After substituting it into the slope formula [Eq. (23)], we get a
relation between the parameter a and the tilt angle as follows:

Aw = a

w
= 1

2
tan(θ ). (25)

FIG. 7. Cartoon of buckling of polymer lamella with tilted stem
into tent configuration.

Thus, the tilt angle of the stems determines the geometry of
the tent surface.

For the equilibrium fold configuration on the tent surface
h(x, y), we need to solve Eq. (17) with the Monge approxima-
tion, i.e., −Kφ (∇2

xyφ − ∇xy · A) − h4 sin(4φ) = 0. We note
the term ∇xy · A is nonlinear in the height field (h), and it is
difficult to solve the equation analytically (see Appendix A
for more details). Within the linear regime of the height field,
we neglect the ∇xy · A term. Then the φ equation reduces to
that of the flat case [Eq. (19)], and φs is an exact solution.
Therefore, we use φs as the equilibrium fold field on the tent
surface by ignoring the contributions coming from the spin
connection. This assumption is valid for a 
 w. Thus, we
restrict ourselves to tent surfaces that are almost flat.

The cartoon of φs on the tent surface is shown in Fig. 8(a).
We note that the disclination core coincides with the tent apex,
each tent face has a uniform fold field, and the adjacent face
is connected by a soliton-type wall in the fold field.

V. ENERGETICS

To study the stability analysis, we compare the total free
energies of flat-uniform, flat-sector, and tent configurations
(Fig. 8). Throughout the calculations, we assume that the
underlying crystalline order is the same for the three config-
urations considered. Thus, the Hookean elastic energy for the
crystalline order in the three configurations remains constant.
We also choose the surface areas of all three configurations
as the same such that surface tension effects do not play a
major role in stability. Let l and lT be the side length of the flat
sector (and uniform configuration) and the base length of the
hollow pyramid (tent), respectively. The surface area of tent
Atent = ∫∫ √

g dx dy. Upon equating areas of the flat sector
and tent surface, we get the relation between l and lT as

L = √
Atent

L(Aw, LT ), (26)

where L = l/w and LT = lT /w.
Since the fold field is uniform, Fφ = 0. Contribution from

the potential is given by

V (Uni)
φ = −h4

4
l2, (27)
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FIG. 8. Schematics of the fold field. (a) On the tent surface (an exaggerated height field). Note the tent edges match with soliton-type walls
in the fold field. The base length of the tent, in w units, is LT . The black square represents the core with side length ζ (in w units). (b) For the
flat sector of side length L (in w units). (c) For flat uniform configuration.

where the superscript (Uni) indicates the uniform configura-
tion. The isotropic and anisotropic tensions take the form:

Eiso = 4γ l,

E (Uni)
an = 2 γanl. (28)

We note that surface and line tensions are the same for the
square sector of side length l; thus, we omit the superscript
(Uni). The factor 4 in Eiso is due to four sides of the bound-
ary, and for E (Uni)

an , only two sides of the boundary follow
the boundary condition, leaving out free-energy cost for the
remaining two sides.

For mathematical simplifications, we define dimensionless
fold free energy as

E (Uni)
T = Fφ + Vφ + Ean + Eiso

Kφ

≡ E (Uni)
T [�iso, �, L(Aw, LT )], (29)

where dimensionless side length L = l/w and line tension
parameters �iso = (γw)/Kφ , � = (γanw)/Kφ . Recall that wall
width w = √

Kφ/h4.
To calculate the energetics of sectors, we consider a square

sectored lamella with side length l (the same as for the uni-
form case) in the x-y plane such that the walls coincide with
the coordinate axes (see Fig. 5). We bear in mind that the
fold field has a point disclination at the center, i.e., the origin.
Thus, we need to use cutoffs for calculating Fφ and Vφ to
avoid the singularities arising from the core of the disclination.
Following the symmetry of the square-shaped lamella, we
choose a square-shaped core with side length ξ [see Fig. 8(b)].
Therefore, the core area is ξ 2.

Substituting the exact solution for φ [Eq. (21)] into Fφ

with the appropriate core gives the elastic free-energy cost
due to deformations in the fold field. However, the integrals
are not analytically tractable. We use a numerical approach
to calculate the total free energy (see Appendix B for more
details). The dimensionless total energy of the square sector is
given by

E (Sec)
T = Fφ + Vφ + Ean + Eiso

Kφ

≡ E (Sec)
T [ζ , L(Aw, LT ), �iso, �], (30)

where the superscript (Sec) indicates the sector configuration
and dimensionless core size ζ = ξ/w.

For tent energetics, we note that the fold field has a discli-
nation at the apex. Thus, we use cutoffs for calculating Fφ

and Vφ to avoid the singularities arising from the disclination.
Following the symmetry of the square sector, we choose a
square-shaped core with side length ξ [see Fig. 8(a)]. As
the integrals in free-energy calculations are analytically not
solvable, we use a numerical approach (see Appendix B for
more details). The total free energy of the tent configuration
in Kφ is given by

E (Tent)
T = Fφ + Vφ + FH + Ean + Eiso

Kφ

≡ E (Tent)
T (ζ , Aw, LT , �iso, �, κd ), (31)

where dimensionless bending rigidity κd = κe f /(4Kφ ).

VI. RESULTS: A MORPHOLOGY DIAGRAM

In this section, we obtain morphology diagrams indicating
the stability of flat-uniform, sector, and tent configurations.
Since the total energy of each configuration is a function of
multiple dimensionless parameters {�iso, �, κd and ζ}, the
morphology diagrams are complicated to represent in one
plot. So we follow the procedure described below.

We numerically calculate E (Uni)
T , E (Sec)

T , and E (Tent)
T for a

given core size ζ , Aw for varying values of κd , LT , �iso, and
�. For fixed ζ , we find morphology boundaries by equating
the total energy of each configuration. For example, the flat
sector–tent boundary is obtained by equating the total ener-
gies of the sector and tent. The surface plots of morphology
diagrams for PE crystal are shown in Fig. 9. For PE crystal,
the tilt angle θ � π/6; thus, Aw � ( 1

2 ) tan(π/6) = 1/(2
√

3).
In our calculations, we choose ζ = 0.01 (the same core size as
the sector). For better representation, we give the line plots by
intersecting the surface plots with constant κd planes. The cor-
responding morphology diagrams as a function of �iso and LT

for various κd and � given in Fig. 10.
From the morphology diagram (Fig. 10), it is clear that

the tent configuration is stable for small bending rigidity (κd ),
large line tension (�iso, �) values, and sizes (LT ). The sector
configuration is favorable for large κd and LT and moderate
values of {�iso, �}. The results can be understood easily: As
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FIG. 9. Surface plots: The boundaries of two morphologies plotted as a function of parameters corresponding to isotropic line tension
(�iso), base length of the tent (LT ), and bending rigidity (κd ) for fixed anisotropic line tension parameter (�). Here, the abbreviations UT, ST,
and US denote the uniform tent, sector tent, and uniform sector boundaries. For understanding the stability, consider the UT boundary. We
note that, below (above) the UT boundary surface, uniform configuration (tent configuration) is favorable. The exact stability range of each
configuration is obtained by considering all the boundaries. For example, the sector is stable in the region between blue and orange surfaces.
Gray also represents the stable sector region. It is an artifact caused by the restriction of �iso values, like an intersection of �iso = const. planes.

the line tension parameters increase, trapping of disclination
in the fold field becomes stronger, which stabilizes the sec-
tor formation. The lower bending rigidity favors the sector
buckling into the tent configuration. We note that, depend-
ing on the parameter values, the tent configuration can be
obtained directly from the flat-uniform configuration with-
out forming sector configuration [see Figs. 10(a) and 10(c)].
However, the sector configuration is stabilized for a different
set of parameters and becomes an intermediate configuration
in the transition from flat-uniform to tent configuration [see
Figs. 10(b) and 10(d)].

We also investigate critical bending rigidity (κ∗
d ), the min-

imum value of bending rigidity required for the flat sector
to buckle into the tent. The surface plot of critical bend-
ing rigidity as a function of � and LT for �iso = 1 is
shown in Fig. 11(a). The line plots corresponding to the
surface plots with the intersection of � = const. planes and
LT = const. are given in Figs. 11(b) and 11(c), respectively.
Interestingly, for large side lengths of the tent, the criti-
cal bending rigidity saturates for anisotropic line tension
values.

FIG. 10. The morphology diagram: Figures indicating the stability range of the tent, the flat sector and the flat uniform. They are plotted
as a function of parameters corresponding to isotropic line tension (�iso) and base length of the tent (LT ) for fixed anisotropic line tension
parameter (�) and bending rigidity (κd ). The morphology diagrams are the intersection of surface plots from Fig. 9 with κd = 0.1 and κd = 1
planes.
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FIG. 11. Critical bending rigidity (κ∗
d ) plots: Minimum value of κd such that the flat sector buckles to the tent. (a) Surface plot: Critical

bending rigidity (κ∗
d ) as a function of � and LT for �iso = 1. (b) Critical bending rigidity (κ∗

d ) vs LT line plots: The intersection of the surface
plot with � = const. planes. (c) Critical bending rigidity (κ∗

d ) vs � line plots: The intersection of the surface plot with LT = const. planes.

VII. CONCLUSIONS

Using concepts from liquid-crystal physics and topological
defects, we have constructed a theoretical model to address
the spontaneous formation of tentlike morphologies of PE and
other polymeric lamellae. The central scheme of this model is
that the sectors are formed due to trapping of a disclination in
the fold field, and the tent configurations are buckled sectors.
Stronger anisotropic line tension in the fold field traps a discli-
nation more easily, and lower bending rigidity prefers the
buckling of the lamellae. Within the framework of the model,
we find the solution to the tent surface with the prediction of
the slope formula [Eq. (23)]. We have shown that bending
of a lamella involves coupling between the tilt of the poly-
mer stems and curvature of the lamellae, which effectively
reduces the bending rigidity. We hope the derived theoretical
predictions on the relative stabilities of sectored morpholo-
gies of polymer lamellae will stimulate future experiments
by systematically varying the key experimental parameters
identified in the present model. There are several key open
questions for future considerations. The chief among these is
the mapping between the phenomenological parameters such
as the lamellar width and their experimental realization in ex-
periments using, for example, the extent of supercooling and
solvent quality. The other key issue is that the present theory is
based on conditions of thermodynamic equilibrium, whereas
the crystallization phenomenon occurs under nonequilibrium
conditions. The role of nonequilibrium effects in terms of
conformational entropy of polymer chains that arise during
crystallization on the stability of pyramids is an open question
for further investigation.
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APPENDIX A: MONGE REPRESENTATION

We consider the parameterization of the surface in Monge
representation as R (x, y) = {x, y, h(x, y)}, where h(x, y) is
the height function. With this representation, we get the metric
g = 1 + (∇xyh)2, where (∇xyh)2 = (∂xh)2 + (∂yh)2. Within
the Monge approximation, i.e., (∂xh)2, (∂yh)2, (∇xyh)2 
 1,
we get the spin connection:

Ai = 1
2ε jk∂k[(∂ih)(∂ jh)], (A1)

where {i, j, k} = {x, y} and antisymmetric tensor εxx = εyy =
0. The mean curvature simplifies to

H = 1
2∇2

xyh, (A2)

where the flat Laplacian ∇2
xyh = ∂2

x h + ∂2
y h.

APPENDIX B: ENERGY CALCULATIONS

1. Flat-sector calculations

We use a numerical approach with the transformations
x → w x′ and y → w y′ such that the integrals be-
come dimensionless. The free energy due to deformations
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in the fold field, in units of Kφ , is then given by

F (Sec)
φ

Kφ

= 4 × 1

2

[ ∫ ζ/
√

2

0
dx′

∫ −x′+L/
√

2

−x′+ζ/
√

2
dy′|∂φs|2

+
∫ L/

√
2

ζ/
√

2
dx′

∫ −x′+L/
√

2

0
dy′|∂φs|2

]
. (B1)

The factor of 4 in the expression above covers the full area of
the square.

The potential energy (in Kφ units) that takes the form:

V (Sec)
φ

Kφ

= 4 × 1

4

[ ∫ ζ/
√

2

0
dx′

∫ −x′+L/
√

2

−x′+ζ/
√

2
dy′ cos(4φs)

+
∫ L/

√
2

ζ/
√

2
dx′

∫ −x′+L/
√

2

0
dy′ cos(4φs)

]
. (B2)

The line tension contributions, in Kφ units, is given by

E (Sec)
iso

Kφ

= 4�iso

∫ L/
√

2

0
dx′,

E (Sec)
an

Kφ

= 4�

∫ L/
√

2

0
dx′ sin2

[
φs

(
x′,−x′ + L√

2

)
− 3π

4

]
.

We note that the factor of 4 is for four sides of the boundary
and that φb = 3π/4 in the first quadrant. The total dimension-
less energy of the square sector is given by

E (Sec) = F (Sec)
φ

Kφ

+ V (Sec)
φ

Kφ

+ E (Sec)
iso

Kφ

+ +E (Sec)
an

Kφ

≡ E (Sec)(ζ , �iso, �, L). (B3)

2. Tent calculations

The free energy due to deformations in the fold field, in
units of Kφ , is given by

F (Tent)
φ

Kφ

= 4 × 1

2

[ ∫ ζ/
√

2

0
dx′

∫ −x′+LT /
√

2

−x′+ζ/
√

2

√
gdy′|∂φs|2

+
∫ LT /

√
2

ζ/
√

2
dx′

∫ −x′+LT /
√

2

0

√
gdy′|∂φs|2

]
,

where the metric g = 1 + (∇h)2 = 1 + Aw
2[tanh(x′)2 +

tanh(y′)2]. In this calculation, we ignore the coupling between
curvature and fold field.

The potential and bending free energy are given by

V (Tent)
φ

Kφ

= 4 × 1

4

[ ∫ ζ/
√

2

0
dx′

∫ −x′+LT /
√

2

−x′+ζ/
√

2
dy′√gcos(4φs)

+
∫ LT /

√
2

ζ/
√

2
dx′

∫ −x′+LT /
√

2

0
dy′√gcos(4φs)

]
,

FH

Kφ

= κd

2
× 4

∫ LT /
√

2

0
dx′

∫ −x′+LT /
√

2

0
dy′√g∇2

xyh,

where dimensionless bending rigidity κd = κe f /(4Kφ ) and
mean curvature ∇2

xyh = −Aw[sech2(x′) + sech2(y′)].
The line tension contributions are as follows:

E (Tent)
iso

Kφ

= 4�iso

∫ LT /
√

2

0
dx′,

E (Tent)
an

Kφ

= 4�

∫ LT /
√

2

0
dx′ sin2

[
φs

(
x′,−x′ + LT√

2

)
− 3π

4

′]
.

The total free energy of the tent configuration in Kφ is given
by

E (Tent)
T = Fφ + Vφ + FH + Ean + Eiso

Kφ

≡ E (Tent)
T (ζ , Aw, LT , �iso, �, κd ). (B4)

[1] M. Muthukumar, Shifting paradigms in polymer crystallization,
in Progress in Understanding of Polymer Crystallization, edited
by G. Reiter and G. R. Strobl (Springer, Berlin, Heidelberg,
2007), pp. 118.

[2] P. H. Geil, Polymer Single Crystals (Krieger Publishing Com-
pany, Malabar, 1963), Vol. 5.

[3] J. C. Wittmann and B. Lotz, Polymer decoration: The ori-
entation of polymer folds as revealed by the crystallization
of polymer vapors, J. Polym. Sci. Polym. Phys. Ed. 23, 205
(1985).

[4] G. W. Greenwood, Molecular modelling of nucleation in poly-
mers, Phil. Trans. R. Soc. A 361, 539 (2003).

[5] M. Muthukumar, Modeling polymer crystallization, in Inter-
phases and Mesophases in Polymer Crystallization III, edited by
G. Allegra (Springer, Berlin, Heidelberg, 2005), pp. 241–274.

[6] A. Keller, A note on single crystals in polymers: Evidence for a
folded chain configuration, Philos. Mag. 2, 1171 (1957).

[7] D. Bassett, F. Frank, and A. Keller, Some new habit features
in crystals of long chain compounds part IV. The fold surface
geometry of monolayer polyethylene crystals and its relevance
to fold packing and crystal growth, Philos. Mag. 8, 1753
(1963).

[8] P. Geil, Nylon single crystals, J. Polym. Sci. 44, 449 (1960).
[9] C. Garber and P. Geil, Polyoxymethylene single crystals. I. The

effect of copolymer content on morphology, Makromol. Chem.
113, 236 (1968).

[10] R. M. Briber and F. Khoury, The morphology of poly (vinyli-
dene fluoride) crystallized from blends of poly (vinylidene
fluoride) and poly (ethyl acrylate), J. Polym. Sci. B Polym.
Phys. 31, 1253 (1993).

[11] A. Toda, M. Okamura, M. Hikosaka, and Y. Nakagawa, AFM
observation of polyethylene single crystals: Selective handed-
ness of screw dislocations in a chair type, Polymer 44, 6135
(2003),.

054501-10

https://doi.org/10.1002/pol.1985.180230119
https://doi.org/10.1098/rsta.2002.1149
https://doi.org/10.1080/14786435708242746
https://doi.org/10.1080/14786436308207335
https://doi.org/10.1002/pol.1960.1204414416
https://doi.org/10.1002/macp.1968.021130121
https://doi.org/10.1002/polb.1993.090311001
https://doi.org/10.1016/S0032-3861(03)00592-5


STABILITY OF SECTORED MORPHOLOGIES OF POLYMER … PHYSICAL REVIEW E 108, 054501 (2023)

[12] J. K. Alageshan, Y. Hatwalne, and M. Muthukumar, Stability of
the sectored morphology of polymer crystallites, Phys. Rev. E
94, 032506 (2016).

[13] H. S. Seung and D. R. Nelson, Defects in flexible membranes
with crystalline order, Phys. Rev. A 38, 1005 (1988).

[14] M. W. Deem and D. R. Nelson, Free energies of isolated five-
and seven fold disclinations in hexatic membranes, Phys. Rev.
E 53, 2551 (1996).

[15] L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Elsevier,
Oxford, 1986).

[16] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge,
1995).

[17] T. C. Lubensky, and F. C. MacKintosh, Theory of “ripple”
phases of lipid bilayers, Phys. Rev. Lett. 71, 1565 (1993).

[18] C. M. Chen, T. C. Lubensky, and F. C. MacKintosh, Phase
transitions and modulated phases in lipid bilayers, Phys. Rev.
E 51, 504 (1995).

[19] V. Vitelli and D. R. Nelson, Phys. Rev. E 74, 021711
(2006).

[20] D. R. Nelson, Toward a tetravalent chemistry of colloids, Nano
Lett. 2, 1125 (2002).

[21] D. Nelson and L. Peliti, Fluctuations in membranes with crys-
talline and hexatic order, J. Phys. 48, 1085 (1987).

[22] D. R. Nelson and B. Halperin, Solid and fluid phases in
smectic layers with tilted molecules, Phys. Rev. B 21, 5312
(1980).

[23] M. Warner and E. Terentjev, Liquid Crystal Elastomers (Oxford
University Press, Oxford, 2003), Vol. 120.

[24] M. Bowick and L. Giomi, Two-dimensional matter: Order, cur-
vature and defects, Adv. Phys. 58, 449 (2008).

[25] W. Helfrich, Elastic properties of lipid bilayers: Theory and
possible experiments, Z. Naturforschung C 28, 693 (1973).

[26] A. Rapini and M. Papoular, Distorsion d’une lamelle nématique
sous champ magnétique conditions d’ancrage aux parois, J.
Phys. Colloques 30, C4 (1969).

054501-11

https://doi.org/10.1103/PhysRevE.94.032506
https://doi.org/10.1103/PhysRevA.38.1005
https://doi.org/10.1103/PhysRevE.53.2551
https://doi.org/10.1103/PhysRevLett.71.1565
https://doi.org/10.1103/PhysRevE.51.504
https://doi.org/10.1103/PhysRevE.74.021711
https://doi.org/10.1021/nl0202096
https://doi.org/10.1051/jphys:019870048070108500
https://doi.org/10.1103/PhysRevB.21.5312
https://doi.org/10.1080/00018730903043166
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1051/jphyscol:1969413

