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Epistasis and pleiotropy shape biophysical protein subspaces associated with drug resistance
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Protein space is a rich analogy for genotype-phenotype maps, where amino acid sequence is organized into
a high-dimensional space that highlights the connectivity between protein variants. It is a useful abstraction
for understanding the process of evolution, and for efforts to engineer proteins towards desirable phenotypes.
Few mentions of protein space consider how protein phenotypes can be described in terms of their biophysical
components, nor do they rigorously interrogate how forces like epistasis—describing the nonlinear interaction
between mutations and their phenotypic consequences—manifest across these components. In this study, we
deconstruct a low-dimensional protein space of a bacterial enzyme (dihydrofolate reductase; DHFR) into “sub-
spaces” corresponding to a set of kinetic and thermodynamic traits [kcat , KM , Ki, and Tm (melting temperature)].
We then examine how combinations of three mutations (eight alleles in total) display pleiotropy, or unique effects
on individual subspace traits. We examine protein spaces across three orthologous DHFR enzymes (Escherichia
coli, Listeria grayi, and Chlamydia muridarum), adding a genotypic context dimension through which epistasis
occurs across subspaces. In doing so, we reveal that protein space is a deceptively complex notion, and that future
applications to bioengineering should consider how interactions between amino acid substitutions manifest
across different phenotypic subspaces.

DOI: 10.1103/PhysRevE.108.054408

I. INTRODUCTION

For all the sophistication of technologies associated with
studying protein structure function—cryoEM, AlphaFold, and
deep mutational scanning, for example—basic questions re-
main about how we consider and measure the shape of
genotype-phenotype maps in the study of proteins. Ad-
dressing these questions requires theoretical and conceptual
instruments that can be used to understand how genotype
and amino acid composition confers phenotype, and espe-
cially how evolution happens at the protein level. With regard
to the latter, evolutionary biologists have used two related
analogies—the fitness landscape and protein space—to de-
scribe how evolution searches through the space of possibility
from genotype to protein phenotype [1–7].

One important conceptual innovation in the study of
genotype-phenotype maps is that phenotypes can often be
deconstructed into “micro-landscapes” that are parts of a
larger fitness landscape [8]. A foundational study in this area
(2005) reconstructed a protein fitness landscape associated
with the use of a co-enzyme from component biophysical
traits [9]. In the case of some enzymes, there are multiple
genotype-phenotype maps corresponding to different bio-
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physical phenotypes: for example, those related to enzyme
kinetics and those defining thermodynamic properties (often
in the setting of proteins associated with drug resistance)
[8,10]. In the language of protein space, the hierarchy of
complex phenotypes and their component phenotypes can be
framed in terms of protein spaces and their component “sub-
spaces.”

If we consider the possibility that protein space is
composed of biophysical subspaces, new questions arise sur-
rounding how those subspaces are constructed, and what
their shape (topopgraphy) means for protein evolution. For
example, epistasis—defined colloquially as the “surprise at
the phenotype when mutations are combined, given the con-
stituent mutations’ individual effects” [11]—has long been
known to craft the topography of fitness landscapes. Epistasis
remains a provocative concept because it shapes genotype-
phenotype maps in surprising ways, creating rugged fitness
landscapes with fitness valleys that can undermine or con-
strain the process of adaptation [12–21]. If the protein space
through which evolution is operating is composed of several
subspaces (Fig. 1), then one might ask how epistasis manifests
across each of them.

In examining how mutation effects manifest across dif-
ferent subspaces, we run into a different (perhaps equally)
provocative concept from evolutionary theory: pleiotropy,
which can be defined by the differential effects of genes or
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FIG. 1. A 3D conceptual diagram of protein space and subspace, revealing how different epistatic interactions manifest across different
traits (pleiotropy). This image outlines the central concept behind the complex structure of protein-level phenotypes, organized into protein
space. The complex phenotype (a) can be deconstructed into subspaces (b) and (c). The heights of the lines correspond to a phenotype value
for that particular space trait. Note the differences in topography. Importantly, these differences manifest because of differences in epistasis
between mutations. The [0] and [1] values correspond to the presence (1) or absence (0) of a mutation at a given location. The size of the
protein spaces in this schematic (including eight alleles) is the same as that used in this study, but this need not be the case. The subspace
concept transcends a space of any size: one could construct the space-subspace dichotomy for spaces of hundreds or thousands of nodes.

mutations on seemingly disparate traits [22]. Pleiotropy is
frequently used in discussions around tradeoffs in evolution,
as in a presumed tradeoff between generalism and specialism
[23] or pathogen virulence and transmission [24]. However,
the concept has a greater reach: it forces us to reconsider the
phenotypic effects of every allele or mutation, as the effects
we focus on might not be the only (or most meaningful) trait
affected.

Relatedly, several studies have examined how nonlinear
interactions between locations in a gene (and their putative
amino acids) manifest across the traits that correspond to sub-
spaces [8–10,25–27]. Why is this important? Because while
protein evolution can be observed at the level of complex
phenotypes (e.g., fitness, IC50, or minimal inhibitory con-
centration), evolution often operates incongruously across the
different subspaces (e.g., thermodynamic versus kinetic com-
ponents in enzymes). Consequently, focusing on the shape
of these subspaces—whose shape is dictated by epistasis—is
important for resolving and predicting the phenotypic effects
of mutations and their putative amino acid substitutions (as in
protein evolution and bioengineering).

In this study, we deconstruct sets of protein spaces (com-
posed of eight alleles) for dihydrofolate reductase (DHFR)
orthologs in Escherichia coli, Listeria grayi, and Chlamydia
muridaum into subspaces corresponding to different bio-
physical traits: kcat, KM , Ki, and Tm (melting temperature).
Specifically, we test the hypothesis that there is no correla-
tion (positive or negative) between the topographies of the
different biophysical subspaces, and quantify whatever rela-
tionships may exist. In doing so, we reveal how the shapes
of protein subspaces can differ profoundly according to

biophysical subspace trait. Finally, we discuss the implica-
tions of this in the present and future study of evolutionary
theory, protein evolution, and bioengineering.

II. METHODS

A. Laboratory measurement of biophysical traits

The data in this study originated from a prior biophysical
decomposition of a fitness landscape [8]. The methods for
measuring the biophysical traits in this study were also pre-
viously described in a prior study [8,28]. We refer readers
interested in replicating the laboratory-derived biochemical
and biophysical phenotypes to those studies.

B. Nomenclature

For translation purposes, we will employ a particular
nomenclature for discussing the mutations and DHFR alleles
used in this study. The mutations corresponding to P21L,
A26T, and L28R in E. coli and L. grayi are referred to with re-
gard to their combinatorial arrangement. For example, “PAL”
corresponds to the enzyme variant with amino acids proline
(P), alanine (A), and leucine (L) at the three sites of interest.
In C. muridarum, the orthologous mutations are P23L, E28T,
and L30R.

C. Notes on the bacterial orthologs

In the Appendix (Table I), we observe the sequence identity
matrix for DHFRs derived from E. coli, L. grayi, and C.
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TABLE I. Sequence identity matrix. Blank cells represent spaces
with redundant information.

E. coli L. grayi C. muridarum

E. coli
L. grayi 36
C. muridarum 27 23

muridarum. These data are also present in a prior study that
examined this same collection of enzymes [8].

D. Comparing the topography of the protein spaces
and fitness landscapes

Protein spaces were constructed from existing data (see
[29]), and compared using the Kendall rank order test and
matrix. This test measures the concordance or discordance
of the landscapes with respect to the order of the alleles in a
landscape. For each species, we ranked genotypes within sub-
spaces, assigning values from 1 (maximum) to 8 (minimum
value for the measurement in that subspace). We used these
ranks to calculate rank correlations (Kendall’s τ ) across all
subspace pairs (a method implemented in R; base and corrr
packages; [30]).

E. Higher-order epistasis

The system explored in this study has been previously ex-
amined with respect to how proteostasis machinery influences
higher-order epistasis [27,31]. Moreover, while other studies
have measured epistasis on biophysical traits [8,10,32,33],
few have rigorously examined how higher-order epistasis
manifests across subspaces, or directly compared the shapes
of these spaces across species orthologs.

To measure epistasis, we use a method adapted from the-
oretical computer science and signal processing termed the
Walsh-Hadamard transform, which computes a coefficient
corresponding to the magnitude and sign of interaction be-
tween mutations. The Walsh-Hadamard transform generalizes
the standard epistatic coefficient, allowing an analysis of
higher-order epistatic interactions. It was pioneered for use
in a 2013 study of epistasis that both provided a primer for
the calculation and analyzed several combinatorially complete
data sets [11]. The Walsh-Hadamard transform has since been
further elaborated on and applied to the study of higher-order
epistasis across an array of empirical data sets [34–36].

While we will describe certain features of the analysis here,
those interested in further details should refer to manuscripts
that describe and apply the method to data sets similar in
structure to the ones analyzed here [11,34]. Note that this
approach is only one of myriad methods that one can use
to quantify epistasis, and we encourage those interested to
engage several reviews that have addressed this topic directly
[21,26,37,38]. Moreover, there are new methods that facili-
tate the measurement of epistasis in large genomic data sets
[39,40].

One limitation of the Walsh-Hadamard transform is that
the data it employs are generally combinatorially complete
with no more than two variants at a given locus (location,

or site on a genome) of information. More recent studies
have, however, proposed strategies to transcend some of the
presumed limitations [41,42]. Nonetheless, in this study we
utilize the methods on a combinatorially complete set of mu-
tants, where we can represent the absence or presence of a
given mutation by a 0 or 1, respectively, at a given site. For
example, we can represent a wild-type gene variant as 000. In
this scenario, mutations at each of three sites (e.g., the three
mutations corresponding to trimethoprim resistance in E. coli
dihydrofolate reductase P21L, A26T, and L28R) encoded as
111 (for example, see Fig. 1).

The full data set for the alleles consists of a vector of
phenotypic values (resistance to trimethoprim in the case of
the DHFR mutants) for all possible combinations of mutations
(eight total), represented by their single amino acid substitu-
tions:

For E. coli and L. grayi:

PAL, LAL, PAR, PTL, PTR, LAR, LTL, LTR

For C. muridarum:

PEL, LEL, PER, PTL, PTR, LER, LTL, LTR

In binary notation, [0] can represent the wild-type geno-
type, and [1] the mutant, and so we can encode the above
variants as

000, 100, 001, 010, 011, 101, 110, 111

We implement the weighted Walsh-Hadamard transform
from [34], which incorporates an additional scaling matrix V ,
allowing for an interpretation of higher-order epistatic coef-
ficients as averages over different genetic backgrounds. The
phenotypic values (the biochemical and biophysical traits in
our study) over the combinatorially complete set are arranged
in a vector κ, whose elements must be ordered properly to
enable the correct interpretation of the epistatic coefficients,
as we will see.

This vector of genotypes is multiplied by a square matrix,
which is itself the product of a diagonal matrix V and a
Hadamard matrix H . These are defined recursively by

Vn+1 =
(

1
2Vn 0
0 −Vn

)
, V0 = 1, (1)

Hn+1 =
(

Hn Hn

Hn −Hn

)
, H0 = 1, (2)

where n is the number of mutations that define protein spaces
in the DHFR orthologs (n = 3 in this study). The general-
ized epistatic coefficients are given by γ in the following

FIG. 2. Explicit forms of the Hn and Vn matrices for n = 3. (+)
stands in for +1 and (−) stands in for −1.
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expression:

γ = V Hκ. (3)

H = Hn and V = Vn are the matrices from Eqs. (1) and (2)
for n = 3, and we sometimes refer to γ simply as the Walsh
coefficients, a measure of the average epistatic interaction
between amino acid substitutions. Analogous to the standard
epistatic coefficient, these generalized coefficients γ have the
following interpretation:

Positive values correspond to interactions between mutations
that on average add to the value of the biophysical phenotype,
whereas negative values correspond to interactions between
mutations that on average subtract from the value of the bio-
physical phenotype.

F. Interpreting higher-order interactions
across biophysical trait

The standard epistatic coefficient ε represents the effect
that a mutation at one site has on another site. This can be
written as

ε = (κ11 − κ10) − (κ01 − κ00), (4)

which is the difference between the effects of a mutation at
the second site when a mutation at the first site is present or
absent. Note that ε is symmetric with respect to swapping the
labels of sites, i.e., under κab → κba, and is therefore agnostic
to which site is called “first” or “second.” In the context of
three sites of variation, one can average over the effect of the
third site, for example,

γ110 = ((κ110 − κ100) − (κ010 − κ000)) + ((κ111 − κ101) − (κ011 − κ001))

2
, (5)

where we’ve used the notation γ110 to indicate the epistatic relationship between sites 1 and 2, averaging (“0”) over the third.
This background-averaged epistasis is precisely the sixth element of the generalized epistatic coefficients, γ , treating γ000 as
the “zeroth” element (see Fig. 2). Note the notational convenience: γ110 is the sixth element, and 110 = 6 in binary. Here we
see why the ordering of the phenotype vector κ is crucial to the proper interpretation of the generalized epistatic coefficients.
Specifically, we use the convention that κ is arranged in increasing binary order, regarding bit sequences as integers (e.g. 010 = 2
and 011 = 3 in binary). Thus, for our n = 3 case, κ is arranged in the order shown in Fig. 2. This ordering, along with the form
of the matrix V , ensures that, for example, γ101 has the interpretation of the epistatic coefficient between sites 1 and 3, averaged
over site 2.

Similarly, the average effect of a mutation at a single site can be computed by

γ100 = (κ111 − κ011) + (κ110 − κ010) + (κ101 − κ001) + (κ100 − κ000)

4
(6)

for a mutation at the first site. This is the fourth element of the
vector γ (see Fig. 2).

Finally, the Walsh-Hadamard transform generalizes to
higher-order interactions with the γ111 term (specifically, to
order 3 interactions), given by

γ111 = ((κ111 − κ110) − (κ101 − κ100))

− ((κ011 − κ010) − (κ001 − κ000)), (7)

which is the difference between two standard epistatic coef-
ficients between sites 2 and 3, with and without a mutation
at the first site. In this way, one measures the extent to which
the presence of a third mutation controls the interaction effect
between two other mutations. Thus, higher-order epistatic
interactions ask how the addition of a mutation at one site
affects the mutation interactions among other sites, which is
easily generalized to any number of sites. Note that as before,
owing to the symmetry in the definition of the coefficients,
this value is agnostic to the labeling of sites 1, 2, and 3, and
thus represents an analog of the epistatic coefficient for three
sites.

γ000: The average of the phenotypic value across the combina-
torially complete set

γ001: The average phenotypic effect of a mutation at the third
site (L28R in E. coli and L. grayi; L30R in C. muridarum)

γ010: The average phenotypic effect of a mutation at the second
site, A26T in E. coli and L. grayi; E28T in C. muridarum

γ100: The average phenotypic effect of a mutation at the first
site (P21L in E. coli and L. grayi; P23L in C. muridarum)

γ011: The average phenotypic effect of the pairwise (second-
order) interaction between mutations at the second and third
sites, averaged over the genetic background of the first site

γ101: The average phenotypic effect of the pairwise (second-
order) interaction between mutations at the first and third sites,
averaged over the genetic background of the second site

γ110: The average phenotypic effect of the pairwise (second-
order) interaction between mutations at the first and second
site, averaged over the genetic background of the third site

γ111: The phenotypic effect of the third-order interaction
between mutations at all three sites (no explicit genetic back-
ground is averaged over).

In the set of interactions that we measure, there is
one zeroth-order effect, three first-order interactions, three
second-order interactions, and one third-order interaction. The
third-order interaction would formally qualify as “higher or-
der.”

In addition, one can take the mean of these epistatic co-
efficients within an order, which can facilitate comparisons
between orders. For a given interaction, we compute an
epistatic coefficient, E , as in prior studies that have examined
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higher-order interactions on empirical fitness landscapes [36],

Ei = γi
2∑

j γ j
2
, (8)

where the sum is taken over all elements in (γ 2
j ). Though

we have used absolute values in prior examinations of epis-
tasis (e.g., [36]), this iteration of the calculation utilizes the
squares, as it is more analogous with an interpretation of
signal strength in the basis of epistatic coefficients (as op-
posed to strengths in the phenotypic basis). This calculation
translates to the intensity of the interactions corresponding
to a specific order. For example, first-order effects are cap-
tured by E001 + E010 + E100, second-order effects are captured
by E110 + E101 + E011, and the third-order effect is given
by E111.

G. A brief note on the language of protein space
vs adaptive or fitness landscape

Some of the concepts explored here have previously been
framed in terms of protein fitness landscapes [5,43]. The con-
cepts of protein space and the fitness landscape are at least
compatible, even identical in some cases [44]. And previous
work has explored the similarity between different framings
and definitions of the fitness landscape [4,7,44,45] or contains
more elaborate discussions on the varied definitions of fitness
landscapes. For many problems in molecular evolution, both
can be used. But the subtle differences are important to artic-
ulate here.

(1) The fitness or adaptive landscape analogy is most ap-
propriate as a representation of genotype-phenotype maps
when examining an evolving population. Protein space, on the
other hand, is less fixated on any solution or “fitness peak,”
but rather focuses on the broader notion that evolutionary
possibility can be mapped across an n-dimensional space.

(2) Relatedly, the fitness or adaptive landscape concept
can be encumbered by the definition of “fitness.” Protein space
can describe the relationship between mutational neighbors
(nodes in the space) with respect to any conceivable pheno-
type, whether it be adaptive or not.

III. RESULTS

This study aimed to examine the topography of bio-
physical protein subspaces across three orthologs of DHFR
(E. coli, L. grayi, and C. muridarum). We offer that pairwise
and higher-order epistasis influence topographical differences
across ortholog (species of bacteria) and trait subspaces. Our
findings are organized into three major categories:

(1) Comparisons between the topography of protein sub-
spaces of DHFR across biophysical traits and orthologs.

(2) Measuring the epistasis between individual mutations
of DHFR across biophysical traits and orthologs.

(3) Comparison of the higher-order epistasis that drives
these differences in subspace topography.

Where relevant, we will discuss the statistical tests used,
our rationale, and the conclusions from those analyses.

A. Comparing the topography of the subspaces

We first organized the data into independent subspaces. We
depict the resulting subspaces in terms of how the scaled val-
ues (shown in standard deviations) change across biophysical
traits (Fig. 3). We then used a Kendall rank order correlation
to test the hypothesis that the topographies of the landscapes
are independent (have no correlation; see Methods). In Fig. 4
we observe that many significant findings (positive or nega-
tive correlations) involve the kinetic traits Ki, kcat, and KM .
For example, focusing on the E. coli subspaces: there is a
strong negative correlation between Ki and kcat (p < 0.01).
Also for E. coli, note the less strong but significant concor-
dance between kcat and KM (p < 0.05). Similar results can
be observed within and between the other species, reflecting
both biophysical patterns (again, the kinetic traits are re-
lated), and widespread variation across the expanse of protein
spaces.

Next, we computed these epistatic effects as outlined in the
Methods, even ranking the interactions and effects, across trait
and bacterial orthologs (Fig. 5). We then reorganized the ef-
fects from Fig. 5 into higher-order terms. That is, we squared
the effects depicted in Fig. 5 and summed them according to
order—zeroth, first, second (pairwise), or third (see Methods).
This lens, depicted in Fig. 6, shows how mutations and their
interactions can differ drastically across subspace traits and
orthologs.

For E. coli, pairwise and third-order effects predomi-
nate in KM and Ki. Tm, however, is most influenced by the
combination of wild-type mutations. For L. grayi, pairwise
effects dominate the kinetic traits—KM , kcat, and Ki—with
third-order effects playing a meaningful role in abundance.
Recall from the comparison of the topography of landscapes
(Fig. 4) that these traits were the ones with the strongest
patterns of concordance or discordance. While not a rule
that applies across the entire data set, this theme suggests
that similar patterns of epistasis operate on traits that are
biologically related, a finding that is consistent with our
intuition.

Zeroth-order effects (corresponding to the combination of
mutations present in the wild-type L. grayi DHFR) are es-
pecially meaningful in the Tm subspace. In C. muridarum,
pairwise or third-order effects dominate every subspace ex-
cept for Tm subspace, where zeroth-order effects predominate.
Indeed, while patterns differ across ortholog subspaces, one
consistent observation is the relative lack of higher-order
effects operating on the Tm subspace. In all three species,
zeroth-order effects were a notable influence on Tm.

B. Analysis of epistasis that underlies differences
in subspace topography

Using the Walsh-Hadamard transform, we then calculated
the average effects of mutations, as well as the pairwise and
three-way effects, on a range of traits across the IC50 and
biophysical subspaces. These calculations revealed large dif-
ferences in patterns of epistasis across subspace traits (Fig. 5).
Note again that IC50 is depicted alongside the subspaces, for
visualization purposes, so that we can see how the subspaces
compare to the higher-level space (IC50).
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FIG. 3. Measurements of protein subspaces across orthologous bacterial enzymes (DHFR). Scaled values are shown in standard deviations.
Measurements of the different subspaces for the suite of mutations associated with resistance to antifolate drugs in dihydrofolate reductase.
Values for each subspace are scaled according to the mean of the value for that trait. Comparing the topography of the subspaces within and
across species suggests varying patterns of similarities and differences across subspaces.

IV. DISCUSSION

In this study, we measured epistasis across four biophysical
subspaces (kcat, KM , Ki, and Tm) of three orthologs (Es-
cherichia coli, Listeria grayi, and Chlamydia muridarum) of
dihydrofolate reductase, an enzyme target of antimicrobial
drugs. Our findings fortify the notion that epistatic interac-
tions remain a major challenge in resolving phenotype from
genotype, because mutations can tune the shape of different

subspaces of a single protein differently. In this way, our
study offers insight into the interface between two population
genetics concepts—epistasis and pleiotropy—each of which
are important forces in adaptive evolution [46,47].

We observe that the shape of protein space differs across
orthologs of DHFR (Figs. 3–5). This finding emphasizes
how even relatively minor differences in amino acid se-
quence (corresponding to the three species of bacteria) can
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* *

** **

C. muridarum E. coli L. grayi

IC50 k cat K i KM IC50 k cat K i KM IC50 k cat K i KM
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k cat
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*
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L. grayi E. coli L. grayi E. coli L. grayi E. coli L. grayi E. coli L. grayi E. coli

C. muridarum

E. coli

FIG. 4. Comparison of topography across subspaces. We use a Kendall rank-order test to quantify correlations among the landscapes of
five traits in three species. *p < 0.05, **p < 0.01. Concordant and discordant subspaces tend to be focused on the kinetic traits: KM , kcat , and
Ki. See Fig. 7 for a depiction of the rank orders.

have meaningful consequences for structuring protein space.
Figures 3 and 4 highlight several relationships (both concor-
dance and discordance) between the shapes of protein spaces
associated with IC50, kcat, KM , and Ki. For example, there
is strong discordance between kcat and Ki across the protein
spaces, and relatively strong concordance between kcat and
KM . These results are intuitive: kcat and KM are subspace
phenotypes that are properties of the enzyme active site, with
both Michaelis-Menten and mechanistic bases for an expected
relationship between traits (e.g., that kcat and Ki should be dis-
cordant, because chemical inhibitors interfere with catalysis).
By contrast, note that the Tm protein subspaces appear to be
uncorrelated—neither concordant nor discordant—across the
three species of bacteria. What explains this pattern? We can
only speculate. Unlike the other phenotypes measured in this
study, Tm is a global protein trait that might be relatively less
influenced by properties that focus on the enzyme active site.

Measures of epistasis (Figs. 5 and 6) tell an important
part of the story. Each subspace has patterns of similarity
and difference according to trait and ortholog. For example,
pairwise interactions between mutations appear to be an actor

in many kinetic traits, but third-order interactions are rela-
tively low in magnitude in the L. grayi ortholog of DHFR,
across traits. Notably, the Tm subspace is dominated by zeroth-
order effects—where mutations in the wild-type genotype
had the largest interaction effect (Fig. 6). This observation
complements the comparisons of concordance or discordance
depicted in Fig. 3 (and discussed above). As with the lack
of correlation between Tm and the other trait subspaces, the
result could be related to the thermodynamics that contribute
to a given protein’s Tm, which may be more reliant on global
features of an amino acid sequence rather than peculiar inter-
actions between mutations that influence resistance to a small
molecule. Future studies will examine this point at a more
rigorous level.

A. Study limitations

This study has several limitations. The protein spaces ex-
plored are low-dimensional, each composed of only eight
nodes. This represents a very small slice of the true pro-
tein space (astronomical in size), encompassing only a set
of engineered mutations corresponding to those identified in
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FIG. 5. Epistasis meets pleiotropy: measurements of epistasis across orthologous subspaces. We compute the Walsh-Hadamard coefficient
for each sort of interaction. Top panel: Individual graphs correspond to different traits, starting with the complex trait (IC50) on the left,
followed by the individual biochemical and biophysical traits (Ki, KM , kcat , and Tm). The x axis depicts individual mutation effects, with [1]’s
corresponding to the presence of a mutation at a given location. A [1] at the first site corresponds to the presence of the P21L (E. coli and
L. grayi) or P23L mutation (C. muridarum). A [1] at the second site corresponds to the A26T (E. coli and L. grayi) or E28T (C. muridarum)
mutations, and a [1] at the last site corresponds to the L28R (E. coli and L. grayi) or L30R (C. muridarum) mutations. Bottom panel: The same
data as in the top panel, depicted as rank orders of effects. For example, for L. grayi the 1*1 pairwise interaction between the P21L and A26T
mutations is the highest ranked (has the highest magnitude) of all of the interactions.

experimental populations of bacteria exposed to trimethoprim
[48]. Furthermore, the conversation about epistasis in evolu-
tionary theory has grown in sophistication in recent years,
with ideas such as “global epistasis” adding a new point of
intrigue. Global epistasis refers to the notion that epistatic ef-
fects follow a system-wide pattern (e.g., diminishing returns)
and arise from linear relationships between the phenotypic
effects of a mutation and the fitness of the genetic background
[49–52]. Global epistasis, as a phenomenon of nonlinear
genotype-to-phenotype mapping, is likely to compound the
effects we describe in our study. The genotype-to-phenotype
map is specific to each trait, so global “diminishing returns”
effects are likely to affect each subspace differently. This
constitutes a current area of investigation.

B. Ideas and speculation

Our results have direct implications for efforts to engi-
neer proteins using directed evolution or other approaches.
For example, evolving a thermostable enzyme would amount
to selection across one of the subspaces measured in our
study (Tm). Our study suggests that such directed evolution
efforts should consider not only how mutations associated
with increased thermostability interact epistatically but also
the pleiotropic consequences of this epistasis on other traits.
One might even contrive a new term that describes how
epistatic interactions between mutations manifest across dif-
ferent traits. “Pleiotropic epistasis” or even “pleio-stasis” are
natural chimeric terms that capture the essence of pleiotropy

and epistasis. Nelogisms can, however, be confusing, and so
we didn’t introduce it formally earlier in the paper.

Importantly, our study differs from an influential 2005
study that examined epistasis on component biophysical traits
of an enzyme (isopropyl malate dehydrogenase; IMDH) [9].
In that study, epistasis was minimal across biophysical sub-
space traits, but was present in higher level of protein fitness
phenotypes. In our study, not only is epistasis acting on bio-
physical subspace traits, but patterns also differ from subspace
trait to subspace trait. That different enzymes have unique
patterns of epistasis is not unexpected, but still notable, and
highlights the importance of not overgeneralizing results from
the study of a single, or just a few, enzymes.

Future studies can utilize newer technologies to examine
protein space at a larger scale. For example, the use of deep
mutational scanning has revealed substitutions in SARS-CoV-
2 proteins that may be relevant for the design of vaccines and
therapeutics [53–55], and revealed how host cell chaperones
shape the evolution of viral pathogens [56–61]. These tools
may demonstrate how epistasis and pleiotropy play out across
subspaces with thousands of nodes.

Furthermore, efforts to direct the evolution of protein
phenotypes might be improved with the knowledge of how
forces like epistasis, pleiotropy, and genotypic context func-
tion as “knobs” that tune higher-level protein phenotypes.
Even further, this lens may aid in public health efforts to
resolve the effects of mutations in proteins associated with
pathogen evolution. For example, the effects of mutations
on larger-scale pathogen phenotypes such as transmissi-
bility (e.g., SARS-CoV-2) might be better diagnosed and
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FIG. 6. Higher-order epistasis across traits and orthologous subspaces: As outlined in the methods, the epistatic coefficients can be
reorganized to depict the effects by order. This approach aids in efforts to compare the overall presence of epistatic effects of a certain order
across biophysical subspaces. We observe that different sorts of interactions govern certain biophysical traits. For example, KM is dominated
by pairwise interactions in C. muridarum, third-order interactions in E. coli, and first-order and pairwise interactions in L. grayi.

054408-9



C. BRANDON OGBUNUGAFOR et al. PHYSICAL REVIEW E 108, 054408 (2023)

2 7 4 38 5 1 6

1 7 2 48 6 3 5

3 8 1 65 4 7 2

8 3 6 57 1 4 2

8 4 5 37 1 6 2

8 5 7 24 2 6 1

1 8 2 54 6 3 7

1 5 3 62 7 4 8

1 4 2 63 7 5 8

8 5 6 37 1 2 4

7 3 6 25 1 8 4

6 7 5 13 4 8 2

4 8 1 27 5 6 3

5 8 3 62 4 1 7

8 4 3 75 6 2 1

IC50 k cat K i KM Tm

LA
L/

LE
L

LA
R

/L
E

R

LT
L

LT
R

PA
L/

P
E

L

PA
R

/P
E

R

P
T

L

P
T

R

LA
L/

LE
L

LA
R

/L
E

R

LT
L

LT
R

PA
L/

P
E

L

PA
R

/P
E

R

P
T

L

P
T

R

LA
L/

LE
L

LA
R

/L
E

R

LT
L

LT
R

PA
L/

P
E

L

PA
R

/P
E

R

P
T

L

P
T

R

LA
L/

LE
L

LA
R

/L
E

R

LT
L

LT
R

PA
L/

P
E

L

PA
R

/P
E

R

P
T

L

P
T

R

LA
L/

LE
L

LA
R

/L
E

R

LT
L

LT
R

PA
L/

P
E

L

PA
R

/P
E

R

P
T

L

P
T

R

C. muridarum
E. coli

L. grayi

FIG. 7. Rank orders of the TEM-1/TEM-50 alleles corresponding to those in Fig. 2. We have utilized binary notation for this representation.
As outlined in the Methods section, binary notation corresponds to different alleles across the different species. For E. coli and L. grayi: 000
(PAL), 100 (LAL), 001(PAR), 010 (PTL), 100 (LAL) 011 (PTR),101 (LAR), 110(LTL), 111(LTR). For C. muridarum: 000 (PEL), 100 (LEL),
001 (PER), 010 (PTL), 100(LEL), 011 (PTR), 101 (LER), 110(LTL), 111(LTR).

understood mechanistically by examining their effects on
spike protein subspaces.

C. Conclusion

Our findings suggest that even single-locus complex
traits—like the IC50 of an enzyme target of drugs—contain
biophysical subspace multitudes. This take has several impli-
cations for how we consider the process of protein evolution.
Rather than describing evolution as moving “up” or “across”
a rugged global fitness landscape, it can be more readily
described as a combination of multiple searches through dif-
ferent subspaces. Such an interpretation is in line with modern
efforts in complexity science that seek to understand the
vargaries of byzantine biological systems, by disentangling
the parcels that compose them. And this perspective can be
animated in efforts to use evolution as a tool to engineer
biomolecules for practical use.

Data and code can be found at [62].

ACKNOWLEDGMENTS

The authors thank J.Yoon, S. Scarpino, B. Kerr, J. Ro-
drigues, J. Diaz-Colunga, K. Kabengele, and two anonymous
peer reviewers for helpful interactions on the manuscript. The

authors acknowledge support from the National Institutes of
Health Grants No. R35GM136354 (M.D.S.), R35GM147107
(R.F.G.), and R01AI168166 (M.D.S. and C.B.O.), and the
National Science Foundation’s Division of Environmental Bi-
ology Award No. 2142720 (C.B.O.). The authors would also
like to thank the Martin Luther King Jr. Visiting Profes-
sors and Scholars Program at the Massachusetts Institute of
Technology for support (C.B.O.). Finally, the authors would
like to thank the organizers and participants in the workshop
“Reimagining the Central Dogma” at The Foundations In-
stitute, University of California, Santa Barbara, where ideas
relevant to this manuscript were discussed.

C.B.O. and R.F.G. conceived the project; C.B.O., R.F.G.,
and M.M.D. collected and analyzed data; C.B.O., R.F.G.,
E.I.S, and M.D.S. interpreted and integrated data; C.B.O.,
E.I.S., and M.D.S. supervised the project; and C.B.O., R.F.G.,
M.M.D., E.I.S., and M.D.S. wrote the paper.

APPENDIX

Here we provide Fig. 7, with rank orders of the
TEM-1/TEM-50 alleles corresponding to those in Fig. 2, and
Table I, with sequence identity matrix for the three species
analyzed in this study (E. coli, L. grayi, and C. muridarum).
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