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Collective effects in flow-driven cell migration
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Autologous chemotaxis is the process in which cells secrete and detect molecules to determine the direction
of fluid flow. Experiments and theory suggest that autologous chemotaxis fails at high cell densities because
molecules from other cells interfere with a given cell’s signal. We investigate autologous chemotaxis using a
three-dimensional Monte Carlo-based motility simulation that couples spatial and temporal gradient sensing
with cell-cell repulsion. Surprisingly, we find that when temporal gradient sensing dominates, high-density
clusters chemotax faster than individual cells. To explain this observation, we propose a mechanism by which
temporal gradient sensing allows cells to form a collective sensory unit. We demonstrate using computational
fluid mechanics that that this mechanism indeed allows a cluster of cells to outperform single cells in terms
of the detected anisotropy of the signal, a finding that we demonstrate with analytic scaling arguments. Our
work suggests that collective autologous chemotaxis at high cell densities is possible and requires only known,
ubiquitous cell capabilities.
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I. INTRODUCTION

One of the more fascinating ways that cells detect the direc-
tion of fluid flow is through a mechanism termed autologous
chemotaxis. In autologous chemotaxis, cells secrete and bind
to an autocrine factor that diffuses and drifts along the flow
lines [1]. More molecules bind to the downstream side of the
cell, allowing it to determine the flow direction and conse-
quently migrate downstream along the resulting concentration
gradient [1,2]. Autologous chemotaxis is especially relevant
in the context of metastatic cancer and has been observed in
breast cancer cells [1,3], melanoma cells [1], glioma cells [4],
as well as endothelial cells [5].

Experiments have found that autologous chemotaxis fails
at high cell density and is overpowered by a competing,
density-independent mechanosensing mechanism [3,6]. The-
ory [7] and simulations [3,7] suggest that the reason for the
failure is that, at high cell density, molecules secreted by
other cells interfere with a given cell’s autologous gradient.
Essentially, the signal from all cells produces a background
concentration which reduces the relative gradient experienced
by any cell. A mean-field calculation based on this argument
correctly predicts the cell density at which autologous chemo-
taxis fails [7].

Nevertheless, in many other biological contexts, cells at
high cell density have been shown to detect weak signals, in-
cluding concentrations [8] and concentration gradients [9,10].
Theory has suggested that they do so by acting collectively
[11–15]. Indeed, experiments have shown that collective
sensing can lead to the detection of weaker signals [10],
or to entirely different behaviors [16], than cells can per-
form alone. These findings raise the question of whether
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autologous chemotaxis can benefit from these ubiquitous col-
lective effects, to prevent sensory failure—or even mediate a
sensory improvement—at high cell density. This question is
particularly relevant to the dense tumor environment in which
autologous chemotaxis is principally observed.

Here we combine three-dimensional Monte Carlo simula-
tion, computational fluid mechanics, and theory to investigate
the effects of collective sensing on autologous chemotaxis.
We perform dynamic cell migration simulations, revealing a
regime in which cells chemotax faster as a cluster than as
individuals. To explain this regime, we numerically solve the
fluid flow and advection-diffusion equations for the concen-
tration secreted by a static configuration of cells, and we find
that beyond a crossover cell density, respond more accurately
than individual cells, resembling a collective sensing unit. We
develop scaling arguments for how the detected signal should
scale with cell density, which help explain the numerical
findings. Our results reveal a chemotaxis mechanism based
entirely on known and ubiquitous ingredients, with potential
implications for migration of tumor cells and other cell types
in high density environments.

II. RESULTS

A. Motility simulation and collective chemotaxis

We first develop a dynamic simulation of autologous
chemotaxis, including molecule secretion in the presence of
flow and the ensuing cell motility. Our simulation incorporates
only concentration sensing and gradient sensing by individual
cells and cell-cell repulsion. We will see that these basic capa-
bilities, ubiquitous among cells of many types, are sufficient to
realize autologous chemotaxis and that they lead to a density-
mediated crossover from individual to collective chemotaxis
in the flow direction.
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Consider N cells of radius a that each secrete molecules
at a rate ν. The molecules diffuse with coefficient D in the
presence of a background flow with velocity v. In the next
section, for a static configuration of such cells, we will numer-
ically solve for the flow lines and the molecular concentration
field. Here, however, to focus on cell dynamics and maintain
computational tractability, the simulation makes two impor-
tant simplifications. First, we reduce cells to point particles on
a cubic lattice with spacing given by the cell radius a. Thus,
each cell moves to one of six neighboring sites at each time
step according to a Monte Carlo scheme, as described shortly.
Second, we write the molecular concentration field as the sum
of contributions from each cell, where each contribution is ap-
proximated as the known single-cell solution obtained as if the
cell were isolated [17]. This approximation avoids the need to
numerically solve for the flow lines and the concentration field
at every time step, and it should be valid for cell densities not
too close to the tight-packing limit.

Specifically, we approximate the concentration as c(�r) ≈∑N
j=1 c̃(�r − �r j ), where �r j is the position of cell j, and c̃ is the

solution to the single-cell problem. That solution obeys the
advection-diffusion equation in steady state,

0 = ∂ c̃

∂t
= D∇2c̃ − �v · �∇ c̃, (1)

where the flow lines �v are given by the steady-state solution
to the Brinkman equation for flow past a sphere in a porous
medium with permeability K [18]. The Brinkman equation is
appropriate for the low-Reyolds-number, low-permeability
cell environment [1,3]. Because experiments suggest that the
Péclet number ε = va/D is small (see below), Eq. (1) was
solved previously using ε as a perturbation parameter [17].
Choosing θ = 0 as the flow direction far from the cell, the
result is

c̃(�r)
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= a

r
+ ε

2
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4

[
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, (2)

where c̄ = ν/4πDa,
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x2
+ 2(1 + 3κ + 3κ2)

x3

+ κ2e1/κ

x3

[(
x3

κ3
− x2

κ2
+ 2x

κ
− 6

)
e−x/κ − x4E1(x/κ )

κ4

]
,

(3)

E1(y) = ∫ ∞
1 dt e−yt/t , and κ = √

K/a. We note that f (1)
varies between 1 (κ � 1) and 2 (κ � 1).

The parameters are set from experiments as follows. A
breast cancer (MDA-MB-231) cell is approximately a =
10μm in radius [1,3] and secretes approximately ν = 1
CCL19/21 molecule per second [1,17] which diffuses with
approximate coefficient D = 150μm2/s [2]. The cell den-
sity experiments [3] were performed with flow velocity v =
3μm/s and permeability K = 0.1μm2. We see from these
values that the Péclet number ε = va/D = 0.2 is indeed
small. Nevertheless, while we use v = 3μm/s for the nu-
merics in the next section, we lower the flow speed to v =
0.5μm/s here, thus lowering the Péclet number further to
ε = 1/30, in order to maintain the validity of the perturbative
solution out to distances much larger than the cell size.

The Monte Carlo scheme accepts or rejects moves accord-
ing to a pseudopotential and a pseudowork function [19–21].
The pseudopotential is

U =
N∑

j=1

∑
k< j

λ2

|�r j − �rk|2 − ψc

N∑
j=1

c(�r j )

c̄
. (4)

In the first term, closer cell pairs correspond to larger pseu-
dopotential. This term thus corresponds to cell-cell repulsion,
with length parameter λ. Cell-cell repulsion occurs in many
cell types, often mediated by contact inhibition of locomotion
[22]. In the second term, larger concentration values corre-
spond to smaller pseudopotential. This term thus corresponds
to concentration sensing with strength ψc. The potential dif-
ference involved in the Monte Carlo scheme is then equivalent
to comparing concentration values from one time step to the
next, akin to temporal gradient sensing, as seen in motile
bacteria [23,24]. Singularities in the second term from self-
energies c̃(0) are removed because the Monte Carlo scheme
considers only potential differences between configurations
before and after a cell moves, which contain the same N
self-energy terms.

The pseudowork function is

W = ψg
c(�r j + δ�ri ) − c̄ j

c̄ j
, (5)

where δ�ri/a are the unit vectors in each of the six directions,
and c̄ j = ∑6

i=1 c(�r j + δ�ri )/6 is the concentration averaged
over these neighboring sites. Equation 5 gives the pseudowork
corresponding to the movement of cell j to its neighboring site
in direction i. Positive pseudowork means moving to a site
whose concentration is higher than the average of all neigh-
boring sites. Equation 5 thus corresponds to gradient sensing
with strength ψg. Because positive pseudowork means moving
to a site whose concentration is higher than the average of all
neighboring sites, the pseudowork function biases the motion
toward higher concentrations. Because the comparison is done
in a single time step, it is spatial (comparing different sides
of the cell) rather than temporal (comparing concentrations
before and after movement). This process is akin to spatial
gradient sensing, as seen in amoeba and yeast [25,26].

Given the pseudopotential and pseudowork terms, the
Monte Carlo scheme proceeds as follows [20,21]. At each
time step, each cell j moves to its neighboring site i (selected
at random) with probability

P =
{

e−(�U−W ) �U − W � 0
1 �U − W < 0,

(6)

where W is calculated before the move, and U is calculated
both after and before the move to give �U . The cells are
initialized as an N-cell chain along the direction of the flow
and move in an unbounded domain.

At low cell density, �U → 0, and W for a move in the
flow direction is on the order of ψgε. Therefore we set ψg

to a value on the order of 1/ε, namely ψg = 10. We then
vary the relative strength of concentration sensing vs gradient
sensing by varying ψc. To do so in a way that maintains a
typical spacing between cells, we consider the pseudopoten-
tial between a pair of cells separated by a distance r, which
reads U = λ2/r2 − 2ψc[a/r + c̃(0)/c̄ + O(ε)]. This function
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FIG. 1. Motility simulation. (a) Snapshots of N = 5 cell trajectories with r∗/a = 1, for ψc � ψg (top) and ψc � ψg (bottom). Cells drift
in the flow direction individually (top) or collectively (bottom). Note the difference in axes’ scales: the migration distance is much farther
for the bottom plot. (b) Center-of-mass velocity vs cell density. As ψc/ψg increases (blue to red), density increases as cells transition to
collective migration. The velocity first decreases, then increases, indicating that collective chemotaxis outperforms individual chemotaxis.
Here a = 10μm, ν = 1 s−1, D = 150μm2/s, v = 0.5μm/s, K = 0.1μm2, ψg = 10, and λ = max(

√
ψcar∗, 10a).

has a minimum at r∗ = λ2/ψca. Therefore, for a given r∗, as
we vary ψc, we set λ via this expression until it becomes too
small to mediate the repulsion. Specifically, we find that λ =
max(

√
ψcar∗, 10a) is sufficient to prevent cells from cohering

permanently (which arrests migration).
Figure 1 shows the simulation results. Focusing first on

typical cell trajectories [Fig. 1(a)], we see that for ψc � ψg

(top), cells execute diffusive trajectories that drift in the flow
direction but do not stay together. This is because at low ψc,
cells lack the coattraction mediated by concentration sensing
and feel only repulsion when close; once separated, they ex-
ecute autologous chemotaxis individually by spatial gradient
sensing. In contrast, we see that for ψc � ψg (bottom), cells
remain as a cohesive group whose center of mass executes
a diffusive trajectory that drifts in the flow direction. This
is because at high ψc, concentration sensing mediates both
a coattraction and the movement toward maximal concentra-
tion; due to the flow, the highest concentration is downstream
of the group, resulting in collective autologous chemotaxis.

In Fig. 1(b), we plot the center-of-mass velocity in the
flow direction vCOM vs the cell density ρ, as we vary ψc/ψg

(color), r∗ (shape), and N (size). The center-of-mass velocity
is computed as the displacement in the flow direction divided
by the number of time steps, for 104 time steps, averaged
across the N cells and across five simulation trials. The cell
density is computed as the inverse of the average cell-cell
spacing. In simulations for which the average cell-cell spacing
does not saturate within 104 time steps, cells are determined

to be diffusing away from each other indefinitely, and the cell
density is set to ρ = 0.

Consistent with Fig. 1(a), we see in Fig. 1(b) that the
results are relatively insensitive to r∗ and N , and are primar-
ily tuned by ψc/ψg. Specifically, we see that for ψc � ψg

(blue, lower left), ρ = 0, and cells move with a character-
istic vCOM indicative of individual autologous chemotaxis.
For ψc ∼ ψg (purple, lower right), ρ increases as the coat-
traction sets in, and vCOM slightly decreases. This finding
is consistent with the experimental observation that autolo-
gous chemotaxis begins to fail at high cell densities [3,6].
Interestingly, for ψc � ψg (red, upper right), ρ stays high,
and vCOM significantly increases, above that for ψc � ψg.
Because high ψc corresponds to collective autologous chemo-
taxis as described above, this finding suggests that collective
autologous chemotaxis can outperform individual chemotaxis
at high cell densities. To understand this result further, we turn
to computational fluid dynamics in the next section.

B. Numerical computation and crossover cell density

The simulations indicate that for ψc � ψg, cells chemotax
individually, whereas for ψc � ψg cells chemotax collec-
tively. Individual chemotaxis corresponds to a cell comparing
concentration values at different points on its surface and
biasing migration in the direction of the highest concentra-
tion [Eq. (5)]. For a spherical cell of radius a, this surface
bias is quantified using the dimensionless anisotropy measure
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[12,17,27]

AI =
∫

dc(a, θ, φ) cos θ∫
d′c(a, θ ′, φ′)

, (7)

where c(a, θ, φ) is the molecular concentration at the cell
surface, and d = dφdθ sin θ is the solid angle element. The
cosine extracts the asymmetry between the downstream (θ =
0) and upstream (θ = π ) sides of the cell such that AI > 0 for
a downstream gradient and AI < 0 for an upstream gradient.

In contrast, collective chemotaxis corresponds to cells
seeking the highest concentration values and moving as a
cohesive unit [Eq. (4)]. Information sensed by individual cells
is propagated to other cells via movement, given that cells are
coattracted. We therefore hypothesize that this cohesive unit
performs a collective analog of the computation in Eq. (7). In
terms of the surface concentration c j averaged around cell j,
this collective anisotropy measure reads

AC =
∑N

j=1 c j cos θ j∑N
k=1 ck,

, (8)

where the surface integral has been replaced by a sum over
the N cells, and θ j is the angle the cell makes with the flow
direction relative to the collective’s center of mass.

To test our hypothesis about collective information gath-
ering, we calculate Eqs. (7) and (8) numerically for a static
configuration of cells. Focusing on a static configuration al-
lows us to separate the sensing from the dynamics and to
relax the simplifying assumptions of the simulations. If the
sensory measures in Eqs. (7) and (8) are the primary drivers
of chemotaxis, we expect the dependence of AI and AC on
cell density to be similar to that of the migration velocity in
Fig. 1(b).

To evaluate Eqs. (7) and (8), we obtain the concentration
field c(�r) at all points in space by numerically solving the fluid
dynamics and advection-diffusion equations. Specifically, we
solve the steady-state Brinkman equation to find the velocity
field, which provides the advection term in the steady-state
advection-diffusion equation for the molecular concentration
[Eq. (1)]. We use a finite-element computational fluid dynam-
ics package (COMSOL) to solve both equations [3,7]. Details
are provided in our previous work [7], and the code for the
present work is freely available [28].

To vary the cell density, we keep the volume of the system
constant while varying the number of cells N . This protocol
mimics the microfluidic experiments used to investigate autol-
ogous chemotaxis [3], and indeed we consider a system with
dimensions similar to the microfluidic chamber: a rectangular
box domain of length L, width W , and height H , where the
flow is in the direction of L [Fig. 2(a)]. Cells are placed
uniform-randomly throughout the box, ensuring that one cell
is in the center, and that the cells do not overlap with one
another or with the boundaries of the box. Both the indi-
vidual and collective anisotropy measures are averaged over
random configurations of cells in the domain. The individual
anisotropy [Eq. (7)] is computed from c at the surface of the
center cell [7] [Fig. 2(a), right], while the collective anisotropy
[Eq. (8)] is computed from the surface-averaged c j of each cell
[Fig. 2(a), left].

FIG. 2. Numerical computation using fluid dynamics software.
(a) Schematic of cells randomly placed in domain with dimensions
L, W , and H , and flow in the L direction. Collective anisotropy
AC considers the average surface concentration at each cell (left),
whereas individual anisotropy AI considers the angular variation in
the surface concentration around the center cell (right). (b) Individ-
ual and collective anisotropy vs cell density from numerics (mean
and standard error over five trials with random cell configurations),
compared with predicted scalings. Here a = 10μm, ν = 1 s−1, D =
150μm2/s, v = 3μm/s, K = 0.1μm2, L = 3 mm, W = 2 mm, and
H = 100μm.

As in the motility simulations, we use a = 10μm [1,3],
ν = 1/s [1,17], D = 150μm2/s [2], and K = 0.1μm2 [3].
From the cell density experiments [3], we obtain v = 3μm/s
and a chamber of length L = 3 mm, width W ≈ 2 mm, and
height H ∼ 100μm.

The numerical anisotropies AI and AC as a function of cell
density ρ = N/LW H are shown in Fig. 2(b) (data points). We
see that the individual anisotropy AI begins to decrease as
the cell density increases (blue), consistent with the initial de-
crease in the migration velocity in the simulations [Fig. 1(b)].
Indeed, autologous chemotaxis has been observed in the range
50–250 cell/mm−3 [3], and individual sensing is thought to
break down toward the top of that range [3,7], consistent
with Fig. 2(b). We also see in Fig. 2(b) that at higher cell
densities, the collective anisotropy AC increases with cell den-
sity (red), again consistent with the ultimate increase in the
migration velocity in the simulations [Fig. 1(b)]. Figure 2(b)
demonstrates that collective sensing outperforms individual
sensing (AC > AI ) above a crossover density on the order of
ρ ∼ 50 cells/mm−3. The typical cell spacing at the crossover
density, ρ−1/3 ∼ 270 μm, is much larger than a cell diameter,
2a ≈ 20 μm, implying that collective effects could be bene-
ficial well before reaching the tight-packing limit typical of
tissues and tumors.
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Altogether, our findings at the level of migration [Fig. 1(b)]
are consistent with our findings at the level of anisotropy
[Fig. 2(b)]. This suggests that the sensory measures in Eqs. (7)
and (8) are the primary drivers of chemotaxis and supports
the hypothesis that movement with coattraction can mediate
collective information gathering. Figure 2(b) also reveals clear
scaling laws that govern sensory information. To understand
the physics behind these scaling laws, we turn to theory in the
next section.

C. Theory and scaling laws

To understand the scaling behaviors seen in the numerical
results of Fig. 2(b), we derive the scaling laws of anisotropy
with cell density from the physics of molecular diffusion.
We first review the result for the individual anisotropy from
previous work, and we then present the derivation for the
collective anisotropy.

1. Individual sensing

In previous work [7], we showed that the individual
anisotropy in Eq. (7) could be approximated as AI ≈ (nd −
nu)/nd , where nu and nd are the numbers of molecules de-
tected by the upstream and downstream halves of the cell,
respectively. Specifically,

nu = ν

D/a2 + v/a
, (9)

where we have constructed the molecule number as a ratio of
the rates of molecules entering (by secretion ν) and leaving
(by diffusion D or flow v, respectively) the cell half. The
expression for nd lacks the v0/a term because molecules lost
to flow downstream are replenished by those lost to flow
from the upstream half. As a result, the anisotropy sim-
plifies to AI ≈ ε for small Péclet number ε = v0a/D [7].
A more rigorous calculation confirms this scaling, yielding
AI = ε/8 [17].

We further showed using a mean-field argument that, in the
presence of identical cells at a density ρ, the anisotropy for a
given cell scales as

AI = ε/8

1 + ρ/ρc
, (10)

where ρc = ε/4πa2L, and L is the system size in the flow
direction. The critical density ρc is the cell density beyond
which sensing begins to fail due to the presence of molecules
secreted by other cells. We see from Eq. (10) that the indi-
vidual anisotropy AI should scale as ρ0 for ρ � ρc, and as
ρ−1 for ρ � ρc, explaining the numerics in Fig. 2(b) (blue),
as seen previously [7].

2. Collective sensing

Now consider an entire collective of cells as the sensory
unit (Fig. 3). We define the collective anisotropy in Eq. (8)
here in terms of molecule numbers,

AC = 1

nT

N∑
j=1

n j cos θ j, (11)

FIG. 3. Schematic of the cell collective. Left: a particular cell j
makes an angle θ j with the flow direction ẑ, relative to the collective’s
center of mass. The collective’s volume is characterized by a length-
scale R. Right: Molecules secreted by any other cell k drift in the
flow direction a distance vt and diffuse isotropically a characteristic
distance

√
Dt , tracing out a spherical shell.

where n j is the number of molecules within the volume of the
jth cell, and nT is the total number of molecules within the
volume of the collective (Fig. 3, left). We estimate n j and nT

following Eq. (9),

n j = ν + ν j

D/a2 + v/a
, (12)

nT = Nν

D/R2 + v/R
. (13)

In Eq. (12), ν j is the rate of arrival, to cell j, of molecules
secreted by other cells. In Eq. (13), R is the radius of the
collective; for a spherical arrangement, it is related to the cell
density as ρ = N/(4πR3/3).

To find the molecule arrival rate ν j , we consider a specific
cell k in the collective that acts as a source of these molecules,
and we will ultimately sum over k. In a time t , a molecule
released from cell k drifts in the flow direction a distance vt
and diffuses isotropically a characteristic distance

√
Dt , trac-

ing out a spherical shell described by |�r − �rk − vt ẑ|2 = Dt,
where ẑ is the flow direction, and �rk is the position of cell
k (Fig. 3, right). This shell will reach cell j when �r = �r j ,
giving |�r j − �rk|2 − 2vt (z j − zk ) + v2t2 = Dt . Rescaling time
as τ ≡ tD/a2 and recalling that ε = va/D, this equation be-
comes |�r j − �rk|2/a2 − 2ετ (z j − zk )/a + ε2τ 2 = τ . Because
the Péclet number is small (ε � 1), we neglect the quadratic
term, giving a rescaled arrival time of τ = |�r j − �rk|2/[a2 +
2εa(z j − zk )]. At this time, the shell has a radius

√
Dt , and

the likelihood of the molecule reaching cell j is the ratio of
the cell’s cross-sectional area πa2 to the shell’s surface area
4πDt , or a2/4Dt = 1/4τ . Thus, the arrival rate of molecules
at cell j is the secretion rate ν multiplied by this likelihood
and summed over k,

ν j = ν
∑
k �= j

a2 + 2εa(z j − zk )

4|�r j − �rk|2 . (14)

We insert Eq. (14) into Eq. (12), and Eqs. (12) and (13)
into Eq. (11). For the purposes of obtaining a scaling, we
approximate the sums as integrals. Doing so, and writing
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Eqs. (12) and (13) in terms of ε, we obtain

AC ≈ a2[1 + (R/a)ε]

NR2(1 + ε)

∫
d3r j

R3/N
cos θ j

×
[

1 +
∫

d3rk

R3/N

a2 + 2εa(r j cos θ j − rk cos θk )

4|�r j − �rk|2
]
.

(15)

Here we have used z = r cos θ and scaled the volume element
d3r by the typical volume occupied by one cell, which goes as
R3/N . Within the large square brackets in Eq. (15), any term
that does not depend on θ j will vanish by symmetry when
integrated against the cos θ j outside. Therefore, we isolate the
middle term of the �rk integral [29],

AC ≈ εa3N[1 + (R/a)ε]

2R8(1 + ε)

∫
d3r jd

3rk
r j cos2 θ j

|�r j − �rk|2 . (16)

In the prefactor of Eq. (16), we may neglect the additive
terms proportional to ε as long as R/a is not too large. In the
integral in Eq. (16), we can understand how the result should
scale with R without performing the integration: the volume
elements contribute factors of R3 each because the integration
extends out to r = R; and the numerator and denominator
contribute factors of R and R−2, respectively. Altogether, we
have AC ∼ εa3N/R3, or

AC ∼ εa3ρ, (17)

where we have recognized ρ ∼ N/R3 as the cell density.
Equation (17) is our main result for how the collective

anisotropy should scale with system properties. Several fea-
tures make intuitive sense. First, the collective anisotropy
should vanish as the cell density ρ gets small. The reason is
that when cells are far apart, each cell detects the same number
of molecules (its own), and the collective computation yields
no information on upstream-downstream molecule imbalance.
Second, the collective anisotropy should increase with the
Péclet number ε = va/D, as the individual anisotropy does
[Eq. (10)]. The reason is that a larger ε (e.g., via a faster flow
speed v) naturally increases the molecule imbalance.

We see from Eq. (17) that AC should scale with ρ, explain-
ing the numerics in Fig. 2(b) (red). We also expect the scaling
in Eq. (17) to break down when the typical distance between
cells ρ−1/3 becomes larger than the smallest lengthscale of
the domain (here, H). We write this condition as ρ−1/3 >

αH , where α is a constant that we expect to be of order
unity. Rearranging, we have ρ < (αH )−3. Figure 2(b) (red)
shows that the numerics indeed become especially sensitive
to cell arrangement, leading to large variability in AC , for
ρ � 102 mm−3, corresponding to α ≈ 2.1, which is indeed of
order unity.

III. DISCUSSION

We have demonstrated that collective effects allow cells
at high density to detect fluid flow and migrate downstream
using autologous chemotaxis. Indeed, using theory, numer-
ics, and simulation, we have shown that whereas individual
autologous chemotaxis worsens with cell density, collective
autologous chemotaxis improves. We derived and validated

the associated scaling laws and identified a crossover cell
density at which the optimal strategy switches from individual
to collective. We observed this crossover in motility simula-
tions invoking only cell-cell repulsion, and concentration and
gradient sensing by single cells.

Collective effects are ubiquitous in cell biology, and previ-
ous work has shown that they confer behaviors beyond those
available to single cells. Collective effects can sharpen a cell
behavior: in epithelial cells, collective sensing allows groups
of cells to detect shallower gradients than any single cell can
detect alone [10]. Collective effects can reverse a behavior: in
lymphocytes, single cells migrate down a gradient, whereas
groups of cells migrate up [16]. Here, we have found that
collective effects can “rescue” a behavior: as cell density
increases, individual sensing fails, but then collective sensing
takes over and ultimately surpasses individual sensing. This is
a potentially new interplay between single-cell and collective
sensing that may suggest a density-dependent switch between
two sensory regimes.

Sensory computations in single cells are performed by
biochemical networks. It is not obvious that analogous com-
putations can be performed collectively by groups of cells,
especially when those cells are separated in space. In prin-
ciple, the components of such a biochemical computation
would need to be relayed diffusively among cells [10,13].
Surprisingly, here we have found that in the case of autologous
chemotaxis, the sensed signal and the relay signal can be the
same component. The secreted molecule drifts with the flow,
and thus its concentration is the sensed signal. At the same
time, the secreted molecule originates from the cells them-
selves, and thus its concentration contains information on the
cells’ configuration; it is the relay signal. Even beyond sens-
ing, the secreted molecule aids in collective migration because
it acts as the coattractant. These simultaneous capabilities
prevent the need for complicated extracellular secretion net-
works. Indeed, for the particular task of flow sensing by
autologous chemotaxis, our results demonstrate that collective
chemotaxis can be achieved with a single molecular species,
and with the simple ingredients of concentration sensing and
cell-cell repulsion.

Collective migration has not been observed in experiments
on autologous chemotaxis performed to date. Perhaps this
is because autologous chemotaxis has been discovered ex-
clusively in eukaryotic cells, which are generally thought to
migrate by comparing concentrations in space, whereas our
mechanism requires comparing concentrations in time. Alter-
natively, perhaps this is because at high cell densities, where
collective effects would dominate, it has been shown that a
separate mechanism takes over that reverses migration, at least
in breast cancer cells [3]. Nevertheless, the mechanism we re-
veal here is not specific to eukaryotic cells. Smaller cells such
as bacteria use temporal sensing to track gradients. For such
cells, in the presence of a flow, we predict that secreting and
sensing a molecule is sufficient to produce efficient, collective
migration in the flow direction.
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