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Effect of substrate heterogeneity and topology on epithelial tissue growth dynamics
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Tissue growth kinetics and interface dynamics depend on the properties of the tissue environment and cell-cell
interactions. In cellular environments, substrate heterogeneity and geometry arise from a variety factors, such as
the structure of the extracellular matrix and nutrient concentration. We used the CELLSIM3D model, a kinetic cell
division simulator, to investigate the growth kinetics and interface roughness dynamics of epithelial tissue growth
on heterogeneous substrates with varying topologies. The results show that the presence of quenched disorder
has a clear effect on the colony morphology and the roughness scaling of the interface in the moving interface
regime. In a medium with quenched disorder, the tissue interface has a smaller interface roughness exponent, α,
and a larger growth exponent, β. The scaling exponents also depend on the topology of the substrate and cannot
be categorized by well-known universality classes.
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I. INTRODUCTION

Understanding the role of mechanobiological phenomena
in complex biological processes such as wound healing, tu-
mor growth, and morphogenesis necessitates the study of the
physical interactions between cells and their environments.
In vivo, heterogeneities of different types are always present
and they play an important role in regulating tumor inva-
sion [1,2]. One of the prime examples is the extracellular
matrix, which typically provides support for cells and is a
key factor for cell adhesion and the differentiation of cells
[3,4]. Heterogeneities can also be produced by the addition of
pharmacological agents or (gelly) materials, such as methyl-
cellulose, or by changing the nutrient concentration, as well
as by other means [5–7]. The presence of heterogeneities, or
disorder in physical terms, often influences biochemical and
biomechanical parameters, such as cell-cell interactions, the
rate of cell division, and the average cell size and shape, and
thus alters cell mobility, colony spreading, and the roughness
of the colony interface [5,6]. In addition, the situation can be
even more complex, such as in the epithelial-to-mesenchymal
and mesenchymal-to-epithelial transitions during which the
whole cellular environment undergoes fundamental and com-
plex changes [8].

Tumor growth, and therapy to prevent it, may be char-
acterized as cellular processes involving molecular inter-
and intracellular control [9]. Studying the roughness of tu-
mor surfaces is necessary for the development of diagnostic
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and therapeutic methods [10]. Recent studies have, for
example, indicated that tumor surface regularity is a signif-
icant predictor of glioblastoma patients’ chances of survival
[11,12]. Mathematical and computer models are increasingly
being used to examine and measure the influence of dif-
ferent biophysical parameters on biological processes such
as nonequilibrium pattern generation in biological growth
[6,13–16]. In our previous study, we demonstrated that the
mechanical properties of cells can have a significant impact
on the surface roughness dynamics of cell colonies [17].
The current paper focuses on the growth on heterogeneous
substrates.

The spreading of a cellular colony, e.g., tumor, healthy,
or bacterial, can be seen as the propagation of an elas-
tic interface in the presence of a pinning potential that
arises from the surrounding environment. Analogous phe-
nomena occur in diverse systems including vortex motion in
type-II superconductors [18], charge-density waves [19,20],
and fracture propagation [21]. For such systems, one typically
distinguishes between strong and weak pinning. In the former
case, the pinning energy (per impurity) is much larger than the
elastic energy leading to local energy minimization, while in
the weak pinning regime, the opposite is true and the interface
adjusts collectively.

When the interface has adjusted to the disorder and is not
moving, it is in the pinned phase. When a driving force is
applied and it exceeds a threshold force, Fc, the interface
undergoes a depinning transition and enters the moving phase.
The size of the advancing regions is then characterized by a
correlation length (ξ ) which diverges upon approaching the
critical force from above, ξ = (F − Fc)−ν , where ν denotes
the correlation length exponent [22]. It is also common to
differentiate between annealed and quenched disorder. In the
latter, disorder is considered as stationary, that is, the motions
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of the pinning sites are much slower than any other relevant
timescale in the system; in the annealed case, this assumption
no longer holds. In this paper, only quenched disorder is
considered. In addition, since here the driving force enters
through cell division, we are not interested in the depinning
transition itself.

Studying the roughness of tumor surfaces is useful for dis-
tinguishing the dominant growth mechanisms, such as surface
diffusion and lateral growth that influence the growth, mor-
phology, and progression of tumors. Dynamic scaling analysis
provides powerful tools to classify growth. Dynamic critical
exponents, namely, the roughness (α), growth (β), and dy-
namic exponent (z) can be determined from the time evolution
of the front’s roughness; the cell colony’s front in this case
[10,16,23–29]. In addition to the above, the dynamic exponent
is related to the two other exponents via z = α

β
.

Several dynamic universality classes have been proposed
for interface growth. The Kardar-Parisi-Zhang (KPZ) dy-
namic universality class [30] describes the evolution of a
surface using a continuous nonlinear stochastic differential
equation

∂t h(x, t ) = −λ[∂xh(x, t )]2 + ν∂2
x h(x, t ) + η(x, t ), (1)

where h(x, t ), the height, is the distance from the ith point
at the colony front to the baseline of the colony. Lateral
growth normal to the interface, reflected in the quadratic
term −λ(∂xh)2, is a characteristic of the KPZ universality
class. Surface tension is accounted for by the Laplacian
term, ν∂2

x h, which tends to flatten the surface, and η(x, t ) is
an uncorrelated Gaussian noise given by 〈η(x, t )〉 = 0 and
〈η(x, t )η(x′, t ′)〉 = 2Dδ(x − x′)δ(t − t ′).

In the quenched KPZ (qKPZ) equation, the thermal
noise in Eq. (1) is replaced by a position-dependent
noise, that is, η(x, t ) becomes η(x, h) with 〈η(x, h)〉 = 0
and 〈η(x, h)η(x′, h′)〉 = 2Dδ(x − x′)δ(h − h′). Since thermal
noise is usually present in experiments, the qKPZ equa-
tion can be extended to contain both quenched and thermal
noise.

Distinct critical exponents and universality classes are
described by different growth equations. For KPZ, the crit-
ical exponents are αKPZ = 1

2 , βKPZ = 1
3 , and zKPZ = 3

2 for
one-dimensional interfaces [30]. For the quenched KPZ equa-
tion, dynamic critical exponents haven been determined to
be αqKPZ = 3

4 , βqKPZ = 3
5 , and zqKPZ = 5

4 [31]. The critical
exponents of the linear molecular beam epitaxy (MBE) equa-
tion for a one-dimensional interface are αMBE = 3

2 , βMBE =
3
8 , and zMBE = 4.0.

In one-dimensional quasilinear and quasicircular expand-
ing interfaces, previous experimental research on cells grown
on culture without quenched disorder have presented various
scaling behaviors [10,26,28,29,32]. Brú et al. [10,26] sug-
gested that the development dynamics of both malignant and
normal cell colonies are characterized by the exponents α =
1.5 ± 0.15, β = 0.38 ± 0.07, and z = 4 ± 0.5 that belong to
the MBE universality class. This was reported for both in vitro
and in vivo experiments. In contrast, however, Huergo et al.
reported the exponents α = 0.50 ± 0.05, β = 0.32 ± 0.04,
and z = 1.56 ± 0.1 for interfacial growth of HeLa (cervix
cancer) cell colonies in vitro [28,29,32]. Plant calli, Brassica

oleracea and Brassica rapa, were studied by Galeano et al.,
who reported exponents inconsistent with both MBE and
KPZ, α = 0.86 ± 0.04 and z = 5.0 [7].

Biological systems with substrate disorder appear in situa-
tions such as growing bacterial colonies on agar-containing
media and in the development of bacterial biofilms. In
Escherichia coli and Bacillus subtilis colonies, Vicsek
et al. [33] found the roughness exponent α = 0.78 ± 0.07,
which exceeds the KPZ value. Huergo et al. reported
qKPZ-compatible exponents α = 0.63 ± 0.04, β = 0.75 ±
0.05, and z = 0.84 ± 0.05 for the development of quasilinear
Vero cell colony fronts in culture media containing methylcel-
lulose [5]. Santalla et al. conducted experiments at high agar
concentrations and found branching interfaces whose scal-
ing exponents were in complete disagreement with both the
KPZ and qKPZ scaling exponents [34]. Rapin et al. studied
the effects of pharmacological agents on the geometry and
roughness dynamics of in vitro propagating Rat1 fibroblast
cell interfaces and reported two separate scaling regimes, the
first at the subcell level and the second at intermediate length
scales of 2–10 cells [6].

Various theoretical and computational models have been
developed to examine surface growth with quenched disorder.
The directed percolation depinning model predicts α to be
between 0.66 and 0.73, and β = 0.68 ± 0.04 [35]. Models
of self-organized growth have predicted β = 0.9 ± 0.1 and
α = 0.63 ± 0.02 [36], and a numerical study of an automaton
model yielded α = 0.63 ± 0.01 and β = 0.64 ± 0.02 [37].
Santalla and Ferreira incorporated nutrient diffusion to an
off-lattice Eden model and reported a transition from a tran-
sient KPZ-like regime with β = 0.34 ± 0.01 to an unstable
growth regime with β = 0.43 ± 0.02, with an intermediate
transient regime belonging to the qKPZ universality class
with β = 0.633 and local roughness exponents ranging within
0.39 < αloc < 0.67 [38].

Further computational and theoretical studies have demon-
strated the effects of cell-cell mechanical tensions and nutrient
concentration and distribution on the spatial structures with
morphologies ranging from smooth to heavily fingered in-
terfaces [39,40]. Simulations of two-dimensional cellular
colonies by Block et al. showed KPZ-like dynamics for a class
of cellular automata models over a broad range of parameters
[41]. Azimzade et al. used the Fisher-Kolmogorov-Petrovsky-
Piskunov (FKPP) equation to study the effect of the cellular
environment’s stiffness and spatial correlations on the mor-
phology of the interface of growing tumors, and concluded
that the KPZ equation cannot describe their tumor develop-
ment model [42]. Bonachela et al. developed an off-lattice
cell model with quenched disorder describing competition
among bacterial cells for space and resources. They reported
the exponents α = 0.68 ± 0.05, β = 0.61 ± 0.05, and z =
1.11 ± 17 for the moving regime [43]. Pinto et al. modified
the self-propelled Voronoi model of Bi et al. [44] to study
the effect of spatial disorder of the cell-substrate interaction,
defined as having stiff cells in the tissue, on cell motility in
a confluent tissue, reporting β = 0.194 ± 007 [45]. In our
previous work, we showed that a cell colony can show both
KPZ- and MBE-like scaling dynamics depending on the
strength of the cell-cell adhesion between the cells and the
cell colony’s geometry [17].
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II. METHODS

A. CELLSIM3D SIMULATOR AND MODEL

CELLSIM3D is a coarse-grained molecular dynamics-based
model of cellular dynamics with an emphasis on mechanobio-
logical features of tissue growth [46]. The code is open source
[47]. CELLSIM3D allows cellular growth to be modeled in
two (epithelial growth) or three dimensions, and cells are
modeled as three-dimensional objects consisting of a set of
interconnected nodes. Here, the geometry and the nodes are
those of a spherical C180 fullerene. A detailed description
of the model is provided in the Supplemental Material [48].
Below we provide a brief description of it.

The CELLSIM3D force field consists of intra- and intercel-
lular forces and a noise term (η):

mr̈ = FB + Fθ + FR + FA + FF,e + FF,m + FP + η. (2)

The two intracellular forces on the surfaces of the cells are
FB, a damped harmonic oscillator force between the nearest-
neighboring nodes with a spring constant (kB) and a friction
coefficient (γint), and Fθ , the angle force which is a harmonic
potential depending on the equilibrium angles between the
nodes with a spring constant (kθ ). The angle term preserves
the cell’s surface curvature. For simplicity, the spring con-
stants for both the angle force and the damped spring force
between the nodes are assumed to be constant over the cell
surface.

Intercellular forces in CELLSIM3D consist of both cell-cell
and cell-environment interactions. In biological cells, the cell-
cell interactions are mainly caused by cell adhesion molecules
(CAMs) [49–51]. Here, the intercellular forces are described
by a repulsive force, FR, and an attractive force, FA, between
two nodes in neighboring cells. In addition, the model also
includes a friction force, FF, between two cells that pass by
each other. The repulsive and attractive forces between the
cells are represented, respectively, by short-range harmonic
potentials with distinct cutoffs RR

0 , RA
0 , and spring constants

kR, kA. In this paper, we assume that the adhesion molecules
are distributed uniformly across the cell surface, and that the
adhesion and repulsion spring constants (kA, kR) are identical
for all nodes on the surface. The intermembrane friction force,
FF,e = −γext vτm

i j , is defined up to a cutoff range, RA
0 , between

the nodes i and j on two separate cells as a function of the
tangential relative velocity to the cell surfaces, vτm

i j . The inter-
membrane friction coefficient, γext, is assumed to be constant
across the cells.

The friction force, FF,m = −γm v, approximates the inter-
actions between the cell and its environment, and it is defined
as a viscous drag force from a fluid medium. The growth
force, FP = PSn̂, is determined by the cell’s internal pressure
resulting from the osmotic pressure within the cell [49], where
n̂ is an outward pointing normal to the surface of the cell and
PS is the force due to a growing pressure inside the cell. This
growing force compensates for the cell membrane elasticity
modeled by harmonic potentials. Finally, the noise term, η,
is defined as a Gaussian white noise with 〈η(x, t )〉 = 0 and
〈η(x, t )η(x′, t ′)〉 = 2Dδ(t − t ′)δ(x − x′).

At each time step, the internal pressure increases by the
growth rate 
(PS), resulting in a gradual increase in the pres-
sure force (FP) and the cell volume. However, the repulsive

forces from the neighboring cells oppose the internal pressure
force of the cell. This competition determines whether a cell
will continue to grow or cease growing. This was character-
ized in detail in our previous work [52], and the findings agree
very well with experiments [53]. At confluence and in dense
regions, the colony rearranges itself (see the denser interior
areas in the videos provided as Supplemental Material [48]).
The rate at which cells can move and the colony to rearrange
itself depends on a number of variables, including the magni-
tude of the random force, the viscosity of the medium, and the
forces exerted by neighboring cells [52]. The effect of density
and crowding on the growth rate has been studied previously
by Madhikar et al. [54]. The results, in particular the size
distributions, are in excellent agreement with experimental
results of the Drosophila wing disk growth [55].

When the volume of the cell reaches a critical threshold,
given by the parameter Vdiv, the cell divides into two daughter
cells. The distinguishing characteristics of the cell division
are the orientation and the location of the division plane. Cell
division can be either symmetric or asymmetric, depending
on the position of the division plane. In this paper, we used
symmetric cell division, in which the volumes of the daughter
cells become half the volume of the parent cell, and the me-
chanical properties are a copy of the parent cell’s properties.
The division algorithm accounts for the planar expansion of
epithelial tissue: The division plane is selected by randomly
sampling a vector from a circle in the plane defined by the
vector normal to the epithelial plane. To prevent buckling
during epithelial growth, three-dimensional cells are confined
between two frictionless plates with repulsion in the direction
normal to the plates [17,54]. More details of the theoretical
basis, the code implementation, and the mapping of the pa-
rameters can be found in Refs. [17,46,54]. Parameters for the
simulations performed in this paper are provided in Table I.

B. Disorder

Pinning impurities were randomly positioned (at time
t = 0) as immobile cells that do not grow. They interact with
regular cells via adhesion, repulsion, and friction, with the
same strengths as regular cells do. Cells can squeeze and move
between two immobile cells. This is well demonstrated in
the videos provided as Supplemental Material [48]; the two
videos of systems with disorder have the text with_disorder
in their names and the pinning centers are shown in black. Im-
portantly, when the adhesion interaction between the cells is
strong, so is the interaction between the cells and the disorder.
The same applies for the case of weak cell-cell interaction.
The pinned cells maintain their spherical shapes and sizes
throughout the simulation. For each simulated parameter set,
ten independent simulations for an extended period of time up
to the order of O(105) cells were performed for data averag-
ing. Table S1 demonstrates that the minimum required sample
size with a margin of error of 0.1 is of the order of 10; the
discussion in Supplemental Material [48] provides estimates
for the minimal sample sizes. The parameters for quenched
disorder are shown in Table II.

C. Colony configurations

Simulations of both linear and radial growth at strong and
weak cell-cell adhesion strengths in the presence of quenched
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TABLE I. The parameters for the cells used in this paper. These values are based on the HeLa (named after Henrietta Lacks [56]) cell
properties. † indicates units of 
t and ∗ units of mean time to cell division, which varies between cell types and is set to 1.0 in CELLSIM3D.

Parameter Notation Simulation units SI units

Nodes per cell Nc 180
Node mass m 0.04 40 fg
Bond stiffness kB 1000 100 nN/µm
Bond damping coefficient γint 100 0.01 g/s
Minimum pressure (PS)0 50 0.5 nN/µm2

Maximum pressure (PS)∞ 65 0.65 nN/µm2

Pressure growth rate 
(PS) 0.002 2.0 × 10−5 nN/µm2

Attraction stiffness KA 10–2000 1–200 nN/µm
Strong attraction stiffness KA

strong 2000 200 nN/µm
Weak attraction stiffness KA

weak 10 1 nN/µm
Attraction range RA

0 0.3 3 µm
Repulsion stiffness KR 10 × 105 10 × 104 nN/µm
Repulsion range RA

0 0.2 2 µm
Growth count interval 1000 †
Intermembrane friction γext 1 10 µg/s
Medium friction γm 0.4 4 µg/s
Time step 
t 1.0 × 10−4 ∗
Threshold division volume V div 2.9 2900 µm3

disorder were performed at both low and high disorder densi-
ties, see Table I for parameters and Table II for disorder area
densities. The initial configuration of the linear interface was
a line of 240 cells in a box of size 600 × 1, 000 × 1.8. For
linear interfaces in the low disorder density regime at weak
and strong cell-cell adhesion, 60 000 and 18 000 immobile
cells were initially distributed at random inside the box, while
in the high-disorder density regime at weak cell-cell adhesion,
72 000 immobile cells were randomly distributed inside the
box; see Table II for disorder area density. Figure 1 shows the
time evolution of a linear interface.

For radial growth, the initial configuration consisted of a
single cell at the center of a box of size 800 × 800 × 1.8. In
the low disorder density regime at weak and strong cell-cell
adhesion strengths, respectively, 51 200 and 4800 immobile
cells were initially distributed at random inside the box. In
the case of high disorder density at weak cell-cell adhe-
sion strength, the box contained 77 400 randomly distributed
immobile cells; see Table II. In the low disorder density
regime, the colonies maintained their circular morphology
with interface overhangs. In the high disorder density regime,
however, the cell colonies developed a chiral morphology

TABLE II. The area density, N
A , for quenched disorder in SI

units ( 1
µm2 ) in the different configurations (linear and radial), and at

different attraction stiffnesses ( nN
µm ). The parameters for the strong

and weak cases are given in Table I.

��������������Configuration
Attraction stiffness

1 (weak) 200 (strong)

Moving linear interface 0.0010 0.0003
Moving linear interface at high disorder
density

0.0012

Moving radial interface 0.0008 0.000075
Pinned radial interface 0.0012

with branched structures lacking circular interfaces for scaling
analysis. Snapshots of circular colony expansion, interface
evolution, and chiral colony morphology at different times
are shown in Fig. 2. Due to cell division and cell migration
towards empty spaces, voids become filled over time, see
Figs. S2–S6 and the videos [48]. At weak cell-cell adhesion
strengths, cells diffuse easily and fill the voids, whereas at
high adhesion strengths, cells remain attached to their neigh-
bors after cell division and move collectively to fill the voids.
This issue was studied in detail in our previous work, and
the results and morphologies are in excellent agreement with
experiments [52].

III. ANALYSES

A. Scaling analysis

1. Interface width

The standard deviation of the front height across a length
scale l at time t can be used to define the interface’s lo-
cal width function, w(l, t ), which represents the fluctuation
around the average height of the interface [57] as

w(l, t ) =
{

1

N

N∑
i=1

[hi(t ) − 〈hi〉l ]
2

} 1
2

L

, (3)

where L is the the length of the growing front. For radial
growth, the height, hi(t ), is replaced by the distance ri(t )
from the center of mass of the cell colony. 〈hi〉l is the local
average over windows of arc length l , and {.}L is the overall
average [10,32]. The fluctuations cannot increase indefinitely,
and there exists a saturation time, ts, that depends on the
window size [10,26]. For t � ts, the value of the local width
function w(l, t ) increases with time as

w(l, t ) ∼ tβ for t � ts, (4)
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(a) (b) (c) (d)

FIG. 1. (a), (b) Colony expansion (red cells) in a medium with quenched disorder (blue cells) with linear initial configuration. (a) At weak
and (b) strong cell-cell adhesion strength. (c), (d) Interface evolution at different times (c) at weak and (d) strong cell-cell adhesion strength.
The scaling analysis was done using overhang-corrected interfaces [57]. For units, see Table I.

where β is the growth exponent. For times greater than the
saturation time t 	 ts, when the local length l equals the total
interface length L, the width function w(L, t ) represents the
interface variance and increases with the interface length L
according to w(L, t ) ∼ Lα , where α is to referred to as the
global roughness exponent [57].

However, for t > ts the local width function w(l, t ) in-
creases as a function of the local length, l , with a local
roughness exponent [57] αloc as

w(l, t ) ∼ lαloc . (5)

The local roughness exponent may differ from the global
roughness exponent and can also be derived from the power-
law behavior of the height-height correlation function, which
is defined as

C(�, t ) = 〈|h(x, t ) − h(x + �, t )|2〉x ∼ � 2ζ for � � ξ‖, (6)

where ξ‖ is the parallel correlation length of the interface,
and � is the lateral distance between different points on the
interface [57–59]. For self-affine interfaces, the height-height
correlation function, C(�, t ), obeys the Family-Vicsek scaling
ansatz [60]

C(�, t ) ∼ � 2ζ c(�/t1/zc
), (7)

where c(x) is constant for x � 1 and c(x) ∼ x− 2ζ , for
x 	 1. In growth models with anomalous behavior, the global
roughness (α) and dynamic exponents (z) calculated from
the interface width function differ from ζ and zc calculated
from the height-height correlation function [58,61]. In these
models, the scaling function c(x) can be different from con-
stant for x � 1, and the scaling relation for the height-height
correlation function becomes [58,59]

C(�, t ) ∼ C(1, t )� 2ζ c(�/ξ (t )), (8)

where ξ (t ) = [t/C(1, t )]1/zc
. The average step height, C(1, t ),

grows as

C(1, t ) ∼ t 2λ. (9)

This modified scaling ansatz, Eq. (8), implies α = ζ +
λz/2(1 − λ) and z = zc/(1 − λ) [59].

2. Structure factor

The above real-space analysis takes into account all wave-
lengths, including short ones, which indicates that finite-size
effects can be expected. As a solution, the power-law behavior
of the power spectrum of the height fluctuations where only
long-wavelength modes contribute to the scaling behavior
should be analyzed [62,63]. To calculate the structure factor,

(a) (b) (c) (d)

FIG. 2. (a), (b) Radially growing colonies (red cells) in a medium with quenched disorder (blue cells). (a) At weak and (b) strong cell-cell
adhesion strength. (c) Interface evolution at different times at weak cell-cell adhesion strength. The interface has overhangs, but the scaling
analysis was done using overhang-corrected interfaces [57]. (d) The morphology for a system started with a single cell at the center of a box
on a substrate with a high density of quenched disorder at weak cell-cell adhesion strength. Due to the high disorder density, the morphology
is not round but instead chiral with branched structures. Eventually, the interface becomes pinned by the disorder and the growth stops. The
final population of the cell colony consists of roughly 10 000 cells. For units, see Table I.
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S(k, t ) = 〈ĥ(k, t )ĥ(−k, t )〉, the kth Fourier mode ĥ(k, t ) needs
to be evaluated [57].

The Family-Vicsek scaling form of the structure factor can
be then given as

S(k, t ) = k−(2α+1)s(kt
1
z ), where (10)

s(u = kt
1
z ) =

{
const for u 	 1

u2α+1 for u � 1.
(11)

Here, α is the global roughness exponent and s(u = kt
1
z )

the scaling function. Systems with different local and global
roughness exponents represent what is known as anomalous
roughening [64]. This phenomenon has been observed in
various growth models [65–67] and experiments [26,68,69].
Two known types of anomalous roughening are intrinsic
anomalous roughening, where αloc < 1 and α > αloc, and su-
perroughening, where α > 1 and αloc = 1 [64,70]. In such
systems the scaling function, s(u), has the general form

s(u = kt
1
z ) =

{
u2(α−αs ) for u 	 1

u2α+1 for u � 1,
(12)

where the spectral roughness exponent, αs, is independent
from the global roughness exponent. In systems with intrin-
sic anomalous roughening, αs = αloc < 1, and αs is different
from the global roughness exponent, α.

B. Chi-squared minimization

Chi-squared minimization was used to determine the slope
and the y intercept of the line that best fits the data. As every
data point in our case was measured ten times, there is a
standard error σi that can be associated with the individual
points in the graphs at different times or lengths. The model’s
prediction is a lin-lin or log-log straight line f (x) = b + a x
with parameters a and b. The Chi-squared function is calcu-
lated by summing the squares of the differences between the
model’s prediction and the observed data yi, then dividing by
the data’s variance. It is defined as

χ̃2 =
Nd∑
i=1

(yi − f (xi; a, b))2

σ 2
i

, (13)

where Nd is the total number of data points. The optimal
values for the model parameters a and b are obtained by
minimization of the chi-squared function. Goodness of fit,
the p-values, are calculated from the chi-squared probability
function Q(χ2|Nd − 2) corresponding to the probability of
accepting the null hypothesis of obtaining the same model
parameters if the experiment were performed numerous times
with identical setup. A p value near unity indicates that the fit
is good, whereas a small p value indicates that the fit is poor.

IV. RESULTS

A. Interface velocity

For both linear and radial colonies at low disorder den-
sities, the interfaces move at a constant velocity and do not
become pinned by disorder, Fig. 3. When cell-cell adhesion is
weak, cells are able to detach from their neighbors and diffuse

FIG. 3. Interface velocity calculated from the time evolution of
the mean colony radius (〈R〉) and the mean interface height (〈h〉)
for radially expanding interfaces (circles) (1) at weak (green circles)
and (2) at strong (blue circles) adhesion strength. Correspondingly,
for the linearly expanding interfaces (triangles) (1) at weak (red
triangles) (2) at strong (orange triangles) adhesion strength at low
disorder density, and (3) at weak adhesion strength at high disorder
density (purple triangles). For units, see Table I.

more easily than when cell-cell adhesion is strong. Therefore,
cells can move to a location with more space to grow and
divide faster due to less contact forces from neighboring cells,
resulting in a higher cell proliferation rate and a higher inter-
face velocity (see also the Supplemental Material videos [48]).

In the case of linear interface at weak cell-cell adhesion
strength, the interface moves at the velocity of 〈v〉 = 1.82 ±
0.02. At strong cell-cell adhesion strength, the velocity drops
to 〈v〉 = 0.74 ± 0.02.

In radial interface growth, the velocities are higher, 〈v〉 =
2.19 ± 0.03 at weak cell-cell adhesion strength, and 〈v〉 =
1.86 ± 0.02 in the case of strong adhesion strength.

Two cases deserve special attention: First, in linear growth
with weak cell-cell adhesion and high disorder density, the
growth slows down and there is a crossover from 〈v〉1 =
1.06 ± 0.03 at short times to 〈v〉2 = 0.73 ± 0.07 at late times.
Second, in the case of weak adhesion strength and high disor-
der density in circular expansion, the colonies develop a chiral
morphology in which the branches proliferate and get pinned
over time, preventing the definition of a circular interface and
the evaluation of its velocity.

B. Fractal dimension

The fractal dimensions of the interfaces were evaluated
using the box-counting method, Fig. 4. As a general trend,
the fractal dimensions of the linear interfaces are slightly
larger compared to the circular ones. In addition, the fractal
dimensions here are slightly higher than those in the absence
of quenched disorder [17]. Table III lists the fractal dimen-
sions in the current paper, and several past experiments and
simulations under different conditions.

The one outlier regarding the fractal dimension is
the system that develops chiral morphology, that is, the
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TABLE III. Interface fractal dimension (df ), global (α), and local (αloc) roughness exponents, correlation function exponent [ζ ; Eq. (6)],
growth exponent (β), and average step height exponent (λ), in different configurations with different cell-cell adhesion stiffness strengths,
and quenched disorder densities, see Tables I and II. For the DLA-like chiral geometry, the fractal dimension is the colony fractal dimension.
The exponents for the well-known cases of KPZ, qKPZ, and MBE for one-dimensional interfaces are also given for reference. † indicates
experiments in heterogeneous media and ∗ indicates the crossover with two different regimes.

Configuration Adhesion df α αloc ζ β λ

Kardar-Parisi-Zhang (KPZ) [30] 1/2 1/2 1/3
quenched KPZ (qKPZ) [31] 3/4 3/4 3/5
Molecular beam epitaxy (MBE) [61] 3/2 1.0 3/8
linear interface at high disorder density weak 1.33 ± 0.06 0.50 ± 0.03 0.53 ± 0.05 0.53 ± 0.01 0.49 ± 0.07
linear interface at low disorder density weak 1.34 ± 0.03 0.52 ± 0.04 0.53 ± 0.02 0.53 ± 0.01 0.33 ± 0.08
linear interface strong 1.28 ± 0.07 0.47 ± 0.07 0.55 ± 0.05 0.53 ± 0.01 0.67 ± 0.07
circular interface at high disorder density weak 1.74 ± 0.06

DLAlike chiral geometry
circular interface at low disorder density weak 1.23 ± 0.02 0.64 ± 0.04 0.60 ± 0.02 0.58 ± 0.01 0.46 ± 0.13
circular interface strong 1.23 ± 0.01 0.63 ± 0.04 0.62 ± 0.02 0.58 ± 0.01 0.47 ± 0.13
Mazarei et al. [17] (linear interface) weak 1.22 ± 0.01 0.75 ± 0.04 0.59 ± 0.01 0.51 ± 0.01∗ 0.28 ± 0.01 0.02 ± 0.01

0.31 ± 0.03∗

Mazarei et al. [17] (linear interface) strong 1.26 ± 0.01 0.52 ± 0.02 0.62 ± 0.02 0.55 ± 0.01∗ 0.25 ± 0.02 0.01 ± 0.01
0.33 ± 0.04∗

Mazarei et al. [17] (circular interface) weak 1.13 ± 0.01 0.95 ± 0.04 0.66 ± 0.01 0.59 ± 0.01∗ 0.40 ± 0.04 0.37 ± 0.01
0.32 ± 0.01∗

Mazarei et al. [17] (circular interface) strong 1.21 ± 0.01 0.71 ± 0.02 0.70 ± 0.01 0.60 ± 0.01∗ 0.42 ± 0.06 0.47 ± 0.01
0.35 ± 0.01∗

Bru et al. [10] (circular interface) 1.12 − 1.34 ± 0.03 1.5 ± 0.15 0.90 ± 0.10 0.38 ± 0.07
Huergo et al. [29] (circular & Vero Cells) 1.20 ± 0.05 0.5 ± 0.05 0.32 ± 0.04
Huergo et al. [32] (circular & HeLa Cells) 1.20 ± 0.05 0.5 ± 0.05 0.32 ± 0.04
Huergo et al.† [5] (linear & Vero Cells) 0.63 ± 0.03 0.75 ± 0.05
Vicsek et al.† [33] (linear interface) 0.78 ± 0.07
Galeano et al.† [7] (circular interface) 1.18 ± 0.02 0.86 ± 0.04
Rapin et al.† [6] (linear interface) 0.58∗

0.13 − 0.25∗

circularly growing system with high disorder density. The
result is df = 1.74 ± 0.06. This value is within the margin of
error to computer simulations of the diffusion limited aggre-
gation (DLA) fractal model with dDLA

f = 1.71 [71,72]. This
chiral morphology has no well-defined interface but rather a
branched structure, and it has been observed, for example, in
bacterial growth on agar plates with a low nutrient concentra-
tion [73–75].

C. Roughness exponents for linear interfaces

The interface roughness, w(l, t ), was evaluated from
Eq. (4). For linear interface growth with quenched disor-
der, increasing the cell-cell adhesion strength or the disorder
density resulted in higher growth exponents (β) than in the
absence of disorder, see Ref. [17] and Table III. The local
roughness exponents, αloc, were obtained from Eq. (5). The
exponents have the same value at weak adhesion strength
for both low and high disorder density. At strong adhesion
strength and low disorder density, αloc increases slightly,
Table III. These local roughness exponents are also less than
what has been obtained from simulations without quenched
disorder, see Ref. [17] and Table III.

The global roughness exponents (α) were calculated via
structure factor analysis, Eq. (11). The results are shown
in Fig. 5. As in the case of αloc, the global roughness

exponents have lower values than those from simulations
without quenched disorder [17]; see Table III. The values are
in the same range and independent of the adhesion strength
and disorder concentration, whereas for linear colony growth
in media without quenched disorder [17], the value of the
global roughness exponent depends on the adhesion strength,
see Table III.

Figure 6 shows the correlation exponent (ζ ) defined via
Eq. (6). Interestingly, the exponent is the same in all cases for
linear growth, independent of the disorder density or cell-cell
adhesion, Table III. The scaling regime, however, increases as
cell-cell adhesion increases.

The correlation exponent was also determined in the ab-
sence of disorder based on the data from Ref. [17]. In that
case, the correlation function shows a crossover between
two exponents both at weak and strong cell-cell adhesion,
Table III. For shorter scales, the exponents are within the error
margin of the value ζ weak = 0.53 obtained in the presence of
disorder. For longer scales, the exponent crosses over to about
ζ ≈ 0.32.

The scaling exponents of linear interface growth at low dis-
order density and at weak adhesion strengths are compatible
with KPZ scaling exponents, whereas the global roughness
exponent of linear interface growth at weak adhesion strengths
in media without quenched disorder is greater than the KPZ
global roughness exponent;, see Table III.
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FIG. 4. Fractal dimension (df ) determined by plotting box counts
versus box size for the linear interface (triangles) (1) at weak (red
triangles), (2) at strong (orange triangles) adhesion strength, and (3)
at weak cell-cell adhesion in high disorder density (purple triangle).
Correspondingly, for the radially expanding interface (circles), (1) at
weak (green circles), (2) at strong (blue circles) cell-cell adhesion,
and high disorder density (violet circles). The colony fractal dimen-
sion, (dcol

f ), for colony expansion at weak cell-cell adhesion began
with a single cell in the center of a box on a substrate with a high
density of quenched disorder. This system does not have a dense and
round morphology, instead it forms slowly to a chiral morphology
with branched structure until the colony interface becomes pinned to
the disorder on the substrate. The colony fractal dimension is very
close to the DLA fractal model, df = 1.71.

D. Roughness exponents for radial growth

Next, we determine the scaling exponents for radially ex-
panding interfaces. As for linear interfaces, the presence of
disorder leads to higher growth exponents (β) compared to
the cases with no disorder, Table III. Similarly to linear colony

(a) (b)

FIG. 5. The structure factor [Eq. (10)] measured at three different
times, green: Long time; orange: Intermediate time; blue: Short time,
and different conditions (indicated by line type; legend). (a) For
the linear interface: Solid lines: Strong cell-cell adhesion and low
disorder density; dashed lines: Weak adhesion, low disorder density;
dotted lines: Weak adhesion, high disorder density. The black dashed
line with a slope of = −2.0 is drawn to guide the eye. (b) For the
radial interface at low disorder density: Solid lines: Strong cell-cell
adhesion; dashed lines: Weak adhesion. The black dashed line with a
slope of = −2.26 is drawn to guide the eye. The global roughening
exponent for each case is reported in Table III. For units, see Table I.

growth, the local roughness exponents (αloc) are in the same
range, but somewhat smaller than without disorder [17], see
Table III.

The global roughness exponents (α) were calculated via
structure factor analysis, Eq. (11). Similar to linearly expand-
ing interfaces, for the radially expanding interfaces in media
with quenched disorder, the global roughness exponents are
in the same range and independent of the adhesion strengths,
where, as previously mentioned, the global roughness ex-
ponent depends on the adhesion strength in the absence of
quenched disorder, see Fig. 5 and Table III.

The global roughness exponents in media with quenched
disorder, similar to linearly expanding interfaces, are smaller
than the global roughness exponents for the radially expand-
ing interface in media without quenched disorder [17], see
Table III.

The correlation exponents (ζ ) were obtained by determin-
ing the height-height correlation function, Eq. (6), shown in
Fig. 6, and they have the same value at both strong and weak
adhesion strengths, see Table III. Figure 6 shows the height-
height correlation functions for radially expanding interfaces
in media without quenched disorder and show a crossover
with two different correlation exponents for both weak and
strong cell-cell adhesion, see Table III.

V. DISCUSSION AND CONCLUSIONS

Comparison of the present data with previous results for
epithelial tissue growth in media without quenched disorder
[17] shows that quenched disorder can significantly alter the
morphology of the interface and cell colony. It also affects
cell motility and duplication rate in the colony, resulting in
higher fractal dimensions and slower spreading rates. This is
consistent with previous experiments for cell colony growth
in plain and gel media [5,76].

Our simulations show that at the limit of high disorder
concentration, colony growth exhibits branched chiral mor-
phologies and the fractal dimension is close to the fractal
dimension of clusters in DLA [71]. This has also been ob-
served in bacterial growth on agar plates at low nutrient
concentrations [73–75]. In the absence of quenched disorder,
increasing adhesion strength affects the colony morphology
and increases the interface fractal dimension [17]. Here, we
have shown that the fractal dimension is independent of the
cell-cell adhesion strength for colony expansion on heteroge-
neous substrates for the range of interactions considered.

We studied the roughness exponents which may be used
to identify the dominant growth mechanisms, such as surface
diffusion and lateral growth, which affect the roughness of a
surface and influence how tumors grow and spread. It is, how-
ever, important to keep in mind that the exponents here and
in other out-of-equilibrium phenomena are dynamic critical
exponents and hence they do not have the same universality
as the exponents in critical phenomena.

In the absence of disorder, adhesion strength is a crucial
parameter that generates both KPZ and MBE-like scaling
for colony expansion at strong and weak cell-cell adhesion
strengths, respectively [17]. This indicates that for tumor
growth at strong cell-cell adhesion, it is more difficult for the
cells to separate from their neighbors, and they adhere to one
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(a) (b) (c) (d)

FIG. 6. The height-height correlation function versus length (�) for the linear interface in a medium (a) with quenched disorder, (b) without
quenched disorder, and for the radial interface in a medium, (c) with quenched disorder, and (d) without quenched disorder at (green) long,
(orange) intermediate, and (blue) short time at different adhesion strengths and disorder densities. Solid lines: Strong cell-cell adhesion and
low disorder density; dashed lines: Weak adhesion, low disorder density; dotted lines: Weak adhesion, high disorder density. The correlation
function exponents, ζ , are reported in Table III. For units, see Table I.

another after division, thereby making diffusion at the colony
interface more difficult. In such a situation, the main growth
mechanism at the tumor surface is lateral growth [28,29,32].
In contrast, at weak cell-cell adhesion strength, it is easier for
cells to detach and diffuse at the colony interface, see Fig. S6,
and the main growth mechanism at the tumor surface is cell
diffusion [10,26].

The presence of disorder changes the above. Here, we
have demonstrated that in the presence of quenched disorder,
the local and global roughness exponent are independent of
adhesion strength. This indicates that the effect of adhesion
strength on interface roughness and morphology become less
significant on heterogeneous substrates which is likely in
in vivo situations due to factors including, e.g., the extracel-
lular matrix and nutrient concentration. Roughness exponent
close to 0.5 at both weak and strong adhesion strengths
demonstrates that quenched disorder decreases cell diffusion
at the interface colony and generates rougher interfaces.

Disorder does, however, alter the growth exponent. The
growth exponent for linear colony expansion at strong ad-
hesion obtained here is within the margin of error of the
experimental results of Huergo et al. for linear interface ex-
pansion of Vero cells in a gel medium [5]. However, in the
case of linear interface expansion at weak adhesion with both
high and low disorder, the growth exponent is different from
the one reported by Huergo et al.

At low disorder density and weak adhesion, colony ex-
pansion from a single line showed KPZ-like scaling. This is
in contrast to the situation without disorder [17]. Although
increasing adhesion strength and disorder density does not
affect the local and global roughness exponents, the higher
disorder density leads to higher growth exponents and makes
the scaling behavior of this configuration unclassified. The
systems with radial growth at both weak and strong adhesion
in media with low disorder density do not show any scaling
universality class behavior. This is in contrast to the case
of weak adhesion strength in the absence of disorder that
displays MBE-like behavior [17].

The distinction between the roughness exponents in the
absence and presence of quenched disorder highlights the
fact that in vitro and in vivo tumor growth follows distinct
dynamics. In vitro and in the absence of quenched disorder,
growth dynamics and morphology are sensitive to the cells’

mechanical properties, whereas in vivo, growth dynamics
(under heterogeneous conditions) appears being less respon-
sive to the cells’ mechanical properties such as the cell-cell
adhesion strength. These results indicate that the concepts of
scaling behavior in characterizing cell colony growth should
be used with caution due to the sensitivity to parameters such
as disorder concentration and cell-cell adhesion strengths.

The growth exponents for linear and radial interface
growths differ for both strong and weak cell-cell adhesion.
The fractal dimensions for radial interfaces are lower than
the fractal dimensions for linear interfaces, and the local and
global roughness exponents are greater for the radial interface
than for the linear interface. The substrate topologies for linear
and radial colony expansions are different. The radial con-
figuration grows on a plane, whereas the linear configuration
grows on a cylinder because of the periodicity in one direc-
tion. Both the plane and the cylinder have the same Gaussian
curvature. However, the first homotopy groups of a plane and
a cylinder are different, despite the fact that there is no local
difference between the two. A continuous contraction to a
point is possible for every closed loop in the plane, but only
for some closed loops on the cylinder.

Independent of adhesion strength and the geometries stud-
ied here, interface growth in media without quenched disorder
does not belong to the superroughening or the intrinsic anoma-
lous roughness subclasses reported in Refs. [26,64–66,68,70].
The average step height exponent, λ, and the modified scal-
ing ansatz for the height-height correlation function [Eq. (8)]
[58,59], are also not applicable to the type of anomalous
behavior in interface growth in media without quenched dis-
order. The results imply the existence of another type of
anomalous behavior, perhaps necessitating a diferent scaling
ansatz for the interface width scaling relation.
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