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Optimal motility strategies for self-propelled agents to explore porous media
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Microrobots for, e.g., biomedical applications, need to be equipped with motility strategies that enable them to
navigate through complex environments. Inspired by biological microorganisms we re-create motility patterns
such as run-and-reverse, run-and-tumble, or run-reverse-flick applied to active rodlike particles in silico. We
investigate their capability to efficiently explore disordered porous environments with various porosities and
mean pore sizes ranging down to the scale of the active particle. By calculating the effective diffusivity for
the different patterns, we can predict the optimal one for each porous sample geometry. We find that providing
the agent with very basic sensing and decision-making capabilities yields a motility pattern outperforming the
biologically inspired patterns for all investigated porous samples.
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I. INTRODUCTION

Evolution has equipped microorganisms with a variety
of motility patterns that allow them to explore their envi-
ronment efficiently for various tasks. For example, bacteria
live in soil or larger host organisms where they search their
environment for nutrients and surfaces to colonize. A very
common environmental constraint is confinement, both in the
habitat of biological microswimmers and in the application
domain of their artificial counterparts, e.g., microrobots. Bac-
teria are used for engineering applications in porous media
such as crack sealing, soil stabilization and contamination
remediation [1–4]. It is envisioned that artificial microrobots
or microswimmers can in the future act as microsurgeons
and perform medical tasks inside human tissue [5,6]. In each
case, the bacteria or microrobots, from now on called agents,
first have to traverse a highly confining, disordered porous
environment before they can fulfill their function.

Self-propulsion is a necessary ingredient for the efficient
exploration of such an environment, however, self-steering
can improve the performance significantly. Microorganisms
can achieve directional control by changing the beating pat-
terns and synchronization of their propelling cilia [7] or
flagella [8,9]. Many basic artificial microswimmers are unable
to steer, especially if their propulsion mechanism relies on
chemical reactions [10–12]. However, progress has been made
in the control of individual artificial swimmers that are actu-
ated by light [13–15] or magnetic fields [16–18], endowing
them with a steering feature.

Biological microswimmers are known to possess various
motility patterns [19,20], i.e., strategies to use a combina-
tion of self-propulsion and self-steering to navigate through
their environment: Pseudomonas aeruginosa and many ma-
rine bacteria can reverse their locomotion and perform a
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run-and-reverse pattern in which they alternate between for-
ward and backward swimming [19]. Bacterium Escherichia
coli interrupts its forward swimming mode (“run”) with re-
orientation events (“tumble”), where the bacterium rotates
before continuing to swim in a new direction [21]. Vibrio
alginolyticus alternates between swimming forward, swim-
ming backward and flicking its orientation by 90 ◦, a pattern
called run-reverse-flick [22]. In the following we will use
these motility patterns as a starting point to investigate optimal
strategies for porous media exploration and navigation.

The spreading behavior of active particles with different
motility patterns has been well studied in unconfined fluids
[23] and weakly confined environments [24]. Diffusive prop-
erties under strong confinement have also been the subject
of a number of experimental and theoretical works: Zeitz
et al. investigated in detail the mean-squared displacement of
disklike active Brownian particles (straight swimmers subject
to rotational diffusion) in a porous environment close to the
percolation threshold [25]. Bhattacharjee and Datta tracked
E. coli cells in three-dimensional porous media and found
that the bacterial trajectories cannot be identified as run-and-
tumble anymore, but they rather found a sequence of hopping
events through the channels, with the bacteria being inter-
mittently trapped in small pores [26,27]. Theoretical studies
of run-and-tumble-swimmers in porous media find a maxi-
mal effective diffusivity by optimizing the duration of runs
for specific pore configurations [28–31]. Similarly, numerical
simulations of run-and-reverse-swimmers show that the op-
timal run length can be inferred from the distribution of the
lengths of straight paths in a porous medium [32].

While the aforementioned works have optimized the pa-
rameters of specific patterns for porous media exploration, we
will attempt here to optimize the motility pattern itself. We
study the qualitative features of different patterns when used
by otherwise identical agents in various three-dimensional,
disordered environments. We cover the range of all relevant
pore sizes from bulk fluid to confinement ranging down to the
size of the microswimmer. Using the insights gained from our
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FIG. 1. Schematic representation of the geometry of the rigid
self-propelled agent.

analysis of biologically inspired motility patterns, we develop
a new pattern which requires the agents to be capable of sens-
ing whether they are trapped or not. This pattern, which can
be deployed by artificial autonomous self-propelled agents,
performs best across all investigated environments, and can be
a basis for developing further optimal navigation strategies.

II. RESULTS

A. Agent model and motility patterns

We simulate N = 100 individual active agents in three
dimensions by modeling them as rodlike, rigid-body particles
with length lbody = 2 µm and radius rbody = 1/3µm, as shown
in Fig. 1. The agents perform translational and rotational
Brownian motion and are subject to repulsive interactions
with their porous environment. Additionally, we apply time-
dependent active forces and torques to achieve self-propulsion
with speed vswim and self-steering with angular velocity ωact

(see Methods for a detailed description of the equations of
motion). The porous environment is modelled by randomly
placing overlapping spherical obstacles with radius Rsphere =
15rbody within the simulation domain. An example is shown
in Fig. 2. For a detailed description of our porous media
model, the control parameters and the derived quantities, see
Methods.

FIG. 2. A two-dimensional slice through a typical randomly gen-
erated porous geometry with mean pore radius rp ≈ 2.6 µm. The
colors indicate the local thickness, a measure for the pore size (see
Methods).

We create motility patterns by combining phases of self-
propulsion and self-rotation, prescribing the durations of the
phases and their temporal sequence. In the following, we list
the algorithms of the patterns used in this study, example
trajectories are shown in Fig. 3.

1. Straight swimming

A constant force along the symmetry axis is applied, there
is no active rotation. The only source of randomness in the
trajectory is the translational and rotational diffusion. Aside
from the anisotropic shape of the self-propelled agent, this
pattern is an implementation of a 3D active Brownian particle
(ABP).

2. Run-and-reverse

With this motility pattern, agents swim at constant speed
vswim (“run”) but can reverse their swimming direction, re-
alized by a change in sign of the self-propulsion velocity
vswim → −vswim. The reversal algorithm thus implies that
agents reverse their swimming propulsion and not the di-
rection of their body, as observed in nature [33,34], and so
no active torques are applied. The durations trun of runs are
commonly found to be exponentially distributed for bacteria
[35,36], therefore we draw them from a distribution,

p(trun) = 1

〈trun〉 exp(−trun/〈trun〉), (1)

where 〈trun〉 is the average run duration, which is the only
adjustable parameter of the run-and-reverse pattern.

3. Run-and-tumble

The run-and-tumble pattern allows agents to swim straight
(“run”) and actively change their orientation (“tumble”) at
distinct times, a strategy employed by, e.g., E. coli [21]. Our
numerical algorithm follows Lee et al. [37], we only give
a brief summary here: The durations trun, ttumble of runs and
tumbles are exponentially distributed and drawn from distri-
butions analogous to Eq. (1). They are characterized by their
respective means 〈trun〉 and 〈ttumble〉. The model for tumbling is
based on the assumption that during a tumble the rods perform
rotational Brownian motion with an increased rotational diffu-
sion coefficient Drot, tumble. With this assumption, a distribution
of tumble angles �tumble can be calculated analytically for
each tumble duration. The tumble rotational diffusion coeffi-
cient together with the average tumble duration are the control
parameters that determine the average angle of reorientation
according to [37]

〈cos(�tumble)〉 = 1

2Drot, tumble〈ttumble〉 + 1
. (2)

In our implementation, a tumble duration is drawn, and the
associated tumble angle distribution is calculated. Then, a
tumble angle is drawn from this distribution and an active
torque with ωact = �tumble/ttumble is applied to the rod such
that, in the absence of thermal noise and obstacles, the correct
angle of rotation is achieved within the tumble duration. The
direction n̂ of the active torque is orthogonal to the particle
orientation û, and its azimuthal angle in the particle frame of
reference is drawn at random from [0, 2π ).
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FIG. 3. Two-dimensional projections of example trajectories without confinement for the four biologically inspired motility patterns. The
pictograms (not to scale) show the phases involved in the respective pattern, i.e., forward swimming, backward swimming and rotation. The
trajectory for reverse-when-stuck is not depicted, as this pattern reduces to straight swimming if there are no pores to get trapped in. For easier
distinction, the temperature is reduced by a factor of 60 compared to the simulations used in our analysis.

4. Run-reverse-flick

This motility pattern can be found in marine bacteria V.
alginolyticus [22] and combines elements from run-and-
reverse and run-and-tumble. Here, runs (of exponentially
distributed durations trun) are interrupted by both reversals and
flicks. A flick is a tumble with a constant angle �flick = π/2
and duration tflick. Reversals and flicks occur in alternating
fashion.

5. Reverse-when-stuck

Leaving the realm of motility patterns that occur in na-
ture, we propose a hypothetical optimal pattern for porous
media navigation that combines straight swimming and re-
versals. For this pattern, the agent must be endowed with
sensing capabilities, a way to store a memory over a lim-
ited amount of time, and an intelligence unit to make simple
decisions. Together, these capabilities enable smart reactions
to the environment beyond following a predetermined order
of self-propulsion and -rotation. Using a position sensor, the
agent constructs a memory of its trajectory within a time
frame tmemory. If it did not move more than one rod length lbody

in that time, a reversal is triggered. Upon reversal, the memory
is reset.

This algorithm is used as a representative of the whole class
of motility patterns in which the agent is able to sense if it is
stuck in a pore. A position sensor is not necessarily required,
agents could also obtain this information from a sensor for
swimming speed. Mechanical sensors on the agent body or
propulsion mechanism such as the ones found in bacteria [38]
could determine a trapped state as well.

B. Effective diffusivity

From the scale of the different trajectories in Fig. 3 one
can already get a qualitative understanding of how efficient
agents can explore unconfined spaces depending on the strat-
egy they employ. To quantify the efficiency of exploration in
both unconfined space and porous media, we calculate the
mean-squared displacement (MSD)

MSD(t ) = 1

N

N∑
i=1

1

T − t

∫ T −t

0
|ri(t

′ + t ) − ri(t
′)|2dt ′, (3)

where T is the duration of the simulation, and ri the center of
mass position of agent i.

An example for run-and-reverse is shown in Fig. 4. It con-
tains the qualitative features that are present in the MSDs for
all motility strategies: For short timescales it is super-diffusive
with MSD(t ) ∼ t2, where the ballistic contribution of self-
propulsion dominates over random motion and interactions.
For intermediate timescales there is a subdiffusive regime,
i.e., MSD(t ) ∼ tα with α < 1. This is a result of trapped
agents that spend significant time not moving in narrow pores,
waiting for a random event to allow them to escape. For long
timescales, the motion is diffusive, i.e., MSD(t ) ∼ 6Defft with
an effective diffusion coefficient Deff. This holds true without
confinement, and also in porous media as long as the con-
finement is not strong enough to prohibit agents from moving
altogether. We use Deff as the key metric to rank the different
motility patterns.

Figure 5 shows Deff as a function of mean pore radius rp

of the confining geometry. Without confinement (mean pore
radius rp → ∞), straight swimming leads to a larger effective
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FIG. 4. Mean-squared displacement of the run-and-reverse pat-
tern at various mean pore sizes rp. The black lines indicate different
scaling behaviours as a guide to the eye.

diffusion than any of the other patterns, but only by a factor of
about 2 to 3. This ratio is quite small considering that there are
active reorientations in the other motility patterns while for the
straight swimmers the rotational diffusion is the only source
of deviation from ballistic motion. Due to the small size of the
particles, rotational diffusion has a strong effect on swimming
regardless of the specific pattern: From the rotational friction
coefficient γr (see Methods on how we calculate this quantity)
follows the typical timescale τrot for rotational diffusion via
the Einstein-Smoluchowski relation

τrot = 1

2Drot
= γr

2kBT
, (4)

where Drot is the rotational diffusion coefficient, kB the Boltz-
mann constant, and T the temperature. For the parameters
of the agents simulated here (see Methods), we obtain τrot ≈
0.7 s. This timescale is comparable to the typical time 〈trun〉 =
1 s between active reorientations in nonstraight swimming
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FIG. 5. Solid, colored lines, left axis: Effective diffusion coeffi-
cient Deff as function of average pore size for all motility strategies.
Dashed, gray line, right axis: Connectedness of the accessible void
space measured as the fraction of the void space occupied by
the largest connected region with local thickness τ (r) > rbody. The
shaded areas denote one standard error of the mean over Nensemble = 7
statistically independent simulations.

patterns, causing the relatively small ratio of Deff between the
patterns when there is no confinement. For bigger agents or
flagellated bacteria, where τrot is typically much larger than
〈trun〉, the difference in free-space diffusivity between straight
swimming and the other patters would be greater.

In the absence of obstacles, the effective diffusion coeffi-
cient of the straight swimmer can be calculated analytically.
It is then equivalent to the simple active Brownian particle
(ABP), where the effective diffusion coefficient reads

DABP
eff = kBT

γt
+ 1

3
τrotv

2
swim, (5)

where γt is the translational friction coefficient. Here, we
obtain Deff ≈ 183 µm2 s−1 as seen in Fig. 5.

Without confinement, the other patterns show a smaller
effective diffusivity than the straight swimmers, because in
addition to rotational diffusion, they use active reorientations.
Since for run-and-tumble the average reorientation angle is
〈�tumble〉 ≈ 56 ◦ (chosen to match the experimentally ob-
served behavior of E. coli [21]), it results in more persistent
motion than run-and-reverse with a reorientation angle of
180 ◦. Run-reverse-flick performs slightly better than run-
and-reverse because the flicks lead to less retracing of the
trajectory compared to reversals.

For decreasing pore size, i.e., stronger confinement, agents
that employ straight swimming are the first to become inef-
fective at navigating through their environment. Even though
the porous geometry is made of spheres, i.e., convex surfaces,
overlap between them can generate concave pore shapes in
which elongated swimmers get stuck. Straight swimmers have
to rely on thermal motion to randomly reorient themselves
away from such pores to escape. Escapes are additionally
hindered by the constant forward propulsion that drives them
into the pore, such that translational diffusion is very unlikely
to lead to a displacement out of the pore. The occurrence
of concave, trapping pores happens at porosities where the
average pore radius is still much larger than the size of the
swimmer. Only a few of such pores significantly decrease
the effective diffusivity because straight swimmers can get
trapped for long durations.

The next pattern to become ineffective is run-and-tumble,
but there is a range of pore sizes where run-and-tumble out-
performs straight swimming. Here, tumble events make it
possible to escape from pores where rotational diffusion is not
strong enough to lead to sufficient reorientations. Since the
tumble angle is drawn from a distribution over [0, π ], there
is a probability for tumbles with �tumble > π/2, pointing the
swimmer out of the pore and back to an open channel. Yet,
the pore size at which run-and-tumble becomes ineffective
is still significantly larger than that of run-reverse-flick or
run-and-reverse. This is because swimmer reorientation and
pore escape requires rotation of the elongated swimmer body
in space, which can be suppressed by confinement. To illus-
trate this point, we show the probability density of attempted
tumble angles �tumble and the actual angle �∗

tumble between
start and finish of a tumble in Fig. 6 for one typical simulation.

Without rotational Brownian motion or obstacles, there
would only be nonzero values on the angle bisector of the co-
ordinate axes with magnitude according to the distribution of
attempted tumble angles. However, in porous confinement, the
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FIG. 6. Joint probability density of attempted tumble angle
�tumble and actual tumble angle �∗

tumble between start and end of
a tumble at mean pore radius rp ≈ 2 µm. The black line indicates
�∗

tumble = �tumble.

deviation from �tumble = �∗
tumble is strongly asymmetric with

the majority of actual tumble angles happening close to zero.
Most tumbling, especially for larger angles, is suppressed by
confinement, leaving agents trapped in pores despite their at-
tempts to escape. To quantify this effect, we show the average
actual tumble angle 〈�∗

tumble〉 for different mean pore sizes
in Fig. 7. The suppression of tumbles with decreasing mean
pore radius starts around rp ≈ 5 µm, the same value where
Deff begins to drop significantly for run-and-tumble agents.
We note that at this mean pore size, only a relatively small
fraction of pores has a smaller radius than the length lbody of
an agent (orange curve). It is enough to cause a significant de-
viation of �∗

tumble from the target tumble angle �tumble because
self-propelled agents are much more likely to encounter the
small, trapping pores than passive particles would be: Active
agents tend to be in contact with surfaces over long periods
of time and slide along the pore walls due to their persistent
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FIG. 7. Two dimensionless quantities as a function of the mean
pore size. Blue: The mean actual tumble angle 〈�∗

tumble〉 normalized
by the mean attempted tumble angle 〈�tumble〉. Orange: The fraction
of pores smaller than the agent size, i.e., with τ (r) < lbody. The
shaded areas denote one standard error of the mean over Nensemble = 7
statistically independent simulations. For further explanations, see
the main text.

motion. This increases the chance of entering a location of
strong confinement.

Run-and-reverse and run-reverse-flick swimmers can ex-
plore environments with average pore sizes ranging down to
the size of a single agent. This is not only because of the
large probability of reversal events (certainty for run-and-
reverse, 50% for run-reverse-flick), but also because they lead
to a guaranteed pore escape, unlike large tumble angles with
run-and-tumble. For example, a tumble with �tumble = π is
not equivalent to a reversal event in run-and-reverse. In the
former, there needs to be enough space to allow the rotation
of the swimmer body whereas in the latter, the propulsion
is reversed without affecting the swimmer orientation. Run-
reverse-flick reduces to run-and-reverse because flicks are
geometrically suppressed just as tumbles are. Its effective
diffusivity is slightly larger than that of run-and-reverse be-
cause the smaller frequency of reversals allows the agents to
move faster through open channels inbetween trapping pores.
Both patterns become ineffective at porous media exploration
only when the available void space becomes disconnected and
motion is only possible within a finite volume. To quantify
this, we calculate the volumes of connected regions with local
thickness τ (r) > rbody. The dashed gray line in Fig. 5 shows
the ratio between the volume of the largest of these regions
and the total void space Vvoid = φL3, where φ is the porosity of
the porous geometry and L the length of the cubic simulation
domain. There is only one such region for rp � 2 µm, but
around rp ≈ 1.5 µm the void space splits into many smaller
regions such that even for the larger ones there can be no more
percolating motion through the simulation box.

Kurzthaler et al. [32] find that there is no significant dif-
ference between the effective diffusivity of run-and-tumble
and run-and-reverse in porous media. However, their im-
plementation of run-and-tumble includes a 50% chance of
reversing when tumbling, so we would classify that pattern
as run-and-tumble-or-reverse. According to our observation
of suppressed tumbles, this pattern will reduce to run-and-
reverse when sufficiently confined, at which point our results
are in agreement with theirs.

Run-and-reverse and run-reverse-flick are the best biolog-
ically inspired patterns for porous media exploration at very
small pore sizes, but they do not perform well for larger
porosities, where straight swimming is optimal. This inspired
the creation of the reverse-when-stuck pattern, combining the
best features of straight swimming and run-and-reverse, es-
pecially propulsion reversal without rotation of the swimmer
body. As expected, it results in the largest effective diffusivity
and therefore best exploration efficiency over the whole range
of pore sizes. At very small pore sizes, reverse-when-stuck
performs better than run-and-reverse and run-reverse-flick,
because the agent only performs reversals when they are
needed for pore escape. When it has found an open channel
through the porous medium, it follows that channel until it
gets stuck at the end without being interrupted by a randomly
triggered reversal event.

C. Run time variation

While the previous section focuses on the influence of
confinement on the dynamics of agents with fixed parameters,
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we now explore the influence of motility strategy parameters
with fixed level of confinement. We assume the agents’ shape
and propulsion speed to be given and vary only the internal
parameters that are directly linked to the strategy. We choose
the run time parameter 〈trun〉 for comparison as it is common
amongst the biologically inspired patterns run-and-reverse,
run-and-tumble and run-reverse-flick as shown in Fig. 8. We
do not change tumble or flip parameters, because they in-
terpolate between straight swimming and run-and-tumble as
well as between run-and-reverse and run-reverse-flick, and
we want to preserve the essential features of each motility
strategy. Simulations are performed at three levels of confine-
ment rp ∈ {2 µm, 4 µm, 6 µm} where we expect to see the most
geometry-related differences between the motility strategies.

All motility strategies perform very badly with 〈trun〉→ 0,
as in this limit, agents reduce to particles without active
propulsion that rely solely on thermal diffusion for exploration
of their environment.

For the largest mean pore radius rp = 6 µm, run-and-
tumble is most efficient for short mean run times 〈trun〉 � 7 s.
In this regime, agents perform active reorientations frequently,
so they spend more time swimming through open channels in
the porous medium than being trapped. Here, run-and-tumble
agents benefit from larger persistence than the patterns with
reversals. However, tumbles are less likely to lead to an escape
from narrow pores than reversals. This is why with increasing
〈trun〉, the effective diffusivity for run-and-tumble reaches its
maximum earlier and at a lower value than the effective dif-
fusivity of the other two patterns. For long mean run times,
swimmers spend more time trapped than swimming freely
due to less frequent escape attempts. Pore escape efficiency
becomes more important than large persistence in open chan-
nels, so run-and-reverse and run-reverse-flick perform best. In
the limit 〈trun〉 → ∞, all motility patterns reduce to straight
swimming and must have the same Deff. In our simulations,

this limit will be reached only at mean run times 〈trun〉 �
2000 s, far beyond biologically reasonable timescales.

For intermediate and tight confinement (rp = 4 µm, 2 µm),
the same qualitative behavior is observed. However, because
open channels are fewer and shorter, and trapping pores
are encountered more often, pore escape by motility rever-
sal becomes more relevant at smaller 〈trun〉. At rp = 4 µm,
run-and-tumble shows only a marginally larger effective dif-
fusivity than run-and-reverse and run-reverse-flick for 〈trun〉 �
0.7 s. For larger mean run times, the performance is signif-
icantly worse. This mean pore size coincides with the rp

at which tumbles are still possible, but begin to be sup-
pressed, see Fig. 7, reducing the efficiency of pore escape.
At rp = 2 µm, run-and-tumble agents are not able to explore
the medium at any mean run time, as tumbling is completely
suppressed.

The nonmonotonic behavior and shift in the maximum
of Deff for all motility patterns was observed and explained
for run-and-reverse in Ref. [32]: When the length of free
paths in the porous medium coincides with the average run
length lrun = 〈trun〉vswim, the effective diffusivity is optimal.
Deviations lead to a decrease in Deff, either due to premature
cancellation of a run phase that could have followed a free
path for a longer time or due to long trapping times that could
have been avoided by more frequent reversals.

In general, these observations support the qualitative con-
clusions drawn from the simulations performed at fixed 〈trun〉.
For all three levels of confinement, the ranking of motility
strategies remains the same for small 〈trun〉. However, by
tuning the run length, run-and-reverse agents can outperform
run-and-tumble agents. We therefore suggest that if manufac-
turing or genetically creating a reverse-when-stuck agent is
not feasible, optimizing a run-and-reverse swimmer is the best
choice when creating an agent for porous media exploration.

III. CONCLUSION

We have performed Langevin dynamics simulations of
rod-shaped, self-propelled and self-steered agents with var-
ious motility patterns in porous model geometries spanning
a large range of porosities and pore sizes. By quantifying
their long-time, effective diffusivity, we evaluated their ability
to explore these porous environments: At high porosity, i.e.,
large pore sizes, straight swimming performs best due to the
absence of active rotation, hence the trajectories are ballis-
tic for the longest possible time. At intermediate pore sizes,
run-and-tumble has the largest effective diffusivity. Here, the
agents can escape the pores by tumbling, which straight swim-
mers cannot, and they can explore the larger pore spaces
with a more persistent motion than run-and-reverse or run-
reverse-flick. At very small pore sizes, rotation of the rods
is suppressed by confinement, causing run-and-tumble swim-
mers to get stuck and preventing run-reverse-flick swimmers
from flicking. In this regime, run-and-reverse and run-reverse-
flick swimmers can still escape small pores because their
reversal mechanism enables them to reverse propulsion with-
out rotation of the agent itself, making them the only viable
strategies in tight confinement. By optimizing the run length
of the different motility strategies and thus exhausting the
full potential of each pattern, we find that in all geometries
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investigated, run-and-reverse can surpass the other strategies,
making it the optimal biologically inspired motility pattern
considered in this study.

These results prompted us to develop a motility pattern that
outperforms the biologically inspired patterns by endowing
the active agents with memory and the ability to sense position
(or velocity) for some time span, and an intelligence feature
that makes a decisions based on this memory: If the agent only
reverses when it is stuck, defined as not moving more than
its own length in its memory time, it can optimally explore
open channels in the porous geometry while still being able to
escape trapping pores.

With or without intelligence, we suggest that being able to
reverse propulsion without rotation of the agent itself should
be a high priority when designing active microagents for
medical and engineering applications in confined spaces. Only
with this ability they can efficiently navigate the inevitably
porous geometries in which they are deployed. After all, the
need for miniaturization of agents in these applications arises
from the highly confined environments in which their tasks
are to be performed. Furthermore, our results can serve as a
basis for developing other optimized navigation strategies for
specific environments.

IV. METHODS

A. Particle model

The Langevin equations of motion for the particle positions
ri in three dimensions read

mr̈i = −γtṙi + vswim

γt
ûi + Fi(ri, ûi ) +

√
2γtkBT ηt

i. (6)

Here, m is the particle mass, û a unit vector describing
the particle orientation, Fi an external force from particle-
boundary interactions, and ηt(t ) a random noise vector with
〈ηt〉 = 0 and 〈ηt

i(t )ηt
j (t

′)〉 = δi jδ(t − t ′)1, where 〈·〉 denotes
an ensemble average and 1 the identity matrix in three dimen-
sions. For the particle orientations ûi we have analogously

˙̂ui = ωi × ûi, (7)

Iω̇i = −γrωi + ωact

γr
n̂i + Mi(ri, ûi ) +

√
2γrkBT ηr

i, (8)

where I is the particle moment of inertia tensor, ωi the angular
velocity vector, ωact the active angular velocity analogous to
vswim, n̂i a unit vector perpendicular to ûi selected at random
by the motility pattern, Mi an external torque stemming from
interactions, and ηr a noise term with the same properties as
ηt. All simulations are performed using ESPResSo [39] to
integrate the equations of motion.

Our active agents are constructed from Nbeads = 5 particles
that are rigidly connected in a rodlike manner as shown in
Fig. 1. Only the position and orientation of the central particle
at ri are propagated in time using Eqs. (6)–(8). All other par-
ticles associated with the agent are repositioned according to
their constant configuration relative to the central particle after

every time step such that the rod behaves like a rigid body. The
force and torque on the central particle are calculated from

Fi =
Nbeads∑
j=1

F
(
r( j)

i

)
, (9)

Mi =
Nbeads∑
j=1

(
r( j)

i − ri
)×F

(
r( j)

i

)
, (10)

where r( j)
i is the position of the jth particle of agent i and F

the force derived from an interaction potential detailed below.
In our simulations we do not consider interactions between

agents as we want to analyze only single agent properties. The
mass m and moment of inertia I are calculated by approximat-
ing the rods as cylinders with constant density ρ. However,
we show later that the exact values of m and I do not alter the
physical behavior of the agents.

To obtain the translational friction coefficient γt, we ap-
proximate the rods as a spheroids and use the results of Datta
and Srivastava [40]. Taking half of the rod length lbody and the
radius rbody as the long and short half-axis, respectively, the
friction coefficient is calculated via

e =
√

1 −
(

rbody

lbody/2

)2

,

γt = 16πe3lbody/2

(1 + e2) ln[(1 + e)/(1 − e)] − 2e
μ, (11)

where μ is the dynamic viscosity of the surrounding medium.
Rotational Brownian motion has a strong influence on the

dynamics of self-propelled particles as it sets the persistence
of active, ballistic motion. It is therefore vital to obtain a good
estimate of the rotational friction coefficient γr of our agents.
For rotations around equatorial axes (i.e., axes perpendicular
to the symmetry axis) it is calculated from Perrin theory [41]
via

p = lbody/2

rbody
, ξ =

√
p2 − 1

p
,

Feq = 2

3

p−2 − p2

1 − (2 − p−2)atanh(ξ )/ξ
,

γr = Feq 8πμ
lbody

2
r2

body. (12)

Rotations around the axis of symmetry are neglected as
they do not affect any observable of the system.

The self-propulsion and self-rotation that separates our
model of active agents from passive colloids is determined by
vswim and ωact. According to the specific motility pattern, these
terms can be constant or time dependent. The motility pattern
is evaluated and the active forces and torques are updated with
a time step �t . It is an integer multiple of the simulation
timestep δt used in the velocity-Verlet scheme to integrate the
equations of motion. This reflects the difference in timescales
between the Brownian motion and changes in motility, and
speeds up simulations significantly.
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B. Porous media model

Inspired by the experimental setup of Bhattacharjee and
Datta [26], we model the porous environment with spheres
of radius Rsphere. The spheres are placed randomly throughout
the simulation box and fixed in space for the entire duration
of the simulation. As an approximation of hardcore repulsion,
all individual particles of the swimmer rods interact with all
spheres with a truncated and shifted purely repulsive Lennard-
Jones potential

V (r) = 4ε

[(
σ

r − Rsphere

)12

−
(

σ

r − Rsphere

)6

+ ε

]

× H (Rsphere + rbody − r), (13)

where r is the distance between the particle and the sphere
center, ε the interaction strength, σ = 2− 1

6 rbody, and H (·) the
Heaviside step function. All simulations are performed in a
cubic, L×L×L domain with periodic boundary conditions,
where L denotes the simulation box size. The control pa-
rameter for the porous geometry is the number of spheres.
To analyze the porous geometry, we first use the positions
of the spherical obstacles to generate a binary image of the
pore space at a resolution of �x = 0.25 µm. Then we use the
porespy [42] python package to obtain quantitative measures
such as porosity φ, local thickness τ (r), and the pore size
distribution. The local thickness represents the radius of the
largest sphere that contains the point r and fits entirely in the
void space between the obstacles as seen in Fig. 2. The mean
pore radius rp is determined by calculating the mean of τ (r)
in the regions where it is nonzero.

C. Parameter choice

To compare the motility patterns against each other,
we choose the same physical parameters for all sim-
ulations: lbody = 2 µm, rbody = 1/3 µm, vswim = 28 µms−1,
T = 300 K, μ = 8.9×10−4 Pas, Rsphere = 5 µm, ε = kBT and
L = 80 µm. In Ref. [43] we report effective diffusivities
for Rsphere = 10 µm. The results are in very good agree-
ment with Fig. 5, hinting at the independence of our
conclusions from the details of the porous medium model.
Unless noted otherwise, we set the average run times for

run-and-reverse, run-and-tumble and run-reverse-flick to
〈trun〉 = 1 s, the average time of rotation for run-and-tumble
and run-reverse-flick to 〈ttumble〉 = tflick = 0.1 s and the mem-
ory time for reverse-when-stuck to tmemory = 1 s. For run-and-
tumble, we set Drot, tumble = 5 s−1, which results in 〈�tumble〉 ≈
56 ◦, close to values observed in E. coli [21]. These might not
be the optimal parameters for each of the patterns for all pore
sizes, but they serve as a common ground for the evaluation
of the pattern performance.

For agents of this size at the density of water ρwater =
1×103 kg/ m3 , the diffusive relaxation time τrelax = m/γt ≈
7×10−8 s is very small compared to all other timescales of
the system, so the dynamics is overdamped and the exact
value of m does not influence the physical behavior. In our
simulations, we set the density of the agents to ρ = 105ρwater.
We therefore do not resolve the actual, negligibly fast, mo-
mentum relaxation. This allows us to choose large time steps
�t = 15δt = 5×10−3 s and thereby speed up the simulations
by five orders of magnitude.

Simulations are performed with N = 100 agents and run
for T = 6000 s to collect a sufficient amount of stochastic
data, with an additional 600 s warm-up phase before data
collection starts. They are repeated Nensemble times with differ-
ent random seeds, i.e., different geometries, particle starting
positions and noise realizations. Error quantifications shown
in the previous sections represent the standard error of the
mean over different simulations.

The data that support the findings of this study as well as
the source code are available at Ref. [43].
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