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Empirical analysis of congestion spreading in Seoul traffic network
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Understanding how local traffic congestion spreads in urban traffic networks is fundamental to solving
congestion problems in cities. In this work, by analyzing the high-resolution data of traffic velocity in Seoul,
we empirically investigate the spreading patterns and cluster formation of traffic congestion in a real-world
urban traffic network. To do this, we propose a congestion identification method suitable for various types of
interacting traffic flows in urban traffic networks. Our method reveals that congestion spreading in Seoul may be
characterized by a treelike structure during the morning rush hour but a more persistent loop structure during the
evening rush hour. Our findings suggest that diffusion and stacking processes of local congestion play a major
role in the formation of urban traffic congestion.
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I. INTRODUCTION

Understanding the functionality and congestion of urban
traffic networks is a crucial problem as these networks serve
as the blood vessels of cities [1–4]. Since an urban traffic
network is a connected network of local traffic flows on in-
dividual roads in a city, the functionality of the network relies
on not only these flows but also the interactions between the
flows.

A remarkable phenomenon owing to such interactions is
the spreading of local traffic congestion across the network,
creating macroscopic congestion such as clusters of congested
traffic flows [5–7]. A percolation-based approach was recently
proposed to investigate how such congested clusters form as
the number of congested traffic flows increases [8–13]. This
approach revealed that the ways that congested clusters form
(or functional clusters break up) during rush hour and non-
rush hour can be qualitatively different [9–11]. Other studies
used models of cascading failure or epidemic spreading to
identify the patterns of congestion spreading in urban traffic
networks [14–16]. A recent work [15] showed that traffic con-
gestion, using the Motter-Lai cascading failure model [17],
in Beijing spreads radially from the center of the initial
congestion with an approximately constant velocity. Another
work [16], using the susceptible-infected-recovered model of
epidemic spreading [18], showed that the growth and decay
patterns in the number of congested roads in several cities
are well described by this simple epidemic model. However,
to get deeper insight into the development and unfolding of
urban traffic congestion, we need to ask how local congestion
actually spreads and how this leads to the formation of macro-
scopic congestion in urban traffic networks.

To empirically address these questions, we need to resolve
the following two issues about congestion identification in
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urban traffic networks. First, we need to determine con-
sistently whether a given traffic flow is congested or not,
regardless of the various types of roads that exist in the net-
works. Many existing studies use a global threshold value of
flow velocity for congestion identification. However, a global
threshold may not be effective when each flow has its own
characteristics such as average velocity, velocity variance, or
velocity distribution. For example, a single threshold value
suitable for flows on highways may not be suitable for flows
on other types of roads. Alternatively, the fundamental di-
agram [6,19,20] may identify the functional state of traffic
flows, but it requires not only flow velocity data but also
vehicle density data, which are usually quite difficult to ob-
tain. Second, we need to take into account the fact that the
functionality of a traffic flow depends on not only the quality
of the flow itself but also the quality of the flows on the
neighboring roads, as urban traffic flows are not just an ideal
gas of traffic flows but a network of traffic flows connected by
the underlying road network. Considering neighboring flows
is also helpful in a practical sense because most urban traffic
data, collected from floating vehicles by the Global Naviga-
tion Satellite System (GNSS), are error-prone [21–23].

In this paper, we propose a congestion identification
method suitable for various types of interacting traffic flows
in urban traffic networks to resolve the above two issues. The
proposed method allows us to determine the state of traffic
flows by collapsing their behavior onto a single type of statisti-
cal distribution and considering the states of their neighboring
flows. With the proposed method, we analyze high-resolution
traffic velocity data in Seoul to empirically investigate how
local congestion spreads and forms congestion clusters in the
Seoul traffic network. We revealed that congestion spreading
in Seoul is characterized by a treelike structure during the
morning rush hour but a more persistent loop structure during
the evening rush hour, indicating that urban traffic congestion
arises through the diffusion and stacking processes of local
congestion.
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II. DATA AND METHODS

A. Data and traffic network construction

First, we prepared the set of roads and the averaged ve-
locities of traffic flows on these roads in Seoul, which are
provided by the authorities of Seoul Transport Operation and
Information Service (TOPIS) [24]. The traffic system of Seoul
provides traffic services for more than 8 million commuters
in the Seoul metropolitan area, which suffers from severe
congestion. The velocity of the traffic flow on each road was
estimated from taxi GNSS data and averaged over 5-minute
intervals, with a total of 288 (data points/day) ×60 (work-
days) = 172 80 data points from December 2020 to February
2021. Figure 1(a) shows an example of the velocity data at
8:30 A.M. on Dec. 1, 2020, by assigning each flow a raw value
of velocity. To reduce the temporal fluctuation, we adopted a
30-minute moving average velocity.

Next, we built a flow-to-flow network where traffic flows
on individual roads correspond to nodes. A directional edge
from flow i to flow j is created if these flows are directly con-
nected by the underlying road network and vehicles can travel
from flow i to flow j given the direction of travel of the flows.
This network construction is equivalent to the traditional dual
network construction, except that it additionally considers the
direction of travel of the vehicles [2,25–27]. Every connection
in this network represents a real-world interaction between
different traffic flows, so the resulting network does not simply
mimic the appearance of the underlying road network but
represents the actual organization of traffic flows. Further-
more, when we extract a subgraph of traffic congestion, such a
subgraph shows the organization of congested flows in terms
of connected components. This not only makes the results
easier to interpret than conventional methods but also makes
it convenient to consider the influence of neighboring flows.

To make the flow-to-flow network a connected system, we
extracted the weakly connected components from the net-
work without missing data points and filtered out traffic flows
that were not included in the largest connected component.
This filtering is negligible and does not affect the subsequent
results. Finally, we obtained the Seoul traffic flow network
covering the entire city with 4711 flows (nodes) and 107 24
connections (edges).

B. Congestion as an anomalously low functional state

Many researchers have tried to determine whether a traffic
flow is congested with various traffic indices [5,6,8,9,16]. A
typical traffic index in previous studies is the velocity ratio
with the daily maximum velocity [8,9,16], which is a sim-
ple and powerful method for normalization between different
traffic flows. However, this method has a crucial limitation,
which is that the determination of congestion relies on only
the ratio of instant velocity to the maximum velocity not on
the velocity distribution. Thus congestion identification based
on this index may be biased or inconsistent as the index loses
significant information about flow velocity during the day.

We suggest a more consistent way of congestion identifica-
tion for each flow by leveraging its velocity distribution. We
regard the congestion of a traffic flow as its failure, which is an
anomalously low-velocity state. We assume that its velocity

FIG. 1. Spatial representation of traffic flows on the Seoul road
network. The time of the plot is 08:30 A.M. on Dec. 1, 2020,
which shows the pattern of the morning rush hour. Each road is
drawn using the geometry data provided by the TOPIS and colored
according to its properties. (a) Spatial distribution of traffic flows
with their velocity. Because different flows have different velocity
limits and different properties, it is difficult to compare the state of
different traffic flows using the raw value of their velocity. (b) Spatial
distribution of traffic flows with the resulting state vector that is
calculated and calibrated by the state propagation algorithm. Each
flow is colored blue and red if it is in a free-flow state and a congested
state, respectively. Shade of each color is based on the converged
state s∗

i of each flow i.

distribution obtained from data has two parts: a part that is
disturbed by congestion (and therefore skewed toward low
velocities) and a part that is not disturbed [28–31].

First, we estimate the velocity distribution of each traffic
flow undisturbed by its congestion in order to distinguish
these two parts. We assumed that the undisturbed velocity
distribution of a traffic flow follows a lognormal distribution,
considering that velocity fluctuations may affect the ratio
rather than just the value. Because the congestion of a traffic
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FIG. 2. Samples of traffic velocities and their normalized values in various ways. We sampled two traffic flows on highways and two traffic
flows on local roads. We colored each flow the same color in each panel. Each row on the left shows the pattern over time of each traffic
index for the sampled traffic flow: (a) velocity, (b) relative velocity, (c) z score, and (d) effective z score. The histogram of each row on the
left represents the probability density function of each traffic index for the sampled traffic flow. Panels (e)–(h) on the right show the effective z
score distribution of each traffic flow and the normal distribution N (0, 1) as a guide. Each row is equivalent to the same colored histogram in
(d). The criterion for identifying congestion is indicated by the dashed black line, which is −1σ from an undisturbed normal distribution.

flow affects only its lower velocity, one would expect the right
side of its whole velocity distribution to be undisturbed by
congestion. In practice, we effectively estimated the mean
μeff

i and standard deviation σ eff
i of the undisturbed velocity

distribution of a given traffic flow i from its velocity sequence
data vi(t ) (i.e., data of its velocity time series) as

μeff
i = log mi, σ eff

i = log P95i − μi

2
, (1)

where mi denotes the median (i.e., the 50 percentile) of the
velocity sequence of traffic flow i and P95i means the 95
percentile, regarded as the maximum velocity vmax. Note that
the effective standard deviation is approximated as half the
log difference between P95i and mi. We define the effective z
score zi(t ) of velocity sequences vi(t ) for each traffic flow i as

zi(t ) = log vi(t ) − μeff
i

σ eff
i

. (2)

We use this normalized index to define the congestion of flow
i at time t as its low functional state such that zi(t ) is lower
than a given threshold (i.e., the state with an anomalously low
velocity that would be difficult to observe in the undisturbed
velocity distribution).

Figure 2 shows a sample of velocities represented by flows
on highways (high average velocity) and flows on local roads
(low average velocity) and the results of several normalization
methods of the sampled data. As shown in Fig. 2(a), each

traffic flow has its own velocity distribution with distinguish-
able fluctuation and average velocity, so a direct comparison
between the raw velocity data is not meaningful. Figure 2(b)
represents the relative velocity (r = v/vmax). With this sim-
plest normalization, most velocity sequences are scaled to the
range of [0,1] so that the sequences can be compared, but
you can see that the resulting distributions still have differ-
ent means and standard deviations. Thus, if one determines
whether a traffic flow is congested by comparing a single
threshold value with its relative velocity, the threshold value
suitable for flows on highways may not be suitable for flows
on other types of roads as the bias depending on the road
type (e.g., highway or local road) still remains in the relative
velocity. Another traffic index is the z score, which is obtained
by dividing the differences between a given sequence and its
mean by its standard deviation [Fig. 2(c)]. Note that in this
case the mean values of all sequences are almost identical as
they are close to 0, but the magnitude of the variation still
depends on the road type, which affects the identification of
urban congestion with a fixed threshold. This is because the
calculation of the mean and standard deviation was disturbed
by congestion, suggesting that a typical z score is not free from
the effects of congestion. Finally, in the case of the effective
z score we proposed [Fig. 2(d)], one can see that not only the
mean but also the variance are well aligned, meaning that all
the data are well described by a single type of distribution.
These results can be seen as validating our assumptions of the
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velocity distribution of each traffic flow as well as the identifi-
cation of congestion using a specific threshold. Therefore, we
adopt the effective z score to estimate the performance (i.e.,
quality of service) of each traffic flow and use it to identify
congestion with a given threshold.

For a given congestion threshold h, the state s(0)
i (t ) of traffic

flow i is initially estimated by the tangent hyperbolic function
as

s(0)
i (t ) = tanh (zi(t ) + h), (3)

where zi(t ) denotes the effective z score of the velocity of
traffic flow i at time t . The negative and positive indicators
represent a congested state and a free-flowing state, respec-
tively. We set the congestion threshold h as 1, which means
that a traffic flow that shows a performance lower than one
standard deviation of the daily typical performance is consid-
ered congested [Figs. 2(e)–2(f)]. Because this identification
originated from the estimated undisturbed distribution of each
traffic flow, the resulting vector is less affected by the statisti-
cal properties of each flow and thus represents its dynamical
state well. This kind of nonlinear activation is inspired by deep
learning algorithm [32–34], which preserves the information
about the state of each flow into binary as well, so it is useful
to limit the strength of a calibration of the state of each traffic
flow with its neighboring flows.

C. Congestion identification with neighboring flows:
State propagation

In terms of traffic capacity, congested flows are in a state
where they are unable to handle the loaded traffic, so they can
make all routes that include them worse [35]. This means that
the impact of a congested traffic flow is not confined to itself,
but also affects the wider cluster of flows that are connected
by the underlying road network. Therefore, when determining
the state of a traffic flow, we should consider also the states of
the neighboring flows.

For example, if a given traffic flow is in a free-flowing
state but the connected flows are all congested, then the flow
can be considered congested. Conversely, even if the current
performance of a traffic flow has dropped slightly, it should
still be considered in a free-flowing state if its neighboring
flows are in good condition. Estimating the state of nodes (i.e.,
flows) in this way facilitates tracking congestion spreading
and brings us more robust results from the noise in the velocity
data.

We implemented the above approach in an algorithm we
call the state propagation algorithm (SPA). In detail, it updates
the state vector s(n+1)

i (t ) by calibrating the performance of
node i in the flow-to-flow network using all the states s(n)

j (t )
of its outgoing neighbors, which is written as

s(n+1)
i (t ) = tanh

⎛
⎝J

∑
j

Ai js
(n)
j (t )

ki
+ zi(t ) + h

⎞
⎠, (4)

where A denotes the adjacency matrix of the flow-to-flow
network, J is the overall strength of the calibration by the state
propagation, ki(=

∑
j Ai j ) denotes the out-degree of node i,

zi(t ) is the effective z score introduced above, and h represents
the congestion threshold. We set J and h as 1, which means

the propagation affects a calibration of one standard deviation
to the neighboring flows as maximum, and a traffic flow that
shows a performance lower than one standard deviation of the
daily typical performance is considered as congested. Note
that the flow-to-flow network is a unidirectional graph, so the
state propagation is also unidirectional. We repeat this process
for sufficiently large n and use the converged state s∗

i (t ) as a
flow state. Finally, we calculated the congestion indicator ci(t )
using the converged state s∗

i (t ),

ci(t ) = �(−s∗
i (t )), (5)

where �(·) denotes the Heaviside step function. A stability
analysis of the converged state is described in Appendix A. If
s∗

i is positive, the state of flow i is identified as free-flowing, if
not, congested.

Figure 1(b) shows the congestion identification result s∗
i (t )

of the SPA for the velocity data represented in Fig. 1(a). The
blue and red flows indicate free-flowing and congested states,
respectively, which show the clear structural patterns of urban
congestion. This is because the gradual propagation of the
information of the local traffic state reinforces the structure of
the underlying road network. We believe that the result shows
robust structures in the temporal evolution of urban conges-
tion, specifically, even when there are so many cars on all the
roads that they start to slow down, but congestion has not yet
occurred. For the local flow level identification in Eq. (3),
very small noise can make a big difference in the pattern
because the traffic index is close to the decision boundary of
congestion. However, in the SPA, these small noises could be
ignored due to the propagation effect of neighboring states. In
this sense, the SPA provides adequate results for analyzing the
evolutionary pattern of congestion in urban traffic networks.

III. SPREADING PATTERNS OF URBAN TRAFFIC
CONGESTION

To study congestion propagation in urban traffic networks,
we identified the congested traffic flows in the Seoul traffic
network. We examined all 172 80 data points to get a set of
congested flows in each snapshot of the Seoul traffic network.
Figure 3 shows examples of spatial representations of con-
gested flows and their largest weakly connected component
for some representative times of Dec. 1, 2020.

To understand the quantitative patterns of congestion
spreading, we first check the evolution pattern of the num-
ber of congested flows C(t )[= ∑

i ci(t )] in the Seoul traffic
network (Fig. 4). Each thin line represents the daily pattern
of congestion evolution over 60 workdays, which shows a
significant congestion growth during the morning rush hour
and more severe congestion during the evening rush hour. We
find a crucial structural pattern of evolving congestion, which
is the exponential increase in the number of congested flows
during the morning rush hour from 6 A.M. to 9 A.M. This
exponential increase suggests that the spread of congestion
during the morning rush hour has a treelike structure as re-
ported in other works [14,16]. The spatial representation of
congested flows during the morning rush hour also shows a
treelike structure [cf. Fig. 3(a)]. Due to construction costs, ur-
ban highways are often based on a tree structure, occasionally
with a city-level ring structure [36]. But, as observed in other
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FIG. 3. Spatial representation of congested flows and their largest weakly connected component. The date of the example data is Dec. 1,
2020. We plotted the original Seoul road network as a guideline (thin blue), congested flows (orange), and the largest connected components
(green). Each plot represents a representative time of day: (a) morning rush hour (07:00 A.M.), (b) lunchtime (01:00 P.M.), (c) before the
evening rush hour peak (03:00 P.M.), and (d) after the evening rush hour peak (08:00 P.M.).

works [9,11], urban highways are vulnerable to congestion
during rush hour. Therefore, the observed tree structure of
congested flows during the morning rush hour is likely to stem
from the congestion of flows on urban highways.

To address congestion spreading patterns in terms of con-
nected clusters, we analyzed the weakly connected component
(WCC) consisting of only congested flows in the Seoul traffic
network. In particular, we trace not only the largest connected
component (LCC) of congested flows but also its outer bound-
ary, which is a set of free-flowing flows connected to the LCC
in the flow-to-flow network. We defined the boundary ∂N of a
given cluster N , which is a set of flows as

∂N = {i|i /∈ N, j ∈ N, Ai j = 1}, (6)

where Ai j denotes the adjacency matrix of the Seoul traffic
network. This definition traces the candidates of flows that can
be influenced by a given cluster N , meaning the total number
of incoming neighbors of the cluster N .

Figure 5 shows the relation between the sizes (i.e., number
of flows) of the congested LCC and its boundary for each data
point. One can see that the number of free-flowing flows that
are connected to the LCC (i.e., the size of the boundary of the
LCC) is proportional to the size of the LCC during the morn-
ing rush hour (green in Fig. 5). This result is not only evidence
for the treelike structure of urban traffic congestion during the

morning rush hour, but also an explanation of the exponential
behavior of a growing pattern of urban congestion.

One can notice the separation of growth and relaxation
patterns of the evening congestion, which are colored blue
and purple in Fig. 5, respectively. These decoupled patterns
of congestion LCCs reveal a hysteresis-like pattern in the
evolution of urban congestion from growth to relaxation
of congestion during the evening rush hour [cf. Figs. 3(c)
and 3(d)]. We can see that the growth pattern of the evening
rush hour is sublinear (blue in Fig. 5), whereas that of the
morning rush hour and the relaxation pattern of the evening
rush hour are near-linear (green and purple in Fig. 5). Because
of the difference in the number of neighbors of the LCC, these
hysteresis patterns suggest the structural shift of urban traffic
congestion between the morning rush hour and the evening
rush hour, and also the stability of such a structure in terms of
the positive-feedback effect [37,38]. Patterns of the morning
rush hour (green in Fig. 5) and the relaxation process of the
evening rush hour (purple in Fig. 5) are not much different in
terms of the number of neighboring free-flowing flows of the
congestion LCC [cf. Figs. 3(a) and 3(d)]. While such patterns
of congestion can be explained by treelike structures, the
emerging clusters of congested flows during the evening rush
hour have fewer neighbors on their boundaries than during its
relaxation process or the morning rush hour. To summarize,
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FIG. 4. Daily evolution patterns of congested flows in the Seoul
traffic network. Each thin line represents a pattern of daily congestion
ratio for different workdays, and the thick line shows the median as
a guideline. Blue and black represent the flow state determined by
the Eq. (3) (i.e., by considering only the flow itself) and congestion
determined by the Eq. (4) (i.e., by considering the neighbor flows
together), respectively. The lower plot has the same data as the upper
one but log scale on the y axis.

these results indicate that there is a topological shift between
the morning and evening rush hours in the largest cluster of
congested flows and hysteresis in the evolutionary pattern of
urban congestion. However, these results are not sufficient to
explain why congestion is much larger in the evening or to
explain where the structural differences between the morning
and evening rush hours come from.

To address the above questions, we focused on a special
topological feature, loops, consisting of congested flows. A
loop (or cycle) of congested flows is a set of simultaneously
congested flows that form a closed path in the network. These
loops, especially small loops, are very important structures in
the network dynamics that determine how one’s influence is
reflected back to oneself. For example, the most important
characteristic that determines a tree structure is the absence
of the loop structure in the network. Moreover, when we look
at congestion as a failure, these loops can be seen as a cycle of
failures, which represents a kind of feedback effect where the
effects of one’s own failure cascade back to oneself. There-
fore, we investigated how urban congestion is structurally
different between morning and evening through these loops.

FIG. 5. Relation between the sizes of the LCC and its boundary.
Each point represents each time snapshot (5 min interval), color
coded by the hour. One can see the difference between the two main-
streams of the daily pattern of the LCC, an increase and a decrease
in congestion during the evening hours, which are colored blue and
purple, respectively. For the comparison between the morning and
evening rush hour, we plotted the data based on several time zones:
(a) 00:00–12:00, (b) 12:00–24:00, and (c) 00:00–24:00.

We have found the set of k-loops Lk which are made up
with k flows in the traffic network, and calculated the conges-
tion indicator cl (t ) of a loop li at time t as

cl (t ) =
k∏

j∈{li}
�(−s∗

j (t )), (7)

where �(·) denotes the Heaviside step function. This conges-
tion indicator for loops is 1 only if all the consisting flows are
in a congested state (otherwise 0). We calculated the above
indicator only for the loops with three, four, and five flows
because the larger loops are less important in terms of the
feedback effect. We investigated all three-, four-, and five-flow
loops in the Seoul traffic network in a brute-force manner.
Some spatial representations of congested loops are provided
in Appendix B.

Figure 6 shows the time evolution of the number of k-loops
Ck (t )[= ∑

l∈Lk
cl (t )] over a day. As we expected above, only

less than 5% of loops are congested in the morning periods
from 6 A.M. to 9 A.M., while the congestion ratio of in-
dividual flows is over 20%. This absence of small loops is
clear evidence of the tree structure in the evolution pattern
of urban congestion during the morning rush hour. However,
after roughly 1 P.M., small loops of congested flows emerge
drastically so that the congestion ratio for each loop reaches
nearly 40% or more about 7 P.M., which is not shown by
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the congestion identification based on a single flow (dashed
lines in Fig. 6). These results suggest that despite the fact that
the overall traffic volumes during the morning and evening
commutes are not significantly different [24], there are sig-
nificant differences in traffic flow dynamics between the two
time periods, and that the difference in the congested loops
is responsible for the differences in traffic flow dynamics. On
the other hand, after the number of congested flows reaches
a peak, these loops decrease sharply, so that the relaxation
pattern in the evening commute shows a tree structure similar
to the spreading pattern in the morning commute, as expected
above.

To understand the impact of the loop structure on urban
congestion propagation, the distribution of congestion dura-
tion d was obtained by calculating the consecutive time of
congested states for each traffic object (i.e., flows and loops)
i, which is described as follows. First, let us consider the
congestion starting point indicator oi(t ) as

oi(t ) = ci(t )[1 − ci(t − 1)], (8)

where ci(t ) denotes the congestion indicator of a traffic object
i defined in Eq. (7). This indicator oi(t ) shows 1 if congestion
emerges at time t , else 0. After that, we considered the conges-
tion length li(t ) to be the farthest time shift τ that represents
the continuous congestion of traffic object i from time t ,

li(t ) =
T −t∑
τ=0

τ∏
�t=0

ci(t + �t ), (9)

where T denotes the total number of data points. If ci(t +
τ ) = 0 once, then for any τ greater than that, the term inside
of a sum will always be zero. So this calculation allows us
to know the maximum length of consecutive congestion from
time t . With above indicators, we calculated the congestion
duration di(t ), which can be written as

di(t ) =
{

0, (if oi(t ) = 0)
li(t ), (otherwise) . (10)

Finally, we collected all the positive congestion duration that
occurred in a certain set S of traffic objects, which can be
formulated as

D(S) = {di(t )|di(t ) > 0, i ∈ S}. (11)

We prepared a set of traffic objects based on various categories
(e.g., loops by the number of flows, flows by associated loops)
to investigate the impact of loop structure on congestion. In
addition, to remove spatial correlation, we shuffled only the
flow configuration, leaving the structure of the road network
intact, and examined the congestion on the loops of that
network. In this way, we can obtain a congestion duration
distribution and its characteristic decay time, which represents
the persistence of urban congestion for each traffic object.

Figure 7 shows the complementary cumulative density
function of congestion duration distribution of each traffic
object. In general, all loop structures which are represented as
solid lines were found to be more persistent than the shuffled
ones which are represented as dotted lines. Especially, even
though the congestion of a loop is less probable than that of a
single flow, for four-flow loops (green line), the characteristic
time is similar to a single flow. This result suggests that the

FIG. 6. Daily evolution patterns of congested flows and loops in
the Seoul traffic network. Each solid line represents the workday
average of the temporal evolution of the congestion ratio of each
flow and loop of three, four, and five flows combined. The results of
congestion identification based on a local flow (s0) are represented as
the dashed line. As a guideline, each dotted line shows the probability
that each k-flows loop gets congested with a given congestion ratio
of single flows, which is calculated as pk where p and k denotes the
overall congestion probability of s0 and the number of traffic flows
in loops, respectively. The lower plot has the same data as the upper
one but log scale on the y axis.

positive feedback of the loop structure makes the structure
more persistent. Once such a cycle of congestion in traffic
networks is created, it would not disappear easily and make
things worse by disrupting neighboring traffic flows. This is
even more pronounced when we separate the distributions
based on which loop a flow belongs to, and find that flows
belonging to a loop of four flows (green dashed line) ex-
perience significantly longer congestion than those that do
not. In addition, traffic flows that do not form small loops
(purple dashed line) show a shorter characteristic time than
flows in four- or five-flow loops (green and red dashed lines,
respectively), meaning that congested flows in a tree structure
experience shorter congestion than congested flows in a loop
structure.

All these results indicate that the essential patterns of urban
congestion propagation are the tree and loop structures. The
tree structure that emerges during the morning rush hour and
the relaxation part of the evening rush hour tells us the basic
spreading pattern of urban congestion, which is the diffusion-
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FIG. 7. Distribution of congestion duration of loops and individ-
ual flows. Each line represents the decay pattern of each type of
congested loop. The blue solid line indicates the congestion that was
appeared in every single traffic flow and its tendency shown with
the gray solid line as a reference. The yellow, green, and red lines
indicate the congestion duration of loops with three, four, and five
flows, respectively. To investigate the impact of congested loops on
a single flow, we categorized flows by the loop they belong to. The
dashed line describes the congestion duration on traffic flows that are
classified as associated loops, and the purple line shows exceptional
flows that do not consist of loops. For comparison, we generate
random congestion in each loop by shuffling only the spatial organi-
zation of the flows, leaving the structure of the network unchanged.
Each dotted line represents the congestion duration distribution for
each loop with the random flow configuration.

like (or contagion-like) process. We expect that this pattern
stemmed from the structure of the highway network, which
serves as a long-range connection through the city and is
designed for efficiency. The other can be explained by the
stacking process of urban congestion, the small loop structure
in which congestion resulting from the morning rush hour
is not relaxed during the midday, thus exacerbating urban
congestion during the evening rush hour. Flows that make up
a small loop composed of four or five flows are identified as
having a longer congestion duration than flows that are not
part of the loop.

IV. DISCUSSION

In summary, we developed a systematic framework to
analyze congestion spreading in empirical data by viewing
traffic flows in cities as network flows, defining congestion
as an anomalously low functional state of these flows. Our
framework enables us to determine the functional state of
traffic flows in urban traffic networks by collapsing the be-
havior of various types of traffic flows onto a single type of
statistical distribution and taking into account the functional

states of their neighboring flows. As a result, we found the tree
structure in congestion evolution patterns during the morning
rush hour observed in the exponential growth in the number
of congested flows, the near-linear relation between the size
of the largest connected component of congested flows and
the size of its boundary, and the lack of small loops during
the morning rush hour. On the other hand, we observed a
significant increase in the number of small loops of congested
flows during the evening rush hour. We observed that these
loops are quite persistent as they represent the feedback effect
of urban congestion.

Our findings suggest that evaluating the dynamic state of
nodes in networks by taking into account the state of their
neighboring nodes is helpful in providing a clearer picture
of dynamical processes on networks. In the case of traffic
dynamics, by propagating the information of each flow’s func-
tional state, we are able to reconstruct the structural patterns
of congestion spreading, such as trees and loops.

Although our framework provides an effective tool for
understanding urban congestion, it also has some limitations.
We only identify congestion as the failure of each traffic
flow based on an estimation of an undisturbed velocity dis-
tribution. So, if the velocity distribution of a traffic flow is
already too slow that congestion cannot be distinguished by
our estimation, we cannot identify the impact of this con-
gestion in the data. Moreover, our findings are still limited
to the phenomenon in one city, Seoul, and need to be further
validated with data from various cities. Last, our results may
depend on the values of parameters h and J in Eq. (4) although
no qualitative differences were observed when we checked
the results with other parameter values (see Appendix C for
the details). Despite these limitations, it can be seen that the
algorithm is powerful in revealing various aspects of traffic
dynamics in urban traffic networks.

As an immediate follow-up study, we will investigate urban
congestion in other cities to identify universal patterns in the
spreading process of urban traffic congestion. We will also
apply this algorithm to solve other collective phenomena that
occur in networked systems and understand the spatiotem-
poral patterns of these phenomena to reveal the relationship
between structure and dynamics. We hope that understand-
ing the circular effects of urban traffic congestion will help
traffic engineers and road network designers solve the socioe-
conomic problems of urban congestion by alleviating severe
traffic congestion in large cities.
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APPENDIX A: STABILITY ANALYSIS OF STATE
PROPAGATION

To estimate the stability of the converged state s∗
i , we

examine the small perturbation δi at each node i and calculate
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its evolution. Let s∗
i be a converged state of a given data set zi.

We can calculate the propagation of the small perturbation δi

on s∗
i . Then a propagated fluctuation δ′

i can be written as

s∗
i + δ′

i = tanh

⎛
⎝∑

j

J
Ai j (s∗

j + δ j )

ki
+ zi + h

⎞
⎠ (A1)

where ki(=
∑

j Ai j ) is out-degree of flow i. Because of the
small perturbation condition, the right-hand side can be ex-
panded by δ j at s∗

j by using the relation, tanh′(x) = 1 −
tanh2(x),

δ′
i � [1 − (s∗

i )2]Jδi + [−s∗
i (1 − (s∗

i )2)
]
(Jδi )

2 + · · · ,

δi =
∑

j

Ai jδ j

ki
,

(A2)

where δi means the average fluctuation of outgoing neighbors
of flow i. Higher-order terms of Jδi contain higher order of s∗

i
or [1 − (s∗

i )2] which are always smaller than 1. So the size of
the propagated fluctuation δ′ always smaller than one of the
original perturbation δ when [1 − (s∗

i )2]J < 1 holds (J � 1).
Therefore, the iteration of Eq. 4 always converged to s∗ in that
condition.

In addition, the initial state s0
i is the same as the condition

δi = −s∗
i in Eq. (A1) which can be written as

s0
i = s∗

i + δ0
i =

⎛
⎝∑

j

J
Ai j[s∗

j + (−s∗
j )]

ki
+ zi + h

⎞
⎠ (A3)

So we can calculate the difference δ0
i between the initial state

s0
i and the converged state s∗

i as

δ0
i � [1 − (s∗

i )2](−Js∗
i ) − {s∗

i [1 − (s∗
i )2]}(−Js∗

i )2 + · · · ,

s∗
i =

∑
j

Ai js∗
j

ki
, (A4)

Because s∗
i ∈ [−1, 1], our initialization method [i.e. Eq. (3)]

is stable to trace the converged state s∗
i under the condition

J � 1.

APPENDIX B: REAL-SPACE REPRESENTATION
OF CONGESTED LOOPS

Figure 8 shows a schematic of a 4-loop and Fig. 9 shows a
real-space representation of all possible 3- and 4-loops in the
Seoul road network.

APPENDIX C: IMPACTS OF DIFFERENT
PARAMETER VALUES

First, we tested various values of the congestion threshold
h, given the calibration strength J = 1 in Fig. 10. The ten-
dencies of different congestion thresholds are similar to one
another, while the absolute fraction decreases according to the
increasing threshold as shown in Fig. 10.

Let us start from the original normalized data s0
i [= s∗

i (J =
0)] and consider the sorted data set zi(t ) by the increasing

FIG. 8. Schematic of 4-loop composed of four congested flows
(red). The figure is modified from [39].

order. In this case, the congestion threshold h determines
only the number of congested flows(s0

i (t ) = tanh[zi(t ) + h]),
leaving the order of congestion still unchanged.

Second, we also tested various values of the calibration
strength J , given congestion threshold h = 1 in Fig. 10. The
tendencies of different calibration strengths are similar to one
another, while the absolute fraction decreases according to the
decreasing strength as shown in the third column in Fig. 10.

FIG. 9. Real-space representation of all possible 3- and 4-loops
of congested flows in Seoul road network. The black thin line rep-
resents the underlying Seoul Road network. Blue and orange show
all 3- and 4-loops of congested flows in the Seoul road network,
respectively. Note that the bidirectional road might be overlapped in
the real-space representation.
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FIG. 10. Daily evolution patterns of congested flows and loops for different combinations of parameters J and h. The left and middle
columns show the result of choosing different values for the congestion threshold h with different colors, while the calibration strength J
is fixed to 1. The right column shows the result of choosing different values for the calibration strength J with different colors, while the
congestion threshold h is fixed to 1. Because the initial state s0(t ) is determined only by the congestion threshold h, the green in the left column
corresponds to the initial state of the right columns.

The calibration strength J determines how strong the influence
of local traffic states is, which emphasizes the structure com-
posed of flows whose states are strong. In other words, the
converged state s∗

i of the flow i whose state is stronger than

|zi + h| > |J| is not affected by the calibration. Therefore,
choosing J determines the boundary of a strong state and the
ambiguous state which may contain some fluctuations (e.g.,
errors).
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