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Geometry of commutes in the universality of percolating traffic flows
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Traffic congestion is a major problem in megacities which increases vehicle emissions and degrades ambient
air quality. Various models have been developed to address the universal features of traffic jams. These models
range from microscopic car-following models to macroscopic collective dynamic models. Here, we study the
macrostructure of congested traffic influenced by the complex geometry of the commute. Our main focus is
on the dynamics of traffic patterns in Paris and Los Angeles, each with distinct urban structures. We analyze
the complexity of the giant traffic clusters based on a percolation framework during rush hours in the mornings,
evenings, and holidays. We uncover that the universality described by several critical exponents of traffic patterns
is highly correlated with the geometry of commute and the underlying urban structure. Our findings might have
broad implications for developing a greener, healthier, and more sustainable future city.
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I. INTRODUCTION

Studying the behavior of vehicular traffic has attracted the
attention of researchers for a long time. Excessive use of
vehicles could bring about various problems, one of which is
elevating the congestion. People are dealing with congestion
almost every day, and it brings negative effects on their lives.
A thorough analysis [1] of traffic situations in 471 urban areas
across the United States has revealed that travel delays due to
traffic congestion pushed drivers to waste more than 3 billion
gallons of fuel and kept travelers stuck in their cars for about 7
billion additional hours—42 h per rush-hour commuter. These
all translate to a total nationwide price loss of 160 billion
during traffic congestion or 960 per commute. In addition, the
“2019 Urban Mobility Report” remarked that traffic delay was
equivalent to nearly 7 full working days of motorists in 2017.
The negative cost of this delay could cause a loss of over 1000
dollars [2].

The other problem that emerges from congestion is the
emission of pollutants into the air. Studies on the source of fine
particulate matter in different areas in the United States indi-
cated that motor vehicles are one of the primary contributing
factors to air pollution and consequently to global warming
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[3,4]. Stop-and-go is a common phenomenon that occurs dur-
ing congestion. Consecutive acceleration and deceleration in
stop-and-go will lead to extensive burning and consumption
of fuel and consequent air pollution. Releasing harmful fine
particulates is highly related to mortality risk. Lung cancer
and cardiovascular mortality are increased as a result of high
amounts of pollutants in the air [5–10]. These effects have led
scientists to find an optimal way to mitigate the congestion by
exploring different aspects of traffic.

Greenshields et al. were pioneers in measuring the speed,
capacity, traffic flow, and density by taking photographs
[11–13]. Researchers started to probe into the behavior of
traffic both from macroscopic and microscopic points of view.
In this regard, different approaches were proposed to solve the
problems that traffic carries (see Refs. [14,15] and references
therein).

Totally asymmetric simple exclusion processes (TASEPs),
cellular automaton (CA), and car-following models are clas-
sified in the microscopic approaches in which monitoring
the occupancy of each cell is essential [15–21]. The im-
pact of roundabouts, crossroads, sudden acceleration, and
deceleration, overtaking on multiple roads are the most fre-
quent questions in this approach [15,22–26]. On the other
hand, macroscopic models often investigate the global impact
of traffic throughout the city. One of the most well-known
macroscopic models was proposed by Ligthill-Whitham and
Richards (LWR) [15,27,28] where the authors have utilized a
first-order partial differential equation to explain the dynamic
of traffic.

Propagation of congestion throughout the city and identify-
ing the traffic zone in the city is one of the frequent questions
in macroscopic models. Daganzo [29,30] has introduced the
cell transmission model which shows the evolution of traffic
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FIG. 1. Mapping traffic pattern in Paris to percolation. (a) The regular Google map. Different colors indicate the intensity of traffic on
roads. (b) The map is embedded onto a 112×112 grid. In the first step, we indicate cells in which at least one of the pixels belongs to a road.
A porous lattice appears in green cells. We will analyze the percolation of traffic on this porous lattice. (c) Cells are colored by the traffic
report of Google. If only one pixel within a cell is assigned by either orange, red, or dark red, we then consider the whole cell as a traffic cell.
(d) Percolation of traffic congestion in the porous lattice. Traffic clusters are displayed in yellow. The red cluster indicates the giant cluster.

flow over complex networks. This model can investigate and
predict the dynamics of traffic including nucleation, spanning,
and the emergence of queues due to congestion.

Percolation theory [31] is a useful tool for studying the
organization of global traffic flow on a lattice model [32,33].
Recent studies on macroscopic models have utilized perco-
lation theory to disclose the propagation of traffic in urban
areas [34,35]. In this geometric approach, locally congested
roads will form traffic clusters that gradually grow over time
and eventually merge into one giant cluster. The critical point
or the percolation threshold pc coincides with the emergence
of the giant cluster that is of great practical importance. The
percolation problem is one of the most important universality
classes in the critical phenomena characterized by a set of
genuine critical exponents. Scaling relations ensure that all
critical exponents can be obtained from only two independent
ones, e.g., the fractal dimension D f of the giant cluster and
the Fisher exponent τ governing the cluster size distribution
at criticality. Determination of the universality class of traffic
clusters can indeed provide insights into the underlying mech-
anism and influential parameters that shape the propagation of
traffic jams over time [32,36,37].

Here, we study the structure of traffic clusters in Los An-
geles and Paris by using the concepts of percolation theory.
We compare their properties in the morning and the after-
noon/evening rush hours of weekdays and weekends. The

critical question is whether the percolation properties of traffic
clusters in these cities with totally different road network
structures are influenced by the geometry of the commutes.

II. RESULTS

We first embed the Paris map into a 112×112 grid in our
analysis. Snapshots are taken from Google Maps for live traf-
fic patterns every 5 min in 14 days during June and November
2018. Roads in Google Maps carry four possible colors: green,
orange, red, and dark red. Colorless regions in the map are
related to places other than roads, which we will not consider
in this study (Fig. 1). The green stands for a road in the
traffic-free mode. In other cases, however, traffic is involved
with the increasing intensity from orange to dark red. This
setting provides a network of roads of Paris and Los Angeles
embedded in a discretized two-dimensional space (Fig. 1).

III. MATERIALS AND METHODS

Google Maps has a feature called “Google Traffic” that
provides accurate real-time traffic information to online users.
The information is graphically coded in four different colors:
green for the traffic-free mode, orange for moderate traffic, red
for high traffic, and dark red for traffic congestion (Fig. 1). We
captured the live traffic patterns of Paris and Los Angeles in
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FIG. 2. Giant cluster of traffic jam in Paris. The red cluster rep-
resents the giant cluster at the percolation critical point in Paris in the
morning of a working day. The orange cluster represents the second
largest cluster.

5-min intervals for 2 weeks. There are different features in the
snapshots that we captured (e.g., names of roads, rivers, parks,
etc.) but we only used the graphical information for the traffic
report.

In the first step, we use image processing to convert the
red-green-blue (RGB) matrix [which is a three-dimensional
(3D) matrix] into a 2D matrix with values ranging from 1
to 4 each for colors from green to dark red, respectively
(green = 1, orange = 2, red = 3, and dark red = 4). We have
then embedded the matrix information onto a square lattice of
size 1792×1792. Since the cell size on our original lattice was
less than a typical road width, we have used a coarse-grained
lattice by merging each 16×16 cell into one larger cell. Thus
our initial lattice of size 1792×1792 shrank into a lattice of
size 112×112.

IV. MODELS

We used the site-percolation model to investigate traffic
propagation and dynamics throughout Paris and Los Angeles.
We consider a site (or cell) to be congested if its attributed
value is higher than 1. This means that all sites with colors in
orange, red, and dark red are congested. We define q = 2 as a
threshold for each cell in the matrix Ai j , i.e.,

Ai j =
{

1 if Ai j � q,

0 if Ai j < q.
(1)

V. MAP ONTO A PERCOLATION PROBLEM

Figure 1(a) represents a typical snapshot of the traffic
pattern in Paris. Figure 1(b) shows the porous lattice of the
road network on which our percolation analysis is carried
out. Figure 1(c) is an example of the transformation of the
original 3D RGB Google Maps traffic pattern into the two-
dimensional 112×112 lattice. Each lattice cell may contain
several colored pixels in the original map. We use the max-
pooling method which assigns the darkest color of pixels to
the cell. We then consider all cells with different colors as
occupied cells in percolation and represent them with orange.
The nearest neighbors of occupied sites on the lattice form
a connected cluster, and the number of occupied sites in this
cluster defines its size s. The giant cluster with the largest size
at the given traffic rate is shown in red in Fig. 1(d). The traffic
rate is related to the occupation probability p that measures
the ratio of the total number of occupied sites to the total
number of green sites, i.e., all sites that belong to the road
network. Once p reaches a critical threshold pc, i.e., the large-
scale traffic is jammed and the giant cluster spans across the
lattice.

To capture these critical points, we first measure the mean
cluster size (analogous to the susceptibility of the system)
χ (p) defined by

χ (p) = �′
ss

2ns(p)/�′
ssns(p), (2)

(a) (b)

FIG. 3. Mean cluster size in Paris. The mean cluster size χ (p) as a function of the traffic rate p in the working days (a) and weekends (b) in
Paris. The vertical dashed lines show the location of maxima at the critical traffic rate pc.
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FIG. 4. Giant cluster of traffic jam in weekends. The red cluster
represents the giant cluster at the percolation critical point in Paris on
a weekend. The orange cluster represents the second largest cluster.

(a) (b)

(c) (d)

FIG. 5. Fractal property of the giant cluster: log - log plots of the average mass M of the giant cluster of a traffic pattern in a window of
size L in the mornings of the working days (a), evenings of the working days (b), and weekends (c) in Paris. (d) Implementation of random
percolation model on the city road geometry. The slopes give the fractal dimension of the giant cluster at the critical thresholds. The solid lines
are the best fits to our data with R2 > 0.99. The error bars (based on standard error) are the same size as the symbols.

where ns(p) denotes the average number of clusters of size s
at each traffic rate p, and the prime on the sums indicates the
exclusion of the largest cluster in each measurement.

Figure 2 illustrates an example of the traffic pattern at the
critical rate in the morning of a working day in Paris. The red
cluster is the largest cluster and the orange one is the second
largest cluster.

Figure 3(a) represents the mean cluster size of the traffic
pattern in both the morning (green open circles) and evening
(red solid circles) on a working day in Paris. The divergence in
χ (p) signals the critical traffic rate at the onset of large-scale
traffic congestion. Remarkably, the critical traffic rate in the
morning is smaller than the critical rate in the evening. We find
that the average traffic rate in the morning for the observed
period is 0.525 ± 0.05 and for the evening is 0.67 ± 0.02.
This means that the morning of working days in Paris carries
a lower capacity of traffic flow which can be caused by the
common and localized destinations of vehicles in the morning
and thus common roads. Figure 3(b) shows the percolation
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of traffic flow during a weekend in Paris. As it can be seen,
the critical traffic rate pc in the morning (∼0.664 ± 0.02) and
evening (∼0.68 ± 0.02) is very close to that of the evening
of the working days (∼0.67 ± 0.02). In the evenings and
weekends, the destinations are chosen by the people which
are well distributed all over the city which provides more
variety of routes for vehicles and as a result the traffic load
of the city increases in this period of time. This difference is
also well represented schematically in the giant cluster of the
traffic pattern for weekday morning in Fig. 2 which is a highly
porous and low-density fractal structure versus a more dense
structure of the giant cluster observed in the weekend shown
in Fig. 4.

Such observations prompt us to investigate whether the
difference between weekend and weekday evening critical
thresholds versus weekday morning thresholds is indicative of
fundamental differences in traffic patterns from the perspec-
tive of critical complex systems. The universality allows the
grouping of microscopically quite different physical models
and phenomena with the same behavior near criticality into
universality classes characterized by a set of critical exponents
related to the broad symmetry groups. In percolation theory,
the critical exponents, unlike the critical threshold, do not
depend on the microscopic details of the underlying lattice
but only on the Euclidean dimension d and the dimensionality
of the order parameter.

To evaluate the universality class of the traffic patterns at
the critical rates, we first measure the fractal dimension D f of
the giant clusters which also implies the emergence of self-
similarity in the geometric feature of the percolation clusters.
If the giant cluster is scale invariant, then it requires that the
mean mass M of the cluster within the window of length L
would increase as a power law with size, i.e.,

M(L) ∝ LD f . (3)

The results of our fractal analysis based on an examina-
tion of the scaling relation Eq. (3) are illustrated in Fig. 5

FIG. 6. Mean cluster size in LA. The mean cluster size χ (p) as
a function of the traffic rate p in the working days in LA. The ver-
tical dashed line shows the location of maxima at the critical traffic
rate pc.

where we have shown log - log plots of the average mass of
the giant cluster within a window of linear size L. The slope
of the linear fit to our data gives the best estimation for the
fractal dimension. We find D f = 1.57 ± 0.05 for the giant
cluster of traffic jam in the morning of the working days
[Fig. 5(a)], while we find higher values 1.76 ± 0.05 [Fig. 5(b)]
and 1.73 ± 0.05 [Fig. 5(c)] for the evening of the working
days and the weekends, respectively, in agreement with our
earlier graphical observations from Figs. 2 and 4.

In order to further elucidate the nature of the universality
classes observed at different times in Paris, we examine the
implementation of the random percolation model on the ge-
ometry of the road network in Paris. To this aim, we randomly
choose a site on the roads and occupy it with a vehicle. We
find that the model shows a critical behavior at a critical
rate pc = 0.69 ± 0.04 and the fractal dimension of the giant
cluster is estimated to be D f = 1.78 ± 0.03 [Fig. 5(d)]. Re-
markably, this random percolation model agrees well with our
observations of the real traffic situations in Paris during the
evenings of the working days and the weekends. This finding
is in accord with our previous justification of the random dis-
tribution of vehicle destinations during the evening of working
days and weekends.

We have also performed a similar analysis on the statistical
behavior of the traffic pattern in the city of Los Angeles (LA).
The urban structure of LA and the road network are com-
pletely different from the city of Paris, and this helps to better
understand the effect of commute geometry on the universal-
ity and the traffic threshold. Figure 6 shows the mean cluster
size as a function of traffic rate in the morning of LA. The
global maximum in χ happens at pc = 0.735 ± 0.05 which
is close to that of the random percolation model on Paris as
well as our observations on the evenings and the weekends

(a) (b)

(c) (d)

FIG. 7. The Fisher critical exponent τ at the percolation thresh-
old. (a) Working days in the morning in Paris, (b) working days in
the evening in Paris, (c) weekends in Paris, and (d) LA.
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TABLE I. Percolation threshold pc, fractal dimension Df , and the Fisher exponent τ for the considered cities and models.

τ

City/Model pc Df Exponent p value

Working day mornings in Paris 0.525 ± 0.05 1.57 ± 0.05 2.33 ± 0.04 0.25
Working day evenings in Paris 0.67 ± 0.02 1.76 ± 0.05 2.17 ± 0.04 0.70
Weekends in Paris 0.68 ± 0.02 1.73 ± 0.05 2.16 ± 0.05 0.21
Random percolation on Paris 0.69 ± 0.04 1.78 ± 0.03
Working day mornings in LA 0.735 ± 0.05 1.77 ± 0.05 2.16 ± 0.04 0.63
Random percolation on LA 0.70 ± 0.04 1.70 ± 0.04
2D site percolation on a square lattice 0.592 ± 0.003 91/48 187/91

in Paris. To examine its universal properties at the criticality,
we have measured an independent critical exponent, i.e., the
Fisher exponent τ shown in Fig. 7, using the following scaling
relation at the critical threshold,

n(s) ∝ s−τ . (4)

We use the algorithm described in Ref. [38] to evaluate
the Fisher exponents. To this aim, we first estimate the lower
bound of the traffic cluster size distribution where it begins
following a power-law behavior. Thereafter, we used max-
imum likelihood estimation (MLE) to find the best scaling
parameter that fits our observed data. To check the validity
of our measured scaling parameter, we used the goodness-of
fit-test which would generate a p value. We measure the p
value by using the Kolmogorov-Smirnov (KS) test to calculate
the distance between the empirical data and the hypothesized
power-law model. Afterward, we create a large number of
synthetic data with the given scaling parameter and lower
bound and then calculate the distance between the model and
each synthetic data set by using KS statistics. We can define
the p value once we calculate the fraction of times that the KS
result is larger than that of real data. It is reasonable to say
that a distribution follows a power-law behavior if the p value
is greater than ∼0.1 (for a detailed explanation of the method,
see Ref. [38]).

By employing the aforementioned method, we find the
Fisher exponent τ ∼ 2.33 for the mornings of the working
days in Paris and almost the same exponents around τ ∼ 2.16
for the evenings and the weekends of Paris and LA (Table I).
This shows the crucial role that is played by the geometry of
commutes in shaping the universal and characteristic proper-
ties of traffic patterns in megacities. We have also carried out
a random percolation analysis on the LA road network and
found results close to those obtained in Paris. All measured
thresholds and exponents are summarized in Table I. These

all support our conclusion that the commute geometry leaves
its footprints on the traffic patterns.

VI. CONCLUSION

In classical critical phenomena, the universal features are
independent of microscopic details and only dependent on
the dimensionality and the underlying symmetries. In a given
support dimension, changing the universality class requires
manipulating interactions in a relevant manner. In the perco-
lation model that we used in the analysis of the traffic patterns
of Paris, the universality class in the mornings of working
days is distinctly different from the weekends and evenings of
working days. The only important difference in these two sit-
uations is the change in the distribution of supply and demand
at the city level, which seems to have a much more significant
effect than what was thought, because even when we look at
the dynamics of the traffic pattern in the city of Los Angeles,
with a different city structure and geometry from Paris, the
universality class is like the weekends in Paris, which is also
indistinguishable from a case where vehicles are randomly
distributed in the city. These observations are very promising
because our results suggest that without manipulating the road
network and urban structure (urban geometry) which is very
costly if not impossible, the critical traffic rate of the city
can be significantly increased by changing the distribution of
supply and demand sources in the city. This means that the
universality class of the traffic model is manageable based
on the random percolation model, which seems to provide an
optimal condition for city traffic.
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