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Endowing networks with desired symmetries and modular behavior
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Symmetries in a network regulate its organization into functional clustered states. Given a generic ensemble of
nodes and a desirable cluster (or group of clusters), we exploit the direct connection between the elements of the
eigenvector centrality and the graph symmetries to generate a network equipped with the desired cluster(s), with
such a synthetical structure being furthermore perfectly reflected in the modular organization of the network’s
functioning. Our results solve a relevant problem of designing a desired set of clusters and are of generic
application in all cases where a desired parallel functioning needs to be blueprinted.
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I. INTRODUCTION

Synchronization of networked units is a behavior observed
far and wide in natural and man-made systems: from brain
dynamics and neuronal firing, to epidemics, or power grids,
or financial networks [1–10]. It may either correspond to the
setting of a state in which all units follow the same trajectory
[11–13], or to the emergence of structured states where the
ensemble splits into different subsets, each one evolving in
unison. This latter case is known as cluster synchronization
(CS) [14–30] and is the subject of many studies in both
single-layer [20,21] and multilayer networks [31,32]. Swarms
of animals, or synchrony (within subunits) in power grids or
brain dynamics, are indeed relevant examples of CS.

Before discussing the details of CS, we should first intro-
duce the problem of total or full synchronization in a network
of dynamical units. This problem amounts to understanding
the conditions required for the dynamical units to become
synchronous (xi(t ) = x j (t ), ∀ i, j = 1, ..., N) after some tran-
sient time has elapsed.

The case of identical dynamical units is specially relevant,
as many real coupled systems are described within this frame-
work [18–20]. In this situation, the analytical characterization
of the total synchronizability of a network of identical dynam-
ical units was carried out in [33], where it was shown that the
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dynamical equation

ẋ = f (x) + λ

N∑
i=1

Ai j g(x j − xi ), (1)

with x(t ) ∈ Rm being the dynamical state, f : Rm → Rm

a chaotic map and the coupling is given by λ, the cou-
pling strength, A the adjacency matrix of the network, and
g : Rm → Rm the coupling function, admits a stable syn-
chronized solution when the maximum Lyapunov exponents
associated to each perturbation away from the synchronization
manifold in the eigendirections of the graph’s Laplacian are
negative. This is the celebrated master stability function ap-
proach to synchronization, whose details we will not go into,
instead referring the interested reader to [3,4,8,33].

For coupling strengths weaker than that required for
total synchronization, the long-term behavior of the net-
work may consist of subsets of nodes that are separately
synchronized. These already stable synchronous subgroups
are usually called “clusters,” hence the term cluster syn-
chronization. The underlying symmetries of a network are
responsible for the way nodes split in functional clusters dur-
ing CS. From a graph theoretic perspective, these clusters are
the orbits of the graph and are the ingredients of the associated
symmetry groups. A symmetry (or automorphism) in a graph
G is a permutation σ of the nodes of G that preserves adja-
cency, i.e., σ (G) is isomorphic to G. If a symmetry σ exists
such that σ (i) = j for some couple of nodes i, j, then the two
nodes i and j are in the same synchronization’s cluster during
CS [20,21,34].

While the issue of identifying and computing symmetries
in a given network has recently found very efficient solutions
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FIG. 1. Symmetries and eigenvector centrality. Schematic repre-
sentation of an eight-node three-regular graph, where all nodes have
the same eigenvector centrality but there is no symmetry σ such that
σ (1) = 2.

[35], the converse problem is still open: can one design a
network of arbitrary number of nodes (N) and links (L) en-
dowed with an arbitrary set of orbital clusters? In other words,
given a desired cluster of nodes (or a group of clusters), can
one generate a graph with density d = 2L

N (N−1) endowed with
those symmetries which would produce, during CS, exactly
the prescribed functional cluster(s)? A first attempt to solve
the problem was offered in Ref. [36], where the construction
of a feasible quotient graph was proposed as a way to generate
networks with prescribed symmetries, a process that implies a
noticeable computational complexity and may even be unfea-
sible for large size networks.

By exploiting the direct connection between the elements
of the eigenvector centrality (EVC) and the clusters of a
network [37], we here introduce an effective method able
to generate networks with desired sets of nodes, links, and
clusters, where furthermore the graph structure is perfectly
reflected in the modular network’s functioning.

This article is structured as follows: In Sec. II we present
the theoretical ingredients necessary for the general method
we then present. This method is, however, computationally ex-
pensive; therefore in Sec. III we present an alternative version
which takes advantage of the distinct types of edges which
can be present in the network between nodes belonging to the
same and/or different clusters. In Sec. IV we give numerical
evidence of the claim that the prescribed nodes indeed form
synchronization clusters. We end the discussion with some
conclusions in Sec. V.

II. A GENERAL, SYMMETRY-BASED METHOD

We start by recalling that if a symmetry σ exists in G
permutating nodes i and j, then all local invariants (such
as the degree, the average distance, etc.) of i and j must
be the same. In addition, Ref. [37] demonstrated that c(i) =
c( j) [where c(i) and c( j) are the eigenvector centrality of
nodes i and j]. It should be remarked that the opposite [i.e.,
c(i) = c( j)] implying the existence of a symmetry σ such
that σ (i) = j) is not always guaranteed. For instance, the
example of Fig. 1 is a graph where all the nodes have degree
3, in which c(i) = c( j) = 1/8 for all pairs i, j, and where,
however, there is no symmetry σ such that σ (1) = 2, because
the average distances from node 1 and node 2 differ. At
the same time, counterexamples like the one in Fig. 1 con-
stitute pathological cases limited to regular graph structures,
because the construction of symmetries is strongly related
with the computation of the isomorphism between graphs
[38]. In particular, it has been computationally tested that

FIG. 2. Network construction. (a) Three clusters (green, blue,
and red) are desired. Five black nodes are the trivial (or single-node)
clusters. (b) Original motifs are formed by connecting nodes within
clusters to black nodes: small star graphs are formed where black
nodes are the hubs. (c) The original subnetworks are embedded (see
text for the procedure). Dotted (dashed) lines denote CC (BB) links
(see text for definition) as they bind clustered (unclustered) nodes.
Solid lines denote CB links, which have an end in a clustered node
and the other in a trivial cluster. (d) The first step of the specific
method consists in removing all CC links. (e) Then a portion of
CB links is judiciously removed to preserve an equal neighborhood
for each element of each given cluster. After the removal, different
clusters may contain nodes of different degree. (f) Finally, as many
BB links as needed are removed to reach the desired network density.

the EVC is indeed a proper indicator for spotting isomorphic
graphs in the case of networks constructed through random
processes, for which no realization was found to occur of a
graph with two nodes with the same EVC and with no permu-
tating symmetries [39]. Motivated by this evidence, we now
move to discuss the methodology for the design of a connected
graph G of size N with k prescribed nontrivial clusters.

For the sake of clarity, we illustrate our method with ref-
erence to a small set of N = 11 nodes, where the goal is to
construct a connected network having three nontrivial, desired
clusters of two nodes each [shown with filled green, blue,
and red circles in Fig. 2(a), where the black circles represent
instead the set of trivial clusters]. This is obtained by means
of three consecutive steps.

(1) The first step is the creation of subnetworks, or motifs.
Here, one considers all nodes of a desired cluster (say, for
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instance, the green circles) and connects them with a ran-
domly selected trivial cluster (one black circle). A star
subnetwork is then formed with the black circle as the hub
and all the nodes in the cluster as the leaves. Star subnetworks
are made in the same way for all other desired clusters [red
and blue circles in Fig. 2(a)]. The result is the intermediate
disconnected network depicted in Fig. 2(b). By construction,
the EVCs of the leaves of each such subnetwork will be
at a same value. Notice that, if necessary, one may equally
accomplish this first step by either forming rings or complete
graphs with the nodes participating in each individual cluster
(in both cases, indeed, the EVC elements corresponding to the
nodes of the desired clusters will be the same). The adjacency
matrices for the three star subnetworks [A1 (green-black), A2

(blue-black), and A3 (red-black)] are

A1 = A2 = A3 =
⎡
⎣0 1 1

1 0 0
1 0 0

⎤
⎦. (2)

At the same time, the permutation matrices for each of the star
subnetworks are given by

P1 = P2 = P3 =
⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦, (3)

which indeed satisfy PiAi = AiPi (i = 1, 2, 3).
(2) The second step consists in embedding the matri-

ces Pis and Ais, for constructing the permutation (P) and
adjacency (A) matrices of the entire network, as

P =

⎡
⎢⎢⎣
P1 0 0 0
0 P2 0 0
0 0 P3 0
0 0 0 I

⎤
⎥⎥⎦ and A =

⎡
⎢⎢⎣
A1 I I I
I A2 I I
I I A3 I
I I I B

⎤
⎥⎥⎦, (4)

where I’s are matrices of appropriate order with unit entries
and B is the adjacency matrix corresponding to the trivial
clusters. The connected network defined by A is depicted in
Fig. 2(c) and endowed with the desired clusters.

In summary (and extending the illustration to generic net-
work of size N with k desired clusters), the first two steps
consist in constructing k subnetworks with corresponding ad-
jacency matrices Ai (i = 1, . . . , k). For each subnetwork (Ai),
one then considers the underlying permutation matrix Pi such
that PiAi = AiPi (i = 1, . . . , k). Embedding such units, one
ends up with the adjacency matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

A1 I · · · · · · I
I A2 I · · · I
...

...
. . .

...
...

... · · · · · · Ak I
I I · · · I B

⎤
⎥⎥⎥⎥⎥⎦

N×N

(5)

and the permutation matrix

P =

⎡
⎢⎢⎢⎢⎢⎣

P1 0 · · · 0 0
0 P2 · · · 0
... · · · . . . · · · ...
... · · · · · · Pk 0
0 0 · · · 0 I

⎤
⎥⎥⎥⎥⎥⎦

N×N

. (6)

The resulting network is invariant under the action of P , but
the desired clusters may not be disjoint.

(3) The third step consists in obtaining a network with all
desired clusters properly disjoint and with the desired density
d ≡ 2L

N (N−1) . Because of what is discussed for the counterex-
ample of Fig. 1, this has to be achieved by a random process
of edge removal. Starting from A, the edge removal procedure
is as follows:

(a) Select a given percentage l of edges at random that
are not part of the subnetworks Ai;

(b) Check the connectivity of the network correspond-
ing to the adjacency matrix Al that results from removing
the selected edges from A;

(c) Check the invariance of the resulting network under
the action of the permutation P i.e., PAl = AlP .
If either step (b) or (c) fails, the edges selected in step

(a) are not removed, and a second set of l random links are
chosen to again test the steps (b) and (c). Otherwise, the edges
are removed, and steps (a,b,c) are repeated until the desired
network density is obtained. Note that, in this process, one
may actually get different networks of the same density with
the desired clusters, i.e., the solution of the problem is not
unique.

III. AN EFFICIENT ALGORITHM

It should be remarked that condition (3c) requires checking
the permutation invariance (PAl = AlP) at each step, an
operation which may become demanding as the size of the
network increases. For networks of arbitrary size, we therefore
introduce a more specific method which takes advantage of
the fact that condition (3c) is always guaranteed when all the
members of each given cluster have the same neighborhood of
other network’s nodes, so that any two elements of a cluster
have the same adjacency. Looking at Fig. 2(c), one immedi-
ately sees that edges can be divided into three different groups.
A first group connects members of different clusters. These
links [depicted as dotted lines in Fig. 2(c)] will be called,
from here on, color-color (or CC) links, since they bind nodes
of different colors. The second group is made by black-black
(or BB) links (dashed lines in the figure) that have both ends
in trivial clusters. Finally, the third group is made by CB (or
color-black) links [solid lines in Fig. 2(c)], which have an end
in an element of a cluster and the other end in a trivial cluster.
If Nk is the number of nodes of the kth cluster, m the number
of distinct (nontrivial) clusters, and Nm = ∑m

k=1 Nk the total
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number of clustered nodes, the initial number of CC, BB, and
CB links is

NCC = 1

2

m∑
k=1

∑
j �=k

NkNj,

NBB = (N − Nm)(N − Nm − 1)/2,

NCB =
m∑

k=1

Nk (N − Nm). (7)

With this in mind, we now turn to explain the three steps of
the alternative, more efficient method.

(1) The first step of the specific method is to remove all
the NCC links [see Fig. 2(d)], which still preserves the feature
of same adjacency for each node of each given cluster.

(2) The second step consists in removing judiciously a
portion of CB links. While the links forming the original
motifs [see Fig. 2(b)] cannot be removed, if a link is removed
connecting a given node of a cluster to a black node, then all
the other links connecting all the other nodes of the same clus-
ter to the same black node have to be removed simultaneously
to preserve an equal neighborhood. The result is illustrated
in Fig. 2(e), and one has the additional freedom of imposing
a desired degree to each of the clusters [in the example of
Fig. 2(e), green and red nodes end up with having degree 1,
while blue nodes have degree 2].

(3) Finally, the third step is removing randomly as many
BB links as needed to reach the desired network density [see
Fig. 2(f)]. Removing BB links does not affect the neighbor-
hoods of clustered nodes, and therefore permutation is always
warranted. The only care here is to check the connectedness
of the resulting network. Notice that there is a lower bound
for the desired density which is approximately given by d̄ =
2[Nk+(N−Nk−1)]

N (N−1) = 2
N (the case where all clustered nodes have

degree 1, and the N − Nk trivial clusters form an open ring
structure).

IV. NUMERICAL SIMULATIONS

Let us now move to show that the cluster organization
provided by our method(s) allows the constructed network to
behave collectively in the desired modular way. To this pur-
pose, we first use the exact procedure of the method to design
a network of size N = 1000, with two clusters of sizes 20 and
10, respectively, and a desired link density d = 0.01. Then we
investigate CS with such a setup. We associate each node i to
a three-dimensional state vector xi ≡ (xi, yi, zi ) which obeys
the Rössler oscillator equations [40]:

ẋi = −yi − zi,

ẏi = xi + ayi + λ

N∑
i=1

Ai j (y j − yi ),

żi = b + zi(xi − c), (8)

where dots denote temporal derivatives, the adjacency matrix
A encodes the information of the constructed network, and
λ is a real parameter quantifying the coupling strength. The
used parameters are a = 0.1, b = 0.1, and c = 18, for which
each Rössler oscillator develops a chaotic dynamics. Notice

FIG. 3. Structure-induced modular functioning. Cluster and
global synchronization errors (see text for definition and legend for
color code) vs λ for the constructed network of size N = 1000 having
two different nontrivial clusters of 20 (yellow nodes, degree 4) and
10 units (magenta nodes, degree 2). A pictorial sketch of the network
is shown in the inset, where gray circles are used to depict all trivial
clusters. Notice that nodes in the inset have different sizes only for a
better visibility, with no connection with their topological properties.

that the coupling term affects only the second variable of each
oscillator, a circumstance which determines a class-II syn-
chronization scenario (see the details in Chap. 5 of Ref. [4]),
where complete synchronization is warranted above a certain
threshold (λ̄).

In order to describe what happens for λ < λ̄, one can
monitor the behavior of the kth cluster synchronization er-
rors Sk using the time-averaged root-mean-square deviation
defined by

Sk =
〈⎛
⎝ 1

Nk

∑
i∈vk

(yi − ȳ)2

⎞
⎠

1/2〉
�T

, (9)

where vk is the set of nodes contained in cluster k, ȳ
is the ensemble average of y within the kth cluster, and
〈.〉�T denotes temporal average over a time window �T
[41]. The synchronization errors for the two clusters, as
well as the global synchronization error Sglob = 〈( 1

N

∑
i(yi −

ȳglob)2)1/2〉�T (with ȳglob being the ensemble average of the
variable y over the entire network), are reported in Fig. 3.
The inset in the figure shows a pictorial representation of
the constructed network, prepared using the software GEPHI,
with the two clusters drawn with different colors (magenta
and yellow). Looking at Fig. 3, it is seen that Sglob decays
to zero for a much stronger coupling strength than those for
which the synchronization errors for the two clusters vanish.
Our numerical results show that Sglob vanishes at λ = λ̄ ∼
0.41, while the two clusters reach synchronization at different
values of λ < λ̄, so that a large range of coupling strength
exists (0.09 < λ < λ̄) for which the network organizes in a
CS state where the two clusters operate in parallel at different
synchronized states.
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FIG. 4. Large size networks with differentiated clusters. Cluster
and global synchronization errors (see text for definition) vs λ for a
network of size N = 10 000 where four (very well differentiated in
size) clusters have been imprinted by our reduced (specific) method.
Namely, clusters 1 to 4 (see color code in the legend) consist of 1000
(degree 2), 300 (degree 3), 100 (degree 4), and 30 (degree 5) nodes,
respectively.

Finally, we show that our method is effective also when
networks have a very large size, as well as when clusters
are very well differentiated. For this purpose, we construct a
network with N = 10 000 nodes and density d = 9.8 × 10−4,
and we use our reduced (specific) method to blueprint four
clusters with sizes spanning more than an order of magnitude.
Namely, clusters 1 to 4 are designed to contain, respectively,
1000, 300, 100, and 30 nodes. The degree of a node in each
cluster is mentioned in the caption of Fig. 4. Once again, we
associate to each node a vector obeying the Rössler oscillator
equations [40] with the same parameters (a = 0.1, b = 0.1,
and c = 18) used in Fig. 3. The synchronization errors for the
four clusters, as well as Sglob, are reported in Fig. 4. Also in
this case, one easily sees that the imprinted cluster structure
is perfectly reflected by the modular organization of the net-
work’s functioning during CS: Sglob vanishes at λ = λ̄ ∼ 0.30,
whereas the four different clusters reach synchronization at
different values of the coupling strength in the range 0.03 <

λ < 0.09, and therefore a large range of λ exists (0.09 < λ <

λ̄) for which the collective network dynamics consists of a
CS state with the desired four clusters at works in different
synchronized states. Moreover, the results of Figs. 3 and 4
are beautifully fitting with the analytic predictions given by
the master stability approach: For class-II systems (as it is the
present case), Chap. 5 of Ref. [4] establishes that the threshold
for complete synchronization is nothing but ν∗

λ2
, where ν∗ is

the value at which the master stability function [33] crosses
zero (which, whatever it is, it is the same for the two cases
reported in Figs. 3 and 4), and λ2 is the second smallest
eigenvalue of the Laplacian matrix. Therefore, this implies a
rigorous prediction that the ratio between the two values of λ̄

at which the global errors vanish in Figs. 3 and 4 should be
equal to the reciprocal of the ratio of the two values of λ2,
which is exactly what happens in our simulations.

V. CONCLUSIONS

In conclusion, we here introduced a method of generic
application which allows for the generation of networks with
arbitrary number of nodes and links endowed with an arbitrary
(and desired) set of orbital clusters, in a way that the graph’s
parallel functioning occurs into exactly the preselected clus-
ter(s). This has been accomplished by exploiting the direct
connection between the elements of the eigenvector centrality
and the clusters of a network. We then have shown that such a
synthetically generated cluster structure is perfectly reflected
in the parallel (modular) organization of the network’s func-
tioning during cluster synchronization, even for very large
sized networks and for clusters well differentiated in size.

Asymmetry-induced cluster synchronization has recently
become the subject of extensive study [28,42–45], in which
“asymmetry” implies nonidentical oscillators (e.g., different
frequencies in phase oscillators or chaotic oscillators with
different parameters) or heterogeneities in the interactions.
One may inquire whether these networks can still exhibit such
symmetry-induced cluster synchronization in case a certain
number of specific links are removed from the original graph,
for example, subgraphs might exhibit cluster synchronization
[42,46]. Thus, our method might help to construct stable clus-
tered synchronization for a wide range of coupling strengths
in a network of nonidentical oscillators.

As our results are of generic application, and therefore
they are of value in a wealth of practical circumstances where
networks have to be synthesized and/or generated with the
scope of ensuring a predesired parallel functioning. For ex-
ample, in social dynamics, it has been studied that a network
of multiagent systems in which symmetric nodes show the
same consensus values at steady states [47]. It could be then
interesting to design a metapopulation network and study
how rumor states of symmetric nodes behave before cluster
synchronization, i.e., to look at the transient states of the
spreading of rumors of those nodes. In this case, with our
method we could design a network with coherent rumor or
identical consensus states of target nodes [48–50].

On the other hand, there have been several experiments
involving networks of optoelectronic devices and semicon-
ductor lasers, where cluster synchronization is observed and
theoretically described by the master stability function for-
malism [19,51–53]. Therefore, our method could be useful
to create, from scratch, a network in which one could
study the dynamical behavior of patterns (formed by the
synchronized clusters). Despite most of these experiments
being designed with the purpose of confirming theoretical
predictions, synchronization and cluster synchronization in
networks of optoelectronic devices and semiconductor lasers
have been studied due to their potential applications in com-
munications, reservoir computing, and sensing [54].
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