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A myriad of approaches have been proposed to characterize the mesoscale structure of networks most often as
a partition based on patterns variously called communities, blocks, or clusters. Clearly, distinct methods designed
to detect different types of patterns may provide a variety of answers’ to the networks mesoscale structure. Yet
even multiple runs of a given method can sometimes yield diverse and conflicting results, producing entire
landscapes of partitions which potentially include multiple (locally optimal) mesoscale explanations of the
network. Such ambiguity motivates a closer look at the ability of these methods to find multiple qualitatively
different “ground truth” partitions in a network. Here we propose the stochastic cross-block model (SCBM),
a generative model which allows for two distinct partitions to be built into the mesoscale structure of a single
benchmark network. We demonstrate a use case of the benchmark model by appraising the power of stochastic
block models (SBMs) to detect implicitly planted coexisting bicommunity and core-periphery structures of
different strengths. Given our model design and experimental setup, we find that the ability to detect the two
partitions individually varies by SBM variant and that coexistence of both partitions is recovered only in a very
limited number of cases. Our findings suggest that in most instances only one—in some way dominating—
structure can be detected, even in the presence of other partitions. They underline the need for considering
entire landscapes of partitions when different competing explanations exist and motivate future research to
advance partition coexistence detection methods. Our model also contributes to the field of benchmark networks
more generally by enabling further exploration of the ability of new and existing methods to detect ambiguity in
the mesoscale structure of networks.
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I. INTRODUCTION

Network structure is frequently characterized at the
mesoscale level by the configuration of what is broadly de-
noted as “communities”—groupings of nodes that display
some sort of similarity in terms of their connectivity in the
network. Networks may exhibit a wide variety of mesoscale
structures, such as densely connected or cohesive clus-
ters, assortative or disassortative communities, core-periphery
structures, equivalence classes, or combinations thereof [1,2].
In turn, there is often more than one scientifically plausible
way to divide the nodes of a real-world network, as demon-
strated, for instance, by the coexistence of both cohesive
clusters and core-periphery structures in multiple cases [3,4].

Clearly, methods designed to identify distinct types of
mesoscale structures yield different partitions for a given
network. Perhaps more interestingly, results produced by
different algorithms aimed at identifying one specific type
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of mesoscale structure may still vary considerably for the
same network. A commonly studied empirical example is
the Karate Club (KC) network, a friendship network of 34
members of a sports club which split into two new clubs after a
fall-out between its members [5]. While the existing literature
has repeatedly produced a partition of two cohesive groupings
similar in terms of node membership to the division caused
by the split of the club [6,7], variability in what is detected as
the optimal partition of this network has been demonstrated
in terms not only of community membership of nodes [6] but
also of the total number of communities recovered [8–10]. Ad-
ditionally, other types of mesoscale structures can be detected
as plausible explanations for the KC network [11], including
a core-periphery-type structure of leaders and followers.

Competing explanations of mesoscale structure in real net-
works, such as the KC example, motivate a further exploration
of ambiguity on this scale; perhaps the reason for conflicting
results is that multiple qualitatively different “ground truths”
and partitions were responsible for the generative process of
a network and its mesoscale configuration [12]. In fact, recent
work on stochastic block models (SBMs), which have become
increasingly popular for mesoscale network description, has
emphasized the importance of exploring the variability of the
entire partition landscapes that they return, instead of forcing a
global consensus from a distribution of partitions (i.e., choos-
ing one among many by maximizing some objective) [11].
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A further important phenomenon in the context of mesoscale
variability is that of detectability limits, where known struc-
tures are no longer detected due to lacking signal strength and
which have been shown to exist due to the presence of phase
transitions in networks generated by SBMs [13,14].

On the whole, mesoscale variability may thus stem both
from the intrinsic ambiguity in the generative processes of
the network and from the stochastic ambiguity of the gen-
erative blockmodel. In this paper we are generally interested
in appraising the accuracy of mesoscale structure detection
under ambiguity constraints. We choose (1) to start from the
KC example as one of the simplest configurations possessing
jointly a core-periphery and a bicommunity (two equally sized
communities) structure, and (2) to rely on SBMs as a theo-
retical framework accommodating many types of mesoscale
structures, beyond clusters and including the two above ones,
and that may further be used not only for generating but also
for detecting mesoscale structures. More specifically, we are
motivated to explore the ability of SBMs to detect certain
structures when we implicitly introduce some level of measur-
able ambiguity into the mesoscale. We propose a framework
for a generative benchmark model, the stochastic cross-block
model (SCBM), which can have such ambiguity built into its
mesoscale structure by allowing for two qualitatively distinct
partitions (i.e., two “ground truths”) to be planted into the
same network. Using this framework, the two partitions
are defined respectively through block matrices that specify
the connectivity within and between blocks which—similar
to the planted partition model [15]—facilitates the analysis
of SBMs (or any community detection algorithm) for varying
strengths of the planted mesoscale structures. We use our
framework to plant two qualitatively different partitions into
a synthetic network and try to recover them using two SBM
variants. In this way, we analyze the ability of SBMs to detect
two competing structures present in a network, appraising
both the extent to which each partition is recovered individ-
ually as well as the successful detection of the coexistence of
both partitions: the appearance of two implicitly planted struc-
tures within the posterior distribution of inferred partitions of
a given graph.

This paper is structured as follows. In Sec. II we provide
some background on conflicting explanations of mesoscale
structure in networks (Sec. II A), the interplay between am-
biguity and detectability of block structures (Sec. II B), as
well as a more general overview of the existing literature
on SBMs (Sec. II C) and generative benchmark models of
mesoscale structures (Sec. II D). We then introduce our model
framework in Sec. III, covering the derivation of the model in
the two-partition case and two variants of generative processes
of edge placement in the network. In Sec. IV we illustrate a
use case for our model in form of a set of simulations, the
results of which we discuss in Sec. V. We summarize our
main results in Sec. VI and briefly touch on possible future
work that could extend our simulations and the model itself.

II. BACKGROUND

A. Community detection and partition landscapes

Community detection often adopts a clustering perspec-
tive and focuses on cohesive communities, which denote

groups of nodes more densely connected to other nodes of the
same group than to nodes in other groups [16], as opposed
to other types of meso-level structures more generally [2].
Corresponding methods to identify community structure are
designed to perform best with specific types of data and net-
works [12], and many authors have chosen distinct routes to
optimize for the most plausible partition (see [17] for a review
of different methods). Existing algorithms therefore have at
their basis a multitude of measures, such as modularity [7],
spectral properties [18], generative models [19], betweenness
centrality [6], or information-theoretic methods [20], which
is only one of the causes for the diversity in results from
algorithms that use different approaches.

Similarly, the detection of core-periphery structure—the
division of a network into a well-connected, cohesive core
group and a sparsely connected peripheral group, first rig-
orously formulated by Borgatti and Everett [21]—has been
approached in a number of different ways [22], including
methods based on edge density [3,21,23], path length [23,24],
and generative network models [4,25]. Some works also
explore the coexistence of community and core-periphery
structures in a nested way, in particular in the form of
communities that exhibit core-periphery structures internally
[3,26–28].

The diversity in methods for similar node aggregation tasks
unsurprisingly results in a diversity in partitions returned by
such methods. While most community detection algorithms of
the 20th century (from cliques to k-cores through CONCOR
[29–31]) as well as the Girvan-Newman algorithm [32] pop-
ular in the 2000s were deterministic, this challenge has been
further exacerbated by the advent of approaches whose results
are nondeterministic by nature, such as Louvain [9] and SBM
[19,33,34]. In that case, even multiple results yielded by one
given community detection algorithm may not clearly indicate
a consensus partition, leading to a partition selection problem
on top of the above-mentioned issue around model selection.
In existing work, this has been addressed by finding some
kind of consensus in a distribution of partitions to identify an
optimal partition, for example, by averaging over results from
multiple runs of the same algorithm [35,36].

Such consensus-seeking methods run into problems, how-
ever, when multiple partitions that are close to the optimum
are qualitatively different from each other, revealing the need
for considering multiple local consensus partitions that may
provide different, similarly likely explanations to the network
structure at hand [11]. The issue of multiple locally opti-
mal partitions was also addressed by Peel et al. [12], who
demonstrated that many real-world networks have multiple
plausible (high-likelihood) partitions and that different sets
of node metadata may correlate with different aspects of the
structure of the network. These recent results suggest that
by accommodating for a diversity of ground truths in the
generative process, the stochastic nature of some community
detection methods is, in fact, not only an issue to deal with
but a feature of these methods. In this work, we propose a
model that accepts any combination of two partitions, includ-
ing structures that somewhat resemble nested core-periphery
pairs (as in Sec. IV), yet without being limited to these specific
structures. We also aim to extend the literature by proposing
a model that ensures the consistency with two distinct planted
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structures and thus allows for the exploration of networks in
which connectivity patterns induced by multiple block struc-
tures are satisfied (i.e., the coexistence of multiple structures)
and the extent to which both are detected and detectable.

B. Community detectability and ambiguity

The recent focus on the importance of analyzing the vari-
ability of partition distributions calls for an exploration of
what we will call mesoscale ambiguity. In an effort to iden-
tify prototypical network partitions representative of various
regions of an entire partition landscape Kirkley and New-
man [37] aimed at introducing (and detecting) what they
call “ambiguity” on the mesoscale of synthetic networks. By
specifying such ambiguity through certain edge probabilities
between blocks in an SBM (see Sec. II C for a review of
SBMs) they demonstrated the ability of their model to detect a
set of representative partitions which identify different aspects
of the introduced ambiguity.

This specific example of ambiguity calls for an inves-
tigation of the distinction between truly ambiguous block
structures on the one hand, and weak or noisy signals
which prevent algorithms from correctly detecting mesoscale
structures. The stochastically generated SBM ensemble may
exhibit some variability in their block structure, but if only one
“ground truth” partition is planted, are qualitatively different
recovered partitions the result of real ambiguity or merely of
detectability issues? And should the detection of partitions
which could not have been generated from the planted model
(i.e., that lie outside of the distribution of possible networks
with the specified parameters) be viewed as a failure of the
partitioning algorithm rather than successfully recovered am-
biguity?

To distinguish between the correct recovery of some type
of ambiguity on the mesoscale and the inability of a commu-
nity detection algorithm to identify the true partition due to
noise that is “blurring” the signal of the block structure, we
need to provide some understanding of the detectability phase
transitions that have been demonstrated to exist in community
detection. Overall, it has been shown that the detectability of
block structure in networks depends on the overall density of
the network, the difference between the connectivity of the
blocks, as well as the number of blocks (see [38,39] for exten-
sive reviews). When the structural signal in a network exists
but is too weak or too noisy, it becomes impossible for com-
munity detection algorithms to identify such structures. At a
certain phase transition, algorithms will mistake a network
for a random graph when the structural traces of underlying
communities are not sufficiently tangible in the actual net-
work. Prior work on the detectability of modules in network
has shown, both analytically as well as heuristically, the exis-
tence [40] and positions of such phase transitions, notably for
spectral community detection methods [14] and for methods
using Bayesian maximum-likelihood [41]. Much of this early
work on phase transitions focused on the symmetric case of
the traditional (Poisson degree-distributed) SBM. Since then,
others have worked on networks with heterogeneous node
degree distributions and have argued for the existence of phase
transitions in such cases [42] and demonstrated that hetero-
geneity in networks facilitates the detection of communities

in the case of modularity maximization [43]. While many
efforts have gone into the appraisal of phase transitions for
community detection for decisive (albeit sometimes noisy)
structures, and others have demonstrated that such detectabil-
ity thresholds do not exist in core-periphery structures [4],
little work has focused on the limits of SBMs cases where
some level of ambiguity is introduced specifically. Exploring
this further seems particularly important, since the application
of community detection methods is primarily aimed at real-
world networks, which arguably exhibit more “ambiguity”
and for which the possible existence of multiple locally op-
timal solutions has been demonstrated repeatedly (see above).
As mentioned previously, empirical networks have also been
shown to have different types of mesoscale structures all at
once, complicating the issue even further.

Overall, the question around a clear differentiation be-
tween the issues of detectability of certain block structures
and “true” ambiguity in the sense of multiple different
ground truths appears challenging and is—to the best of our
knowledge—an open research question, that carries with it the
question of how such ambiguity can be described. Owing to
the lack of a clear definition, we from now on characterise
ambiguity as the simultaneous existence of multiple planted
partitions in one single network. We denote this simultaneous
existence of implicit structures by coexistence of structures,
where the network’s connectivity aligns consistently and con-
currently with the connectivity of the said structures.

C. Stochastic block models

In this work, we exploit the features of SBMs twofold.
On the one hand, we use SBMs for generating synthetic
networks with planted mesoscale structure. On the other hand,
we explore the issue of ambiguity in mesoscale structure in
networks by fitting SBMs to synthetic graphs and thus using
SBMs as a way of detecting mesoscale structures. Bayesian
inference methods, such as SBMs, are especially suited for
the exploration of partition distributions due to their stochastic
nature.

SBMs originate in mathematical sociology, where they
built on the concept of node similarity expressed through
equivalent connectivity patterns of blocks of nodes, coining
the term block modeling for the grouping of such nodes
[44–46]. Early strict notions of this type of equivalence were
later relaxed in form of stochastic equivalence, which holds
for nodes that connect to other node sets with the same
probability [33]. The latter work also manifested the first
appearance of stochastic block models, generative models that
create networks (or entire distributions over networks) by first
dividing nodes into blocks and then placing edges between
node pairs with a probability depending solely on the block
membership of each node.

The SBM is therefore an extension of the simple random
graph model, where constant edge probabilities are specific to
block pairs rather than being the same for the entire network.
An SBM takes as parameters (a) a block membership vector,
with entries indicating the block membership of each node,
and (b) a square connectivity matrix of size equal to the
number of blocks, whose elements indicate the probability
of a connection between the respective blocks (or within a
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block for the elements on the diagonal). Since their first ap-
pearance [33,44–46], SBMs have been repurposed repeatedly
to function as a baseline model for addressing the community
detection issue as an inference problem [19,34,47]. It is in-
creasingly popular in theoretical and applied network science
research, partly due to its flexibility grounded in a relatively
general definition of what it means for nodes to be similar i.e.,
to belong to a block or a community. The idea is that one can
“reverse” the generative process of an SBM for the purpose of
block structure detection: statistical inference methods can be
used to fit SBMs to network data, to recover the parameters of
the model (essentially block memberships) that offer the most
likely explanation of the generative processes of a network.

Famously, edge placement between two nodes in the “tra-
ditional” SBM only depends on the nodes’ block assignment.
It therefore does not resemble the structure of many real
networks, which tend to have heterogeneous node degree
distributions. One way to model degree heterogeneity is by
adding “degree correction” into the SBM, through which edge
placements also depend on the respective degree of each node.
Using the degree-corrected version as the generative model
assumed in the process of detecting block structure consid-
erably improved the ability of SBMs to pick up community
structures in real networks [19]. More SBM extensions have
since been developed, including hierarchical [48], overlap-
ping [49,50], and multilayer [51] variants, many of which
were demonstrated to be an improvement in the goodness
of fit for certain types of networks, compared even to the
degree-corrected version. Others have exploited the flexibil-
ity of SBMs (in terms of the types of mesoscale structures
that can be detected) to demonstrate the diversity of core-
periphery structures in real networks [25]. In the existing
SBM literature, most work focuses on the recovery of a single
partition that is identified by optimizing some model selec-
tion criterion; however, some recent work has gone beyond
the single-partition approach and has emphasized the need
to consider the entire partition landscape returned by SBMs
[11,12,37]. In this work, we intend to contribute to this partic-
ular subfield of the SBM literature, by drawing attention to the
existence and detectability of more than one planted structure
in a single network.

One existing strand of work within the SBM literature
that is particularly relevant in the context of planting mul-
tiple ground truth structures is the mixed membership SBM
(MMSBM) [49]. This model allows nodes to belong to
multiple blocks to varying degrees, expressed by mixed mem-
bership vectors assigned to each node, the elements of which
denote the probabilities of the node belonging to the different
blocks. In an MMSBM, nodes may therefore embody connec-
tivity patterns from more than one block at a time, making
it relevant to our case of planting multiple partitions. There
is a certain conceptual similarity between the MMSBM and
our method, and the MMSBM can be shown to be equivalent
to our method in some cases; however, we will see later
that an MMSBM-based approach to the issue has significant
limitations that can be overcome with our method.

D. Generative benchmark models

As opposed to real-world networks whose exact generative
processes are not known, synthetic networks are a natural

choice to plant a specific structure and serve as a benchmark,
in particular for appraising the success of a certain method in
recovering various mesoscale structures, including communi-
ties. Such benchmark frameworks allow for certain mesoscale
structures to be “built into” a synthetic network, on which
the performance of algorithms can be tested by measuring the
extent to which the predefined structure is successfully recov-
ered. In general, one or several parameters may be adjusted
to explore the potential limits of an algorithm and to imitate
the features of certain types of real networks. One of the
earliest such models is the Girvan-Newman (GN) benchmark
[32], a network of 128 nodes divided into four equally sized
groups and relying on one parameter controlling intergroup
connectivity strength through the external (out-community)
degree of nodes.

To overcome some of its shortcomings, such as its general
inflexibility, small size, and unrealistic features, Lancichinetti
and Fortunato [52] proposed a benchmark accounting for het-
erogeneous degree and community size distributions. Other
existing benchmarks allow for the specification of the within-
and between-group connectivity through the use of SBMs,
such as the planted partition model [15] which has been ex-
tended to other special cases including multilayer networks
[53]. In general, the aim of generative benchmark models is
to resemble features of empirical networks, and while many
of the existing benchmarks account for one or several such
features, the ambiguity in mesoscale structures has as yet been
neglected. Our contribution is to focus on this particular as-
pect and to complement single ground truth benchmarks with
a framework that generates networks with multiple built-in
ground truths.

III. MODEL FRAMEWORK

We propose a generative network model whose param-
eters aim to simultaneously respect two partitions: edges
are placed between node pairs in a way such that the re-
sulting network exhibits a block structure that takes into
account each of these two partitions at the same time. We
discuss later how this framework can be extended to more
complex structures with more than two partitions, but we
focus on the simple two-partition case in the majority of this
work.

The difficulty in generating a network that exhibits two
coexisting structures primarily lies in connecting node pairs in
a way that is consistent with the connectivity patterns of both
planted structures. The probability of placing an edge between
each node pair must depend on the block memberships of
each node in each of the planted structures. We thus aim
to design a generative process that specifies the appropriate
probabilities for the desired connectivity patterns. An obvious
choice would be a constrained MMSBM, in which nodes are
members of two blocks with equal probability. It turns out
that finding the appropriate normalization constants to make
the additive edge probabilities of the MMSBM consistent with
the two planted structures requires extra calculations that we
do not need if we implement a simpler single-membership
SBM approach that considers the overlaps of the blocks as
simple blocks. In the following, we first lay out the outline
of the method, explain the limitations of the MMSBM-based
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FIG. 1. Example graph with nodes colored according to their
block memberships following different ways of formulating the
partitions: the planted bicommunity partition (a), the planted core-
periphery partition (b), a visualization of the MMSBM formulation
of the two-partition-problem, where nodes belong to two blocks with
equal probability (c), and the SCBM approach (d).

approach, and finally introduce the stochastic cross-block
model (SCBM) as an alternative approach.

As stated above, we are generally guided by the KC exam-
ple where both a bicommunity (a partition of the network into
two assortative communities) and a core-periphery structure
may be found and where it is likely that the two structures
jointly explain the network formation. Figures 1(a) and 1(b)
show the same example graph with nodes colored according
to a bicommunity and core-periphery partition, respectively.

A. Formal outline

We generate a network with N nodes and E edges, into
which we plant a set of P partitions with Kp blocks in partition
p. Edges between nodes are described by the adjacency matrix
Y of size N × N . We focus on the undirected, unweighted
case, whereby Yi j = Yji = 1 if i and j are connected by an
edge and 0 otherwise. The block structure in each partition p
is defined as an SBM with two parameters: (1) the set of block
membership vectors bp

i of length Kp assigned to each node i
and (2) the block matrix θp of size Kp × Kp, where diagonal
(resp. off-diagonal) elements indicate the probability of an
edge within (resp. between) blocks. Note that each bp

i is a
one-hot vector, which is a binary vector with only one element
set to 1 (indicating the block membership of node i in partition
p) and all others set to 0. We denote by Bp the Kp × Kp matrix
of expected edge counts, which, for graphs with self-loops,
has elements θprs npr nps , where npr is the number of nodes in
block r in partition p. Note that block matrices are symmetric
since the graphs we are generating are undirected and that for

r = s the elements of Bp denote twice the number of expected
edge counts, for convenience of calculation and notation.

For illustrative purposes, we focus on the simple case of
P = 2 partitions and K1 = K2 = 2 blocks in each partition,
and we define the block matrices for the two implicitly planted
partitions by θ1 = {θ1rs} and θ2 = {θ2rs}. In Sec. III C we out-
line how our framework can be extended to more complex
partition combinations.

B. MMSBM formulation

Given the parameters needed to plant two different parti-
tions, we need to define the generative process which yields
a network that satisfies the connectivity patterns of both. One
possible approach is to formulate the two-partition scenario as
a special case of an MMSBM with appropriate normalization.
In the original MMSBM formulation [49], each node belongs
to all latent groups with certain probability expressed through
a mixed membership vector specific to each node. The exis-
tence of an edge between two nodes depends on the block
memberships of the two nodes, which is repeatedly drawn
from the mixed membership vector for each node pairing;
nodes thus inherit connectivity patterns from multiple blocks,
and the expected density at the “overlap” of multiple blocks
is a weighted average of their individual densities [50]. In
order to frame our two-ground-truth partition problem as an
MMSBM, we consider the blocks in the two planted parti-
tions as four latent blocks, but we constrain the generative
process in a way that forces certain overlaps to be empty. In
particular, we need to (a) constrain the mixed membership
vectors so that the probability of nodes being members of
certain combinations of blocks is zero, and (b) specify the
within- and between-block edge probabilities in a way such
that the connectivity of the generated network is consistent
with that of the two planted partitions given by θ1 and θ2. The
schematic in Fig. 1(c) visualizes these constraints by showing
nodes colored according to their block memberships in two
planted partitions.

It turns out that the required normalization of the additive
block probabilities induced by the MMSBM is not straight-
forward. In particular, one needs to determine a normalization
constant for each combination of block pairs, for which one
needs to obtain the solution to an underdetermined system of
equations. As we detail in Appendix A the minimum norm
solution to this system (that can be obtained with a least
squares solver) is negative for certain combinations of planted
structures. This means different methods for approximate so-
lutions are needed for different planted structures, which is
likely to have unexpected side effects to an exploration of
planted structures.

In order to be able to have enough flexibility for an explo-
ration of a sufficiently large range of structure combinations,
we thus propose an alternative to the MMSBM-based ap-
proach: it turns out that we can circumvent the extra step
involved in finding the normalization constants by formu-
lating the two-partition problem as a single membership
SBM and by replacing the additive probabilities imposed
by the MMSBM by multiplicative ones. Instead of gener-
ating the network through the mixed membership of nodes
in two blocks, our proposed model is a simplification of the
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problem which considers the overlaps between the blocks of
the individual planted partitions as the blocks of an SBM.

C. Stochastic cross-block model

In the stochastic cross-block model (SCBM), a node is
assigned a combination of the blocks it inhibits in multi-
ple partitions, called a cross-block. We denote the set of
cross-blocks by � = {(r, r′)}, where r and r′ are the blocks
in partitions 1 and 2, respectively. We can then rephrase
our problem as follows: To plant two partitions in one sin-
gle network, we generate a network in which we explicitly
plant one single cross-partition with KSCBM = K1K2 cross-
blocks in a way that is consistent with the expected densities
from the block matrices θ1 and θ2. Figure 1(d) illustrates
the four cross-blocks in the cross-partition resulting from
the partitions visualized in Figs. 1(a) and 1(b). Note that
the cross-partition—the explicit division of the network into
KSCBM cross-blocks—is different from the partition coexis-
tence, which refers to the property of the network to be
consistent with the connectivity of the two implicitly planted
structures with K1 and K2 blocks, respectively.

Our generative network then simply becomes a standard
SBM where the probability of an edge between two nodes
i and j is determined entirely by the probability of a node
between the cross-block u of i and the cross-block v of node
j. To generate the final network, we straightforwardly create
the one-hot cross-block membership vectors bSCBM

i for each
node i from vectors bp

i . For the placement of edges, we
need to determine the connectivity between and within the
cross-blocks by defining θSCBM and BSCBM. As above, element
θuv denotes the probability of an edge between cross-blocks
u and v and Buv denotes the average expected number of
such edges, where we have dropped the subscript. The block
matrix is created in a way in which the edge probabilities
are consistent with the elements of the block matrices θp for
each planted partition p. The deciding difference between this
cross-partition approach and an MMSBM formulation of our
problem is that we replace the additive probabilities that result
from the MMSBM by normalized multiplicative probabilities.
In other words, for each cross-block, the probability of an
edge is calculated by multiplying the edge probabilities in
the original blocks that cause the overlap and by normalizing
appropriately.

In Fig. 2 we visualize two example block matrices θ1 and
θ2 and the resulting cross-block matrix θSCBM; note that we
include two differently ordered visualizations of the same
cross-block matrix in Figs. 2(c) and 2(d) to emphasize that the
cross-partition is consistent with both θ1 and θ2. The particular
choice of θ1 and θ2 visualized here is also responsible for
the partitions visualized in Figs. 1(a) and 1(b), and the cross-
block matrices thus correspond with the graph visualized in
Fig. 1(d).

Equal block sizes. In the first instance, we focus on the case
of equal block sizes, both in the planted partitions as well as in
the cross-partition, so that nr = n for all blocks r and 2n = N .
We allow for self-loops, so we have Bprs = nrnsθprs = n2θprs

for p ∈ {1, 2}. We denote the vector of cross-block sizes
by ν = {νu} and constrain cross-blocks to be equally sized:
νu = ν for u ∈ � and thus 2ν = n. We construct the edge

FIG. 2. Block matrix visualizations for two planted partitions
(a, b) and resulting cross-partition (c, d). Note that (c) and (d) are
equivalent but ordered differently, as visualized by the colored bars
(blocks in partitions 1 and 2) and patterned bars (cross-blocks).
Matrix elements are colored according to the expected edge densities
in the block matrices, with black elements representing the maximum
edge probability and white elements representing an edge probability
of 0; note that the colors are consistent so that they are comparable
across the three graphs.

probabilities within and between cross-blocks through the
product of the probabilities of the blocks in the two partitions,
with an appropriate normalization. In particular, we define
the block matrix of the SCBM as θSCBM = {θuv} = x{θ1rsθ2r′s′ }
with cross-blocks u = (r, r′) ∈ � and v = (s, s′) ∈ �, where
the constant x needs to be chosen in a way such that the
expected number of edges within and between certain cross-
block pairs in BSCBM adds up to the respective elements of B1

and B2, so that the connectivity in the generated network is
consistent with that of partitions 1 and 2. In the case of equal
block sizes, this is satisfied for x = 1/ρ where ρ = 2E/N2 is
the overall expected edge density of a network with self-loops
(see Appendix B for the derivation). The elements of the ex-
pected edge count matrix are denoted by the matrix elements
Buv = ν2θuv , where we have dropped the SCBM subscripts in
B and θ .

Varying block sizes. In any other more general case in
terms of varying block sizes, a constant x satisfying both
planted partitions exists only if we introduce other constraints,
such as equal edge probabilities across all blocks of the two
planted partitions, i.e., planting a random graph (see Ap-
pendix C). To determine θSCBM for nontrivial partitions with
varying block sizes, we need to find a set of normaliza-
tion constants {xuv}, one for each cross-block pairs, so that
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θSCBM = {θuv} = {xuvθ1rsθ2r′s′ }. To find {xuv} in a way in which
θSCBM generates a network consistent with θ1 and θ2 we
must, again, solve an underdetermined system of equations for
which we can compute a minimum norm solution, which is
unique and always exists if any solution to the system exists
(see Appendix D). In this case, the minimum norm solution
returns a set of entirely positive {xuv} across our entire param-
eter space in Sec. IV; while we explore the equal-block case
for our simulations, we have shown here that a more general
setup is also possible using the SCBM approach.

Multiple blocks and partitions. In our simulations in
Sec. IV, we focus on the simple two-partition case described
above to demonstrate detectability issues of two “ground
truth” partitions. However, it may in some cases be interesting
to explore more complex structures with more coexisting par-
titions and/or more blocks. While a thorough exploration of
such cases is beyond the scope of this work, we briefly outline
an extension of the described simple case. In fact, keeping
the number of partitions at P = 2 but planting more than two
blocks in one or both partitions can be done straightforwardly
with the same normalization constant in the case of equal
block sizes and with a larger system of equations having to
be solved in the case of varying block sizes. Since planting
more than two partitions can also be reframed as recursively
planting sets of two partitions until a final cross-partition
is reached, this is also possible. In the case of equal block
sizes, the SCBM block matrix can then be generalized as
θSCBM = 1/ρ p−1{∏p θprs}. In the case of varying block sizes,
one needs to consider the possible limitation of scalability that
arises for large numbers of partitions and/or blocks, since
the number of cross-blocks is K = ∏

p Kp and we need to
find K (K + 1)/2 normalization constants. The least square
method for finding the minimum norm solution involves com-
puting the pseudo-inverse of the coefficient matrix, which
can be computationally expensive for large n × m matrices
[with a computational complexity of approximately O(n2m)].
Limitations of computational time and memory thus need
to be considered for very complex combinations of planted
partitions.

D. Generative SBM

We generate the final network from the connectivity ma-
trices according to the “traditional” SBM [33], which uses
matrix θSCBM alongside cross-block membership vectors b to
determine whether or not an edge exists between two nodes.
More specifically, we will place an edge between each pair
of nodes (i, j) independently at random, with probability θuv ,
where u, v ∈ � are the cross-blocks of i and j, respectively.
We thus sample the value of the interaction between i and j
with Yi j ∼ Bernoulli(bi

T θSCBMbj). In this version of the SBM,
the expected edge counts in BSCBM are satisfied on average.

We also consider the microcanonical SBM [34], in which
the (rounded) elements of the given matrix BSCBM are satis-
fied exactly (rather than on average) and which is based on
the configuration model [54]. Specifically, we consider the
degree-corrected extension of this microcanonical SBM, in
which the probability of an edge being placed between two
nodes does not depend solely on the elements of a connectivity
matrix but also on a given degree sequence or distribution.

This SBM variant has been demonstrated to have charac-
teristics that more closely resemble empirical networks, by
producing synthetic networks with the type of within-block
degree variability that is more likely to occur in real networks
[19]. Given a degree sequence {ki} in which ki denotes the
degree of node i, this works by assigning ki half-edges to
node i and then choosing two half-edges in the network at ran-
dom (allowing for self-edges) and connecting them under the
condition that the expected given within- and between-block
edge counts are satisfied. However, the elements of BSCBM

can be real numbers and must therefore be rounded in the
network generation process. This introduces small differences
between the (implicitly planted) expected edge count matrices
Bp and the generated networks in terms of the total number of
edges as well as the within- and between- cross-block edge
counts. It also means that a given degree sequence can be
satisfied exactly only if BSCBM ∈ ZN×N ; in our simulations we
sample node degrees from a power-law distribution rather than
satisfying the exact degree sequence. Note that in the graphs
we generate in this way in our simulations below, any pair of
nodes is connected by a maximum of one unweighted edge;
removing this constraint and producing multigraphs instead is
straightforward.

The version of our model which generates networks ac-
cording to the traditional SBM will from now on be called
the canonical model to distinguish it from the latter version,
which we will call the microcanonical model. This is to avoid
confusion in the notation between the SBM variants we use to
generate our networks from those we use to infer partitions.

IV. SIMULATIONS

We now explore the extent to which two built-in ground
truths are recovered by SBMs, by generating a set of net-
works in which we implicitly plant two partitions. Clearly,
there are many interesting two-partition structures one may
explore; as indicated before, we are interested in the type of
structure present in our motivating example, the KC network.
For this network, samples of the posterior distribution of in-
ferred partitions yield a number of plausible explanations of
the mesoscale structure [11]; one local consensus partition
is the famous two-faction division of the network into two
assortative communities, another is a leader-follower partition
that resembles a core-periphery structure. We are interested in
the recovery limits of these two types of structures in networks
and we therefore plant similar structures into an ensemble of
synthetic networks according to our generative framework.
In our simulations, we build both a bicommunity as well as
core-periphery structure into a set of graphs, and we fit two
different SBM variants to our networks to infer the posterior
distribution of partitions for each of them. We finally calculate
the similarity between the recovered partitions and the planted
partitions and present the results for the partitions planted by
each model variant and recovered by each SBM variant.

A. Parameters

We focus on the case of equal block sizes here, for which
the multiplicative probabilities in θSCBM can be normalized
simply by the constant x = 1/ρ and we do not have to rely
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FIG. 3. Schematic block matrix θSCBM and, θ1 when fixing pa-
rameter μ and increasing λ in (a) and (b), respectively, or θ2 when,
similarly, fixing λ and varying μ in (c) and (d).

on the minimum norm solution (see Sec. III C). We plant
networks with N = 400, and we run three sets of simulations
with varying average degree c = 5, 10, 20. The total expected
edge density is therefore different between the three sets of
simulations but held constant within each set. This is to ensure
that any differences we are seeing in the detectability of the
two planted partitions are due to a different distribution of the
edges within the network (which we will induce by varying
the block connectivities), rather than differences in total edge
density. Nodes are chosen uniformly at random and assigned
to each block to create block membership vectors b1 and b2.
To plant the two partitions, we define the symmetric block
matrices θ1 and θ2 in Eq. (1a) and Eq. (1b) where β = 2E/n2

with E being the total number of edges in the network. Par-
tition 1 (θ1) configures the bicommunity structure whereby a
parameter μ controls the expected intra- vs interblock con-
nectivity strength for two planted equal-sized communities.
Partition 2 (θ2) configures the core-periphery (CP) partition,
in which the expected edge density within the core and the
expected edge density among peripheral nodes is controlled
by parameter λ. Note that the edge probability between blocks
in partition 2 is fixed in this way so that for λ ∈ [0, 0.5), we al-
ways have θ211 > θ212 > θ222 , in line with common definitions
of core-periphery structure, and to have equal probabilities
within and between blocks for both μ = 0.5 and λ = 0.5:

θ1 = β

(
1 − μ μ

μ 1 − μ

)
, (1a)

θ2 = β

(
1 − λ 1

2
1
2 λ

)
. (1b)

We use our model to generate multiple sets of networks,
sweeping parameters μ and λ from 0.01 to 0.5 at increments
of 0.01 in each case. Note that we exclude μ = 0 as it would
yield a disconnected graph of two components and exclude
λ = 0 for symmetry in the two dimensions.

Low values of μ generate assortative community structure
(in the sense that most edges are placed within blocks and few
between blocks), while μ close to 0.5 produce a network close
to a random graph. Values of λ close to zero generate “clear”
core-periphery structure, with most edges being placed within
the core and few among peripheral nodes, while λ = 0.5
produces a random graph. In Fig. 3 we show the behavior

of θSCBM, for fixed μ and varying λ and vice versa. The
block matrices in Figs. 3(b) and 3(d) illustrate that the cross-
partitions for low values of both parameters resemble a nested
structure of two communities with internal core-periphery
structures, similar to existing work on core-periphery pairs
in networks [3,26–28]. For increasing λ while fixing μ, the
block densities of the bicommunity partition remain constant
and the core-periphery structure becomes weaker until, at
λ = 0.5, we are left with a bicommunity partition as θ2 now
defines a random graph. Similarly, for fixing λ and increasing
μ to μ = 0.5, we finally reach a core-periphery structure [by
reordering the rows and columns of θSCBM in Fig. 3(d)].

Note that what we are explicitly generating with the SCBM
is a simple SBM with the cross-partition induced by the cross-
block matrix θSCBM—the connectivity patterns of θ1 and θ2 are
explicitly satisfied. When we infer the most likely partitions
from the generated matrices, we expect that both the explicitly
planted cross-partition as well as the two implicitly planted
partitions 1 and 2 are recovered to some extent, potentially
varying across the (λ,μ) space.

B. Generated graphs

To appraise differences in degree distributions, we use the
canonical model in one set of simulations and the micro-
canonical model in another. We thus generate two sets of
networks for each expected degree c. In the canonical model,
node degrees follow a Poisson degree distribution and edge
counts within and between blocks are satisfied on average.
In the microcanonical case, as described in Sec. III D, edge
counts do not fluctuate across different runs of the model, and
we impose further constraints on the node degrees, which we
sample from a power-law distribution with exponent γ = 3.
We use a soft constraint, in the sense that the final network
does not have to match the given degree sequence exactly,
but only on average. See Appendix F for a summary of the
small deviations of the edge counts in the generated graphs
from the planted edge count matrices due to rounding errors.
In both cases, we generate eight networks for each (λ,μ)-pair,
to account for possible fluctuations in the generative process.

Before attempting to recover planted partitions in the two
sets of graphs, we explore structural characteristics intro-
duced into the networks for different (λ,μ)-pairs and through
the two different generative processes of the canonical and
microcanonical model. Figure 4 demonstrates that, unsurpris-
ingly, degree variance is highest across the entire (λ,μ) space
for graphs generated by the microcanonical model, since
we sample a heterogeneous power-law degree distribution.
It is considerably lower for graphs generated by the canon-
ical version. Notwithstanding, using the canonical model,
higher degree heterogeneity is introduced into networks for
lower values of λ, for which we are imposing a strong core-
periphery structure (see Fig. 11 in Appendix F for a rescaled
version of the top row of Fig. 4).

While graphs produced by the microcanonical model ex-
hibit the highest degree heterogeneity overall, Fig. 5 illustrates
that their core and periphery blocks are more similar in terms
of node degree distributions than in the canonical case, mea-
sured by the Jensen-Shannon distance [55] between the degree
distributions of the core nodes and those of the peripheral
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FIG. 4. Mean normalized degree variance for graphs with vary-
ing expected degrees c.

nodes. In the canonical case, node degrees are Poisson dis-
tributed for the network as a whole, as well as for nodes within
each block. However, to accommodate for the core-periphery
structure, the mean of the distribution is lower in the periphery
than in the core, which in the Poisson case leads to a relatively
small overlap between the two distributions [4]. In the mi-
crocanonical case, we introduce degree heterogeneity through
the degree distribution so that planting CP structures does not
produce the same differences in the block degree distributions.

This means that were we to simply assign nodes with above
average degree to the core and those with below average
degree to the periphery in graphs generated by the canonical
model we would retrieve more correctly assigned nodes than

FIG. 5. Mean Jensen-Shannon distance between core and pe-
riphery node degree distributions for graphs with varying expected
degrees c.

in networks produced by the microcanonical model [4], where
by “correctly” we refer to the CP block planted by B2 as
defined in (1b). The heterogeneity in degree distributions in
the microcanonical case may generate other types of core-
periphery patterns than the planted ones. (See Appendix F for
a comparison of the number of correctly classified nodes in
this way for the two models and of the degree distributions of
the core and the periphery nodes for two example graphs.)

It is thus worth elaborating on the potential consequences
of specifying the degree distribution as an extra parameter in
the generative process in particular, additionally to the planted
connectivity matrix and block assignments of nodes. While
we expect the graphs produced by the canonical model to ex-
hibit structure closely related to what we explicitly plant (i.e.,
the block connectivity matrices), we may implicitly be intro-
ducing additional structure through the constraints imposed
on node degrees in the microcanonical case. Heterogeneity
in degree distributions, for example, may lead to groups of
nodes that display similarities in their connectivity with the
rest of the network in terms of their number of connections;
it is possible that the dividing lines between these groups
do not correspond with those imposed by our planted block
structure, which may lead to structures other than those ex-
plicitly planted being picked up. These differences in degree
heterogeneity introduced through the generative process are
thus likely to have an impact on the extent to which SBM
variants recover the (coexistence of the) planted partitions in
different regions of the (λ,μ) plane, as is confirmed in Sec. V.

C. Similarity measure

To quantify the similarity between planted and recov-
ered partitions, we calculate the maximum partition overlap
ω(p, q), namely, the proportion of nodes in one partition p
assigned to the same, assumed correct, block of the other
partition q [11]. This is calculated by finding the bijection
p′ = ζ (q) of the group labels of q, so that the number of nodes
that have the same block label in p′ and p is maximized, so that
we have

ω(p, q) = 1

N
max

ζ

∑
i

δpi,ζ (qi ). (2)

Specifically, this is done by solving the maximum weighted
bipartite matching problem for two partitions using a function
from the graph-tool python library [56], which is based on
the Kuhn-Munkres [57,58] algorithm. Note that here we use
the normalized partition overlap, which is between 0 and 1.
Therefore, ω = 1 when all nodes of two partitions coincide.
Note that if both of the compared partitions have two blocks,
ω = 0.5 is the lower bound and implies that half of the nodes
are classified correctly and therefore the two partitions are not
correlated. When one partition has more than two blocks, we
can have ω < 0.5.

The partition overlap measure is a suitable choice of sim-
ilarity measure since it is easier to interpret than information
theoretic measures, such as those based on mutual informa-
tion, and since it does not depend on the number and size
of blocks in the two partitions being compared, which is an
issue for some pair-counting methods such as the rand index
[59]. We demonstrate the robustness of our results by calcu-
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lating the partition similarity for one set of simulations using
reduced mutual information [60] and variation of information,
which has also been shown to behave well for unbalanced
partitions [61], and we show the results in Appendix E.
Both similarity measures yield comparable results to those
calculated using the partition overlap measure. In particular,
detectability thresholds appear to be located identically (or at
least extremely similarly) in the (λ,μ) space.

V. RESULTS

To infer partitions of the generated graphs, we fit two SBM
variants (traditional and degree-corrected) using the graph-
tool Python library [56]. We retrieve a distribution of 50
partitions for each of the eight graph and therefore a total of
400 partitions for each combination of λ and μ. To ensure
that the chosen number of samples is sufficient to explore
the posterior we ran the same simulations1 with 4000 parti-
tions for each (λ,μ)-pair (sampling 1000 partitions for each
of four graphs) and found no qualitative difference. In its
function as an inference method, we from now refer to the
traditional SBM as NDC (non-degree-corrected SBM) and to
the degree-corrected variant as DC, to avoid confusion with
the models (canonical and microcanonical) used to generate
our networks. We finally calculate the partition overlap ω

between inferred partitions and planted partitions for the two
planted structures as well as between the inferred partitions
and the planted cross-partition.

A. Model fit

We start by evaluating which of the two SBM variants used
for the detection of mesoscale structures provides a better
fit to our generated networks. We calculate the (log) model
evidence, summed over all partitions for each run, calculated
by subtracting the entropy of the posterior distribution from
the negative average description length (over all partitions)
[34]. Figure 6(a) demonstrates that for the canonical version
NDC is the preferred model across the entire (λ,μ) space; this
is unsurprising as edge placement in the generative process is
independent of node degree. When we use the microcanonical
version (in which we do take into account the node degrees
in the generative process), we may have expected DC to be a
better description of the generated networks across the entire
(λ,μ) plane. However, Fig. 6(b) demonstrates that this is
not the case: we observe a small region of λ and μ values
for which DC has the larger model evidence; for increasing
expected degree, this region becomes more pronounced and
exists across the entire λ range, while restricted to more and
more narrow values of μ. Everywhere else, NDC still provides
a better model fit. This suggests that the higher complexity of
DC is justified only for networks with a high level of hetero-
geneity in the degree distribution and bicommunity structure
of a certain strength which depends on c. It seems that—
in terms of the number of model parameters—DC provides

1For graphs with N = 400, c = 10 generated by the canonical
model and partitions inferred using the non-degree-corrected SBM.

FIG. 6. Difference between the log evidence of the DC and NDC
model class for graphs with varying expected degrees c. Negative
values (red) indicate a better fit of the NDC model; positive values
(blue) indicate a better fit of the DC model.

an overly complex description everywhere else in the (λ,μ)
plane, although degree heterogeneity is still high.2

B. Recovery of planted structures

In Fig. 7 we show the mean partition overlap 〈ω〉 for all
(explicitly and implicitly) planted partitions in the posterior
distribution of inferred partitions for each (λ,μ) pair, for
networks generated by two models. The leftmost columns
in all four quadrants show 〈ω〉 between the inferred parti-
tions and the explicitly planted cross-partition (θSCBM); the
middle and right columns show the same for the implicitly
planted bicommunity (θ1) and core-periphery (θ2) partitions,
respectively. Note that here we focus on the detection of the
individual partitions, and we refer to Sec. V D for an outline
of the detection of partition coexistence: the extent to which
both implicitly planted structures appear in the posterior dis-
tribution of inferred partitions of a given generated graphs.

As expected, there appear to be some clear thresholds sep-
arating areas in the (λ,μ)-space in which the cross-partition
is recovered from areas in which either of the two implicitly
planted structures are detected. The locations of these thresh-
olds vary by expected degree, by generating model and by
SBM variant used for the partition inference. The question
around the detectability of the two implicitly planted struc-
tures thus appears to be related to the detectability of the

2If we allow for multiple edges between node pairs (using the
graph-tool Python library [56]), we find an additional area in the
bottom left of the (λ, μ) plane, roughly for values λ < 0.2 and
μ < 0.33,in which DC is preferred. A possible explanation could
be the larger degree variance introduced in this case, for which
the higher complexity of DC is justified. As the partition recovery
patterns for these multigraphs are equivalent to the ones we discuss
in Sec. V, we restrict our analysis to simple graphs.
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FIG. 7. Mean partition overlap 〈ω〉 between the planted partitions and the partitions in the posterior distributions for graphs with varying
expected degrees c.

cross-partition: as lower values of both parameters mean a
stronger signal for the cross-partition, it is detected up until
some threshold. Only once the signal for the cross-partition
becomes weak enough are the implicitly planted partitions
favored.

We first focus on the partitions inferred from the graphs
generated by the canonical model, where node degrees fol-

low Poisson distributions. In Fig. 7(a) we show 〈ω〉 between
planted partitions and those recovered by NDC (on the left-
hand side) and DC (on the right-hand side). Both variants
detect the bicommunity structure frequently up to a certain
threshold value of μ, which increases for higher c. It turns
out that the locations of the thresholds are roughly in line
with what is described in existing literature on detectability
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thresholds for the planted partition model [13,14]. According
to this work, community structure planted by edge count ma-
trix B1 as defined in (1a) is detectable for c > 1

(1−2μ)2 ; in our
case this should place our threshold μT for detectability at
μT ≈ 0.276 (c = 5), μT ≈ 0.342 (c = 10), and μT ≈ 0.388
(c = 20). In our simulations, both variants detect bicommu-
nities up to a similar value of μ, which is slightly below
μT . We observe a second type of threshold for bicommunity
detection, this time along the λ dimension. For low values of
λ, both variants fail to detect the bicommunity partition even
though μ < μT , and they appear to uncover the cross-partition
instead. While the threshold along the μ dimension is similar
for NDC and DC, we find that the λ threshold is much higher
for NDC than for DC. This means that NDC recovers the
cross-partition up to higher values of λ than DC, after which
bicommunities are detected. The λ threshold also increases
with growing c.

The detection of the planted core-periphery partition also
depends on the expected degree of the networks. In fact, the
thresholds of CP detection correspond with those described
above for bicommunity detection: along the μ dimension, CP
structure is detected once cross-partitions and bicommunities
are no longer recovered; along the λ axis, CP structure is
detected until its structure is too weak, at which point bi-
communities are detected. This is somewhat contradictory to
the work by Zhang et al. [4], who find no evidence for a
detectability threshold in the case of CP structures. A likely
explanation for the narrow recovery range of the CP structure
by DC compared to NDC is that degree correction aims to
account for degree heterogeneity in a network in favor of
detecting community structure, while NDC has a higher ten-
dency to split networks into blocks of lower and blocks of
higher degree [19], which here corresponds to the implicitly
planted CP structure.

One of the main differences between NDC and DC in the
canonical case is therefore the thresholds at which structures
do and do not get detected along the λ axis. For all values of
c and for both SBM variants, the cross-partition is recovered
when the bicommunity and CP structures are strong. Along
each direction, both variants then start picking up the re-
spective two-block structure once the signal becomes weaker.
Since both the bicommunity and CP structures are recovered
only when the signal for the respective other structure is weak,
the coexistence of both structures in the inferred partition dis-
tribution is rare; we revisit this in Sec. V D. As both thresholds
(along λ and μ) are higher for larger c, the cross-partition
detection region increases for denser graphs; this phenomenon
is more pronounced for NDC, which provides a better model
fit than DC across the entire (λ,μ) plane.

C. Influence of degree distribution

To explore the influence of a heterogeneous degree dis-
tribution on partition recovery, we fit the two SBM variants
to a set of networks generated by the microcanonical model.
Figure 7(b) illustrates the mean recovery of partitions in this
case by NDC (left) and DC (right). The overall detection
patterns resemble those discussed for the canonical case. For
DC, all partitions are recovered in similar regions with similar
thresholds, albeit slightly more “fuzzy” boundaries on said

thresholds. However, we observe a substantial difference in
the performance of the NDC variant, for which 〈ω〉 is consid-
erably lower for all planted partitions across the entire (λ,μ)
plane. In the first instance, this is somewhat surprising, since
we have seen in Sec. V A that even for graphs generated by
the microcanonical model NDC provides a better description.
A plausible explanation of this phenomenon is the additional
structural features that we introduce through the extra con-
straint on node degrees in our microcanonical model and the
thereby imposed degree heterogeneity (see Sec. IV B). It turns
out that for relatively strong bicommunity structures, the NDC
variant recovers layered CP structures nested within each of
the two community blocks, both for very strong planted CP
structures but also when no explicit CP structure is planted
at all (see example graphs in Appendix H). When CP struc-
tures are planted explicitly with strong signal, the layered CP
partition recovered by NDC bears some resemblance to the
cross-partition; when no explicit CP structure is planted, the
layered CP structures within two assortative blocks resemble
more the bicommunity partition (according to ω and upon
visual inspection of the example networks). As can be seen
in Fig. 7(b), the DC variant detects partitions much closer to
the planted cross-partition (for lower λ) and the bicommunity
(for higher λ) value than NDC. However, the NDC variant
has the better model fit; this implies that by forcing heteroge-
neous degrees, we may to some extent be “overfeeding” more
structure into the network than solely that defined through the
block connectivity matrices.

D. Structure coexistence

Other than the individual recovery of the two planted par-
titions, we are naturally also interested in the appearance of
both structures in different regions of the partition landscape
detected in a given network, that we denote as coexistence.
Specifically, we want to know whether the posterior distri-
bution of partitions inferred by SBM features both planted
partitions (rather than only one or the other) for any particular
set of (λ,μ) pairs. We measure coexistence recovery by set-
ting the threshold for the partition overlap to ωT = 0.75, for
which we consider an inferred partition to be close enough to
the planted partition to be considered a “successful recovery.”

To illustrate the coexistence detection, we plot the fraction
α = q1

q1+q2
, where q1 denotes the proportion of partitions in the

posterior distribution that resemble the bicommunity partition,
given ωT , and q2 denotes the equivalent for CP partitions. The
results for each model or variant combination are shown in
Fig. 8. For α = 1 (dark blue) we detect only the bicommunity
structure, for α = 0 (dark red) only the CP structure is present
in the posterior distribution, and values close to α = 0.5
(white) indicate a more balanced posterior distribution, which
features both partitions to some extent; such values are found
where the detection areas for the two planted partitions appear
to be touching or even overlapping. The gray region represents
(λ,μ) pairs for which α is undefined since neither of the two
structures is recovered successfully.

We observe in Fig. 8(c) that, as expected from the re-
sults in Sec. V C, fitting NDC to graphs generated by the
microcanonical model does not yield partition distributions
anywhere in our (λ,μ)-space that feature both bicommunity
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FIG. 8. Fraction α of recovered bicommunity partitions out of all successfully recovered partitions for varying expected degrees c for
ωT = 0.75; at α = 1 (dark blue) only the bicommunity structure is detected; at α = 0 (dark red), only the CP structure is.

and CP partitions. In all other cases, there are small regions
for which coexistence is detected, for this relatively generous
threshold value of ωT = 0.75. Note that for stricter ωT thresh-
olds, we observe reduced recovery regions for each partition
in all cases and therefore an even smaller or completely absent
region of overlap in which both partitions feature in a given
posterior distribution (see Appendix G). Clearly, choosing this
value of ωT to mean “successful recovery” is somewhat arbi-
trary, and one might argue that a maximum of 75% of nodes
being assigned to the (implicitly planted) “correct” blocks
does not indicate strong partition similarity. In fact, we choose
to display the results with this low thresholds here, since it
emphasizes the finding that even for such a generous threshold
coexistence recovery is very small.

E. Discussion

Overall, we found detectability thresholds for each individ-
ual planted structure, and we discovered that coexistence of
the two structures is detected only in a very small number of
cases. We also observed considerable differences in successful
partition recovery between the NDC and DC variants, which
are more pronounced when they are fitted to graphs generated
by the microcanonical model than when fitted to those pro-
duced by the canonical version.

We briefly discuss the effect of degree heterogeneity in-
troduced into networks through the generative process of the
microcanonical model. We found that, by constraining the
degree distributions in this way, we are inadvertently introduc-
ing CP divisions beyond the explicitly planted CP structure.
The additional CP structures are picked up by NDC since it
does not correct for node degrees, and it thus comparatively
“underperforms” at detecting individual planted partitions and
coexistence of multiple partitions. These findings are con-
sistent with existing SBM literature, including the original
work in which the degree-corrected variant was introduced
[19]. They should serve as a reminder that a network may

exhibit multiple conflated structural properties, which could
in turn complicate the detection of certain types of partitions
or even lead to the detection of spurious mesoscale structures.
In general, and specifically if previous knowledge exists about
structural properties that are likely to be present in a network
(e.g., high degree variance) or about certain types of structures
that are of interest, one should consider carefully the SBM
variant that is appropriate. Methods which specifically aim
to disentangle conflated structural properties [19,62] or to
recover certain types of structures, such as assortative com-
munities [63], could be considered.

Second, we focus on the canonical model and the extent
to which the two SBM variants recover the bicommunity and
CP partitions relative to each other, jointly (coexisting in a
given posterior distribution) and relative to the cross-partition.
Overall, we have found that thresholds for the detection of the
individual planted partitions and for the detection of structure
coexistence depend on the expected degree of a network as
well as the SBM variant used to detect the structure. The
NDC variant, which has higher model evidence, does better
at picking up the cross-partition at the expense of recovery
of the CP structure. It recovers coexistence of bicommunity
and CP partitions to a slightly lesser extent than DC. Since
we are explicitly planting the cross-partition, and only implic-
itly planting the bicommunity and CP structures by making
sure the edge probabilities within and between the respective
cross-blocks satisfy those within and between the blocks of
the two two-block partitions, it is perhaps not surprising that
the variant with the better model fit is the one that favors the
cross-partition at the cost of coexistence detection.

Irrespective of whether we use NDC or DC, we find that
even in this relatively simple case of planting only two qual-
itatively different ground-truth partitions, the region in our
structural strength landscape for which the coexistence of
the bicommunity and CP structures is detected is limited to
an extremely small area. This is concerning since mesoscale
structures in real networks are unlikely to be so simple, and
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a larger number of coexisting network partitions and a mul-
titude of different structures may be present. Clearly, more
research is necessary to better understand whether the lack of
coexistence recovery is due to a detectability limit after which
it is impossible for any algorithm to detect coexistence (simi-
lar to the known community detection detectability threshold
[13,14]), or whether some other SBM variant would be able
to do a better job at detecting coexistence of multiple planted
structures. More work should then also focus on expanding
the relatively recent literature on partition diversity [11,37] by
advancing existing methods or developing new tools. The aim
should be to enable researchers to reliably explore multiple
coexisting ground truth partitions that may have been respon-
sible for the generation of a given network, which we suspect
to be the case in real graphs [12]. In this sense, our framework
and findings should be seen as a motivation to test new SBM
variants developed for this purpose. The regions of coexis-
tence discovery shown in Fig. 8 may be used as an orientation
for the possible locations of detectability thresholds in the case
of multiple ground-truth partitions.

More generally, the fact that even for existing methods
coexistence is detected in certain regions of our structural
strength landscape emphasizes again the importance of ac-
knowledging the diversity and possible dissensus in partition
distributions, and for more researchers in the field of applied
network science to consider multiple plausible explanations of
the mesoscale of network.

VI. CONCLUSION

We have proposed the stochastic cross-block model
(SCBM), a framework for generative network models that ex-
hibit predefined ambiguity in their mesoscale structure. This
framework complements existing generative networks as a
two-ground-truth benchmark that can be used to measure the
extent to which mesoscale structure detection algorithms re-
cover the ambiguity introduced by two simultaneously planted
partitions. Our work also generally emphasizes the need to
explore the question around ambiguity in network structure,
in the sense that the cross-partition that we plant explicitly is
what we plant unambiguously, whereas the ambiguity stems
from the two implicitly planted partitions. While we focus
on the two-partition case in our simulations, we also outline
how our approach can be extended to the multipartition case,
and we encourage future work on more complicated cases of
multiple ground truth structures, which are arguably closer to
what may occur in real networks.

We detail a possible way to frame the multiple ground
truth problem as a special case of the MMSBM and explain
why our method simplifies the MMSBM approach. We found
that the coexistence of two qualitatively different partitions
(bicommunity and core-periphery structure) is detected only
in a very small region in our “structural strength” space, which
varies in size and shape for different versions of our model
and for different SBM variants used for mesoscale structure
detection. Only when both structures are sufficiently strong
and neither dominates the other can we recover the existence
of both. In the majority of cases, each of the two planted par-
titions is recovered when the strength of the other structure is
weak. We have thus uncovered a type of detectability thresh-

old in the case where multiple types of mesoscale structures
influence the network construction. Since the coexistence of
more than one plausible explanation for mesoscale structures
appears to be a common phenomenon in real networks [12],
we believe that exposing the presence of such an, as of yet
understudied, detectability threshold is an important contri-
bution to the SBM literature, especially as most community
detection approaches still aim at uncovering a single partition
and at validating it against a single ground truth. More work is
required to explore the nature of these detectability thresholds
analytically, and to appraise detectability limits exhibited by
other types of coexisting structures, for example, including
more than one community partition or bipartite structures;
the combination of certain types of structures may be more
or less prone to detectability issues than others, especially
given the ability (or lack) of certain SBM variants to detect
certain types of structures. Other future work may include
fitting structure-specific SBM variants to graphs generated by
the SCBM benchmark. For example, SBMs designed to de-
tect assortative structure [63] or core-periphery structure [25],
may be used in conjunction with the minimum description
length principle [64] to investigate if certain models provide
a better fit for certain parameter choices and to explore the
performance of such models in terms of detecting specific
implicitly planted structures. Another SBM variant that may
be of interest for future research including the SCBM is
the hierarchical SBM, e.g., [62], which was demonstrated to
prevent underfitting of SBMs, to explore whether it would
perceive the coexisting partitions as structures nested within
each other or in the form of partitions appearing in the same
posterior distribution of flat partitions. Finally, we conclude
that future work around the theory of methods for mesoscale
structure detection in networks should focus on improving
existing methods to be able to identify coexisting structures.
More broadly, and in line with recent work [11,37], we believe
that researchers applying existing methods on real networks
should focus on the possibility of discovering multiple di-
mensions of segmenting the network, rather than accepting
unidimensional solutions, that may be even be averaged over
“multimodal” partition distributions. In particular, possible
contexts in which considering multiple plausible network
divisions seem particularly important include the field of com-
putational social science, which deals with the analysis of
interaction dynamics in online public spaces. Appraising the
coexistence of multiple types of structures in social media in-
teraction networks, such as community/CP structures or even
qualitatively different community partitions (maybe generated
through nonaligned political dimensions, as has been recently
shown on Twitter affiliations [65]), could have considerable
benefits for researching online conversation dynamics. In this
context, researchers should consider the coexistence of quali-
tatively different structures and be mindful of the detectability
issues addressed here. In our simulations, we focus on the
special case of equally sized blocks in both the planted parti-
tions as well as the cross-partition and on the community-CP
case. However, the benchmark model is flexible to a diverse
range of structures of varying block sizes, degree distribu-
tions, and planted mesoscale structures. Future work may
use this benchmark to analyze the recovery of ambiguity in
networks of different sizes and expected degrees or with other
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combinations of mesoscale structures. This work may also
be extended by testing other types of detection algorithms
(beyond SBM) on this benchmark model. Further extensions
of the benchmark model itself could allow for more than
two blocks in each planted partition, more than two planted
partitions or a directed version of the model.
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APPENDIX A: DETAILED MMSBM FORMULATION

In the original MMSBM formulation [49], each node
belongs to all latent groups with certain probability, denoted—
rather than by a one-hot binary block membership vector—by
a mixed membership vector πi for node i, in which element
π k

i denotes the probability of the node i belonging to block
k and so

∑
k π k

i = 1. Mixed membership vectors are drawn
from a Dirichlet distribution for each node i, with some fixed
parameter that is equal across all nodes. For each pair of nodes
i and j, the block memberships r and s are drawn from a
multinomial distribution parameterized by the nodes’ mixed
membership vectors; the existence of an edge between i and j
is sampled from a Bernoulli distribution based on the prede-
fined edge probability between blocks r and s. The generative
process of the network is thus similar to a Bernoulli SBM,
except that the block membership of a given node i is drawn
repeatedly for each node j it is paired with. This means that
nodes may belong to different blocks depending on the pairing
that is considered and that they inherit connectivity patterns
from multiple blocks. This process leads to the particular
feature that the density at the “overlap” of multiple blocks is
a weighted average of their individual densities [50].

For ease of explanation, we denote the two blocks in par-
tition 1 by labels {a, b} and the blocks in partition 2 by labels
{c, d}. We define the block matrices denoting the expected
edge densities within and between blocks by θ1 and θ2 in
Eq. (A1a) and Eq. (A1b). Note that block matrices are sym-
metric since the graphs we are generating are undirected (for
example, θab = θba) and—according to convention in undi-
rected networks and to simplify calculations—elements on
diagonals denote twice the within-block edge densities:

θ1 =
(

θaa θab

θab θbb

)
, (A1a)

θ2 =
(

θcc θcd

θcd θdd

)
. (A1b)

To fit the MMSBM formulation, we consider the blocks in the
two planted partitions as four latent blocks {a, b, c, d}, but we
constrain the generative process in a way that forces certain
overlaps to be empty. In particular, the overlaps of block a or
b in partition 1 and of block c or d in partition 2 are empty.
This constraint is illustrated in Fig. 1(c), where the nodes in
the overlaps are colored according to their block membership
colors in the two planted partitions. Our mixed membership
vectors thus take on the form πi = 1

2 (b1
i , b2

i ). For example, if

πi = 1
2 (1, 0, 1, 0), then node i belongs to blocks a and c with

equal probability πa
i = π c

i = 1
2 . The constraint compared to

general mixed membership vectors is therefore that nodes
belong to exactly two blocks with equal probability and that
πi = 1

2 (1, 1, 0, 0) and πi = 1
2 (0, 0, 1, 1) are forbidden, since

a node can never belong to block a and b (or to c and d).
After drawing a mixed membership vector for each node i, we
draw the block memberships r and s for each node pair i and j
independently from their mixed membership vectors. We then
place an edge between i and j according to some probability
that depends on r and s.

1. Normalization

A first intuition might be to connect two nodes with
probability θrs if r, s ∈ {a, b} (or r, s ∈ {c, d}) and with zero
probability for any other combination of r and s. However,
since each node receives edges based on the connectivity of
two blocks independently, this process will not be consistent
with the connectivity of θ1 and θ2. If we generate a network
according to these probabilities, the expected edge density θ̂rs

between two nodes i and j that belong to blocks r and s,
respectively, is

θ̂rs = 1

4

∑
r′s′

(
π r

i π
s
j θrs + πu

i πv
j θr′s′

) = 1

4
θrs + 1

16

∑
r′s′

θr′s′

(A2)

for r, s ∈ {a, b} and r′, s′ ∈ {c, d} (or r, s ∈ {c, d} and r′, s′ ∈
{a, b}). In order to accommodate for the connectivity of both
planted partitions, we thus need to normalize the edge prob-
abilities appropriately, so that θ̂rs = θrs. The additive edge
probabilities prevent us from finding a single normalization
constant x. Instead we may consider finding xrs for each block
pair, so that nodes are connected with probability xrsθrs. To
guarantee θ̂rs = θrs we thus need

θrs = 1

4
xrsθrs + 1

16

∑
r′s′

xr′s′θr′s′ . (A3)

Finding suitable xrs requires us to solve an underdeter-
mined system of six equations that is consistent as long as the
sum of the probabilities in θ1 equals the sum of probabilities
in θ2, and thus has infinitely many solutions. However, it
turns out that this system of equations does not have any
non-negative solutions for certain combinations of connec-
tivity patterns planted in θ1 and θ2, in particular when the
differences between block densities in both partitions are large
(see Appendix A 2 for a proof).

An alternative way to normalize the additive edge prob-
abilities is to determine a normalization constant for each
combination of block pairs that two nodes can occupy in the
two partitions. In other words, nodes i and j for which block
memberships r and s have been drawn are connected with
probability xrsr′s′θrs, where r′ and s′ are the other two blocks
that i and j are also members of. To determine the set of
{xrsr′s′ } we rewrite the expected density as

θ̂rs = 1

4

∑
r′s′

xrsr′s′ (θrs + θr′s′ ) (A4)
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and set up a system of six equations so that θ̂rs = θrs is
satisfied—one for each of the upper triangular entries in
θ1 and θ2—and solve it for x = {xrsr′s′ }. This is, again, an
underdetermined system of equations with infinitely many
solutions, and here we can find non-negative solutions for
all combinations of θ1 and θ2 that we use in our simulations
in Sec. IV. We can use a least squares solver to compute
a minimum norm solution to the system [66]. However, for
certain combinations of planted structures, the minimum norm
solution returns negative values for some of the {xrsr′s′ }. This
means that for certain combinations of edge probabilities in
the two planted structures, we must either use a non-negative
least squares solver—-which may return solutions that include
zero values—or a linear programming solver [67,68] to find
strictly positive solutions.

2. Existence of non-negative solutions

For the simplified case where θaa = θbb and θcc = θdd , we
can use Farkas’ lemma [69] to show that the system does not
have any non-negative solutions for a certain combination of
densities planted in the two structures—namely, if and only
if |θaa − θab| + |θcc − θcd | > E

n2 = 2ρ where ρ is the overall
density of the network.

To find the set of normalization constants, we need to
solve equations θrs = 1

4 xrsθrs + 1
16

∑
uv xuvθuv for x = {xrs}.

Without loss of generality, we assume θaa = θbb and θcc = θdd .
We also start by assuming that θaa > θab and θcc > θcd . The
system becomes Ax = y with

A =

⎛
⎜⎜⎜⎝

1
4θaa 0 1

8θcc
1
8θcd

0 1
4θab

1
8θcc

1
8θcd

1
8θaa

1
8θab

1
4θcc 0

1
8θaa

1
8θab 0 1

4θcd

⎞
⎟⎟⎟⎠ (A5)

and y = (θaa, θab, θcc, θcd ).
Written as a theorem of alternatives, Farkas’ lemma states

that exactly one of the following two statements are true for
A ∈ Rn×m and x ∈ Rn:

(1) ∃x ∈ Rm : Ax = y and x � 0
(2) ∃v ∈ Rn : vT A � 0 and vT y � 0.
This means that if we can find a vector v for which the

second alternative is always true, this implies that a non-
negative solution x to the system cannot be found. If we
choose v = (−1, 1, 0, 2), we have vT A = (0, 1

2θab, 0, 1
2θcd )

and vT y = −θaa + θab + 2θcd . Therefore, we have vT y < 0 if
and only if θaa − θab > 2θcd . Since 2E

n2 = 2θcc + 2θcd , we can
write

θaa − θab > 2θcd , (A6a)

θaa − θab > E
n2 − θcc + θcd , (A6b)

θaa − θab + θcc − θcd > E
n2 = 4E

N2 = 2ρ, (A6c)

where ρ is the overall density of the network. Since we have
assumed that θaa > θab and θcc > θcd , Eq. (A6c) states that
we do not have any non-negative solutions if the within-block
densities are sufficiently larger than the between-block densi-
ties in both planted partitions. It is straightforward to find a
vector v for all cases θaa > θab and θcc < θcd , θaa < θab and
θcc < θcd , and θaa < θab and θcc > θcd , so that finally we can

FIG. 9. Mean partition overlap, variation of information and mu-
tual information between the planted partitions and the partitions in
the posterior distributions for graphs with c = 10.

say that the system does not have any non-negative solutions
if and only if |θaa − θab| + |θcc − θcd | > E

n2 = 2ρ.
In more qualitative terms, this means that when we induce

large differences between block densities in both partitions,
we cannot find appropriate normalization constants to solve
the system of equations that would enable us to create a
network in which the connectivities are consistent with both
planted partitions. This limitation would severely restrict our
ability to test the detectability of certain combinations of
partitions. In fact, it would enable us to explore only half of
the parameter space we explore in our simulations in Sec. IV,
where we plant a bicommunity partition and a core-periphery
partition by sweeping two parameters that determine the
strength of each structure.

APPENDIX B: CONSTANT MULTIPLICATIVE FACTOR

In the two-partition SCBM with blocks labeled {a, b} in
partition 1 and {c, d} in partition 2, each node is assigned to
one of the cross-blocks � = {(a, c), (a, d ), (b, c), (b, d )}. For
illustrative purposes, we start by creating the symmetric 4 × 4
matrix θ′, whose elements are the products of the elements
of θ1 and θ2 corresponding to the respective blocks in 1 and
2 that make up the cross-blocks in �. Note that we drop the
SCBM subscript on our 4 × 4 cross-partition matrices for ease
of readability. Matrix θ′ is thus the Kronecker product of θ1
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and θ2, where the order depends on the index set J ,

θ′ = θ1 ⊗ θ2 =

⎛
⎜⎜⎝

(a, c) (a, d ) (b, c) (b, d )
(a, c) θaaθcc θaaθcd θabθcc θabθcd

(a, d ) θaaθcd θaaθdd θabθcd θabθdd

(b, c) θabθcc θabθcd θbbθcc θbbθcd

(b, d ) θabθcd θabθdd θbbθcd θbbθdd

⎞
⎟⎟⎠

(B1)
The most general form of defining the multiplicative factor

is finding xuv for each pair of cross-blocks u = (r, r′) and v =
(s, s′), such that Buv = xuvνuνvθ

′
uv . If we fix νu = ν = n

2 for
all cross-blocks u (and allow for self-loops) we have that the
maximum possible number of edges between and within each
group is ν2 = n2

4 , so we have

Buv = xuvν
2θ ′

uv. (B2)

We want to find the normalization constants {xuv}, such that
the expected edge counts within and between blocks of both
implicitly planted partitions 1 and 2 are equal to the sums of
the expected edge counts of the overlaps that make up each of
the original blocks. Therefore, we require

B1rs = n2θ1rs =
∑
r′s′

xuvν
2θ1rsθ2r′s′ (B3)

for blocks r and s in partition 1 and the same for blocks in
partition 2. We can rewrite this as

n2 = 1

4

∑
r′s′

xuvn2θ2r′s′ (B4)

and therefore also (for the elements of B2)

n2 = 1

4

∑
rs

xuvn2θ1rs , (B5)

which is satisfied for a constant x = xuv = 2n2/E = 1/ρ,
since ∑

rs

n2θ1rs =
∑
r′s′

n2θ2r′s′ = 2E . (B6)

APPENDIX C: VARYING BLOCK SIZES

In the case of equal block sizes in the implicitly planted
partitions 1 and 2, setting 2n = N , but allowing for vary-
ing cross-block sizes, we can write ν1 = νac = νbd and
ν2 = νad = νbc, where νac is the number of nodes in block
(a, c). In this case, we have ν1 + ν2 = n. We no longer have
the same maximum possible number of edges within and
between each of the block pairs. Therefore, instead of (B2),
we have

Buv = xuvνuνvθ
′
uv, (C1)

where νuνv is one of {ν2
1 , ν1ν2, ν

2
2 }.

Let us assume that a constant x = xuv does also exist for
n = N

2 , ν1 
= ν2 and that we are planting nontrivial partitions
where the probability of edge placement between blocks is
not uniform across block pairs. To satisfy the connectivity in
partitions 1 and 2, we now have

B1rs = n2 = x
∑
r′s′

νuνvθ2r′s′ . (C2)

FIG. 10. Mean difference (Frobenius norm) between planted and
generated edge count matrices in networks, for c = 5.

Specifically, for the within- and between-block densities of
partition 1 to be satisfied, we need

n2

x
= θccν

2
1 + θddν

2
2 + 2θcdν1ν2, (C3a)

n2

x
= θcdν

2
1 + θcdν

2
2 + θccν1ν2 + θddν1ν2, (C3b)

n2

x
= θddν

2
1 + θccν

2
2 + 2θcdν1ν2, (C3c)

where we have dropped the subscript for partition number 2
on θ for easier readability. Setting equal the first and last of
these equations, we get

(θcc − θdd )
(
ν2

1 − ν2
2

) = 0. (C4a)

FIG. 11. Mean normalized degree variance for graphs with vary-
ing expected degrees c, only showing the graphs generated by the
canonical model to illustrate the degree variance introduced for low
values of λ.
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Since ν1 
= ν2, we have θcc = θdd and therefore [from
Eqs. (C3a) and (C3b)], we then have

θccν
2
1 + θccν

2
2 + 2θcdν1ν2 = θcdν

2
1 + θcdν

2
2 + 2θccν1ν2,

(C5a)

(θcc − θcd )(ν1 − ν2)2 = 0, (C5b)

and hence θcc = θcd = θdd . Clearly, taking the same steps for
B2 gives θaa = θab = θbb. This is a contradiction to our set of
assumptions and therefore such a constant x does not exist
(apart from the trivial case where we plant a random graph).

APPENDIX D: SOLVING UNDERDETERMINED
SYSTEM OF EQUATIONS

For general cases in which each block in partitions 1 and 2
can take on any size, we need to determine a set of normaliza-
tion constants {xuv} to create the final block matrix θSCBM =
{θuv} = {xuvθ1rsθ2r′s′ }. In this case, the maximum possible
number of edges between and within each block—in both
the two planted partitions as well as the cross-partition—may
differ for each block pair. The elements of the expected edge
count matrices are therefore Bprs = nrrsθprs for p ∈ {1, 2}, and
Buv = νuνvθuv = νuνvxuvθ

′. The set of constants {xuv} need
to be chosen in such a way that the elements of B1 and
B2 are satisfied (on the diagonal and upper triangular), as
is presented in Eqs. (D1a)–(D1f). We thus have a total of
2 × Ks (Ks+1)

2 = 6 equations and K (K+1)
2 = 10 unknowns. On

the left-hand side, we have brs = nrnsθrs = Bprs and we have
dropped the subscripts for partitions 1 and 2 for legibility. On
the right-hand side, we have B′

uv , where B′
uv = {νuνvθ1rsθsr′s′ }

and subscripts are written as the indices of the cross-blocks;
element x11 = x(a,c)(a,c), for example, is the normalization
constant for within-block edges in block (a, c) (overlap of
block a in s1 and block c in s2):

baa = x11B̂11 + 2x12B̂12 + x22B̂22, (D1a)

bab = x13B̂13 + x14B̂14 + x23B̂23 + x24B̂24, (D1b)

bbb = x33B̂33 + 2x34B̂34 + x44B̂44, (D1c)

bcc = x11B̂11 + 2x13B̂13 + x33B̂33, (D1d)

bcd = x12B̂12 + x14B̂14 + x32B̂32 + x34B̂34, (D1e)

bdd = x22B̂22 + 2x24B̂24 + x44B̂44. (D1f)

Equations (D1a)–(D1f) are an underdetermined system of six
linear equations with ten unknowns. We can write it in matrix
form as

Ax = b (D2)

with

x = (x11, x12, . . . , x32, x33, x44), (D3)

b = (baa, bab, bbb, bcc, bcd , bdd ), (D4)

so that x ∈ R10, b ∈ R6 and where A = {ai j} ∈ R6×10 is the
coefficient matrix with elements of B̂ respecting Eqs. (D1a)–
(D1f). According to the Rouché-Capelli theorem, we know
that such an underdetermined system has an infinite number
of solutions if and only if the rank of its coefficient matrix
is equal to the rank of its augmented matrix W = [A|b] ∈

FIG. 12. Proportion of nodes correctly classified into core and
periphery blocks by assigning nodes with degree higher than the
expected degree c = 20 to the core and all others to the periphery.

R6×11. This is always true for two well-defined connectivity
matrices B1 and B2; clearly, the total number of edges must be
the same in the two planted partitions, and we can show that
rank(A) = rank(W) if and only if baa + bab + bbb = bcc +
bcd + bdd .

In general, an underdetermined linear system Ax = b with
A ∈ Rm×n where m < n, does not have a unique solution x.
Since the system is underconstrained, it has an infinitude of
solutions, if it has any solutions at all. A popular method
for solving under- (or over-) constrained systems of linear
systems of equations is called least squares method. The
idea behind the least squares method is to find a solution x
which minimizes the squared Euclidean norm of the residual
r(x) = b − Ax. In other words, we want to find x that mini-
mizes φ(x) = ||r(x)||22 = ||b − Ax||22, which can be done by
obtaining x such that ∇φ(x) = 0. From this, we obtain the so-
called normal equations AT Ax = AT b which can be solved
analytically if AT A is invertible. In our case, AT A ∈ Rn×n has
rank at most m, where m < n, and is therefore singular. This
means that, in this underdetermined case, the normal equa-
tions cannot be solved analytically. Instead, we can find the
particular least squares solution that minimizes the Euclidean
norm ||x||2 (or its square) with the constraint Ax = b. When
there are no other constraints, this minimum norm solution x̂
can be found by computing the singular value decomposition
(SVD) in order to compute the Moore-Penrose pseudoinverse
A+ of matrix A. The minimum norm solution can then be
calculated as x̄ = A+b, always exists and is unique [70].

FIG. 13. Degree distributions of core nodes vs periphery nodes
in the canonical and microcanonical model with overall expected
degree (dashed line), for μ = 0.1, λ = 0.1, and c = 20.
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FIG. 14. Fraction α of recovered bicommunity partitions out of
all successfully recovered partitions for varying c for ω = 0.85; at
α = 1 (resp. α = 0) only the bicommunity (resp. CP) structure is
detected.

APPENDIX E: ALTERNATIVE SIMILARITY MEASURES

To demonstrate the robustness of the partition overlap
as our similarity measure, we compare it to two alternative
measures, variation of information [61] and reduced mutual
information [60]. We use these two measures to calculate the
partition similarity (or distance, in the case of variation of
information, which is largest for partitions with the largest dif-
ference) for one particular set of simulations where N = 400,
c = 10 and where graphs were generated by the canonical
model and partitions inferred using the non-degree-corrected
SBM. We show the results in Fig. 9. While there are some
subtle differences in the mean similarity values, the regions
in which the detectability of the different partitions appears to
change are located in the same areas of the (λ,μ) space.

FIG. 15. Fraction α of recovered bicommunity partitions out of
all successfully recovered partitions for varying c for ω = 0.95; at
α = 1 (resp. α = 0) only the bicommunity (resp. CP) structure is
detected.

APPENDIX F: CHARACTERISTICS
OF GENERATED GRAPHS

To ensure that the variability in the recovered partitions
is not in fact due to the graphs we generate, we compare
the planted edge count matrices B1 and B2 with the actual
edge counts in the generated graphs, M1 and M2 by cal-
culating ||B1 − M1||F and ||B2 − M2||F for all values of μ

and λ. Figure 10(a) shows the mean Frobenius norm for
μ ∈ [0.01, 0.5] and λ ∈ [0.01, 0.5] for graphs generated by
the canonical model. Figure 10(b) shows the same plot for
the microcanonical SBM. These figures show the distances
for graphs with expected degree c = 5; we note that the pat-
terns for the higher values of c are similar. We observe that
the distances between the planted and generated edge count
matrices in the microcanonical case are, by definition, much
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FIG. 16. Example networks for a fixed value of μ = 0.1, with
λ = 0.01 (top row) and λ = 0.5 (bottom row).

lower than in the traditional case. The nonrandom patterns we
observe in the microcanonical case are due to rounding that is
necessary to create the edge count matrix B which is used to
generate networks in this case (while in the canonical case the
edge probabilities, rather than counts, are used).

Figure 11 shows the rescaled version of Fig. 4. Here we
plot the mean normalized degree variance for graphs gener-
ated by the canonical model, to illustrate the higher variance
introduced for lower values of λ, especially for higher values
of c.

In Fig. 12 we plot the proportion of nodes correctly clas-
sified (according to the planted core and periphery blocks) by
assigning nodes with above average degree to the core and

those with below average degree to the periphery, for graphs
with expected degree c = 20. In Fig. 13 we show two example
degree distributions for μ = 0.1, λ = 0.1, and c = 20.

APPENDIX G: STRICTER PARTITION-OVERLAP
THRESHOLDS

Figures 14 and 15 illustrate the detection of the bicom-
munity and CP structures, as well as their coexistence, for
the two SBM variants and for partition overlap ω = 0.85 and
ω = 0.95 respectively.

APPENDIX H: EXAMPLE NETWORKS WITH HIGH
DEGREE HETEROGENEITY

In Fig. 16 we plot two example networks generated by the
microcanonical model. The network visualizations were gen-
erated by the graph-tool Python library [56]. We fix μ = 0.1
for both networks, and we create one graph with a strong
planted CP structure (λ = 0.01) and one for which no CP
structure at all is planted explicitly through the edge count
matrices (λ = 0.5). Figures 16(a) and 16(c) show an example
of the type of partition frequently recovered by NDC for
λ = 0.01 and λ = 0.5, respectively. Figures 16(b) and 16(d)
show the same but for the DC variant. We observe that DC
recovers the cross-partition for λ = 0.01 and the bicommu-
nity partition for λ = 0.5, in line with the equivalent results
for graphs generated by the microcanonical model and with
what we explicitly planted. NDC, however, (which has higher
model evidence) detects a similar structure for λ = 0.01 and
λ = 0.5: a two-block partition, where each block contains a
core and multiple layered peripheries. The difference between
the two detected partitions is the number of layers in the
core-periphery structures within each block and the size of
the outer periphery. Due to these differences, the partition
detected for λ = 0.01 is more similar to the cross-partition,
while that detected for λ = 0.5 is more similar to the bicom-
munity partition.
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