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Stochastic cellular automaton model of culture formation
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We introduce a stochastic cellular automaton as a model for culture and border formation. The model can be
conceptualized as a game where the expansion rate of cultures is quantified in terms of their area and perimeter
in such a way that approximately geometrically round cultures get a competitive advantage. We first analyze the
model with periodic boundary conditions, where we study how the model can end up in a fixed state, i.e., freezes.
Then we implement the model on the European geography with mountains and rivers. We see how the model
reproduces some qualitative features of European culture formation, namely, that rivers and mountains are more
frequently borders between cultures, mountainous regions tend to have higher cultural diversity, and the central
European plain has less clear cultural borders.
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I. INTRODUCTION

The topic of border formation between nations or cul-
tures is complex and it has been subject of interdisciplinary
discussion for centuries [1, Chap. 2]. The role of natural
boundaries, such as rivers and mountains, in the formation of
borders was the basis of many early thoughts on borders [2,
pp. 22–23], but has since been under criticism in the academic
literature [3].

Simultaneously, the statistical physics of social dynamics
aims at making simple models of complex social phenomena
to capture some, but not all aspects of the phenomena. This
point of view has with some success been applied to areas
such as traffic, networks, economics [4, Chap. 1]. See also the
recent collection in Ref. [5] and the review in Ref. [6] for more
applications of physics to the study of social phenomena.

In particular, models of culture and language inspired by
statistical physics have been intensively studied in recent
decades. Some of the most studied examples are the voter
model [7], the Axelrod model [8], along with many others
(see, for example, the review in Ref. [4]).

In this paper, we apply the methods of statistical physics
to another complex topic of the social sciences: The problem
of border formation. We show that a simple model taking
only the locations of seas, rivers, and mountains as input can
reproduce significant features of actual border locations.

The model is a stochastic cellular automaton with coars-
ening dynamics constructed such that approximately round
cultures spread faster. It is inspired by, but yet substantially
different from, the agent-based model from Ref. [9] which
took spreading of information as a starting. Instead, the
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inspiration for our model stems from ideas in popular culture
about the role of geography and military power in border
formation [10]. For instance, the popular strategic games Risk
[11] and Civilization [12], which involve using armies to
conquer territory.

Thus, the model becomes a concrete mechanization of
19th-century naturalistic thoughts on borders where power
and natural geography played a central role (although a major
difference is that we present a probabilistic rather than deter-
ministic point of view).

The failure of naturalistic models (such as the one consid-
ered in this paper) in describing more than just some overall
probabilistic correlations may well be used as yet another
argument against the 19th-century naturalistic point of view
that was implicitly build to fuel contemporary imperialistic
agendas [1, Chap. 3]. With these objections in mind we nev-
ertheless construct a simple model for borders that take only
natural boundaries and power into account. In particular, we
ignore the myriad of other factors such as climate, diseases,
individuals, cities, trade routes, taxation, technology, natural
disasters, religion, crops, ideologies, etc. Adding model fea-
tures to account for these factors would come at the expense
of the simplicity of the model and we believe they may be
better dealt with using other approaches.

Over the past 25 years, stochastic cellular automata have
been used to model similar spacial forms and reproduce dy-
namic spatial behavior [13]. Examples of the approach include
urban growth [14,15] and forest fires [16].

We study our model both with periodic boundary condi-
tions (i.e., on a torus) with no geographical features and on
a map of Europe with the geographical features of rivers and
mountains. On the European map we compare our model to
historical data of border locations in the years 1200–1790
from Refs. [17–19]. Although we compare outcomes of our
model to historical data, we emphasise that the purpose of
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FIG. 1. Snapshot of the dynamics of the model on the map of
Europe at times 200 and 400. Every country is colored in a random
color. Note the presence of countries of different sizes, that some
rivers form clear borders and that some rivers are fully contained in
one country.

the model is not to predict the actual borders of Europe, but
rather to demonstrate a (computable, random) process capa-
ble of forming reasonable cultural borders. Since the current
European borders to some extent reflect the cultural/linguistic
boundaries our model is in turn a model of border formation.
This is also the reason we focus on the European map as it
could be argued that it is the region where cultural identities
and political borders are the most interrelated [20].

II. MODEL: THE GAME OF EUROPE

We consider a 200 × 200 pixelated map of either a torus
(meaning with periodic boundary conditions) or of Europe,
which consists of 40 000 cells. A country is a set of cells
and we assign each (land) cell to a country, see for example
Fig. 1. The countries should not necessarily be thought of as
real countries, but could just as well be interpreted as cultures,
tribes, or even ideas.

One can envision our model as a game of Europe where
countries with varying power compete against each other
using armies. We emphasise again that we only use this termi-
nology to reflect our inspiration and for clarity of presentation.

At each timestep, every cell is updated based on in-
teractions between neighboring countries. To define the
interactions we first need to define the powers of the different
countries. A naive approach is to define the power of a country
to be its area divided by its perimeter. This is motivated by the
following:

(1) The size of the army a country has is roughly propor-
tional to its population, which again is roughly proportional to
its area.

(2) This army should be positioned in the border regions—
having size the perimeter, as this is where the interaction with
neighboring countries takes place.

The validity of point 1. above can well be criticized. See,
for instance, Ref. [17], where the size of an army is argued
to be given by the wealth of the corresponding country, or
Ref. [21], where fertility is considered. The model presented
here, though more naive, is much simpler, since we do not
need any a priori information of wealth of different areas or
some other descriptor of population, the size of an army, etc.

• •

R = 1 R = 4

FIG. 2. The radius of influence determines which cells a cell
influences. The blue (darker) areas are the neighborhoods corre-
sponding to radius of influence R = 1 and R = 4.

If we define the power of a country to be its area divided
by its perimeter, then the power has dimensions of length,
and thus large countries are stronger (more powerful). This
leads to an uninteresting dynamics, where one country quickly
dominates. For a more interesting dynamics we therefore
choose the power of a country to be some dimensionless quan-
tity. Denoting the area of country C by αC and its perimeter by
πC we define its power as

�C :=
√

αC

πC
. (1)

There are many ways of constructing such a dimensionless
power, e.g., αC/π2

C is another possible choice. Equation (1) is
a natural choice and leads to a more local dynamics as will be
explained below.

More precisely a cell is a pair of integers (i, j) and the
area of a country is simply defined as the number of cells the
country consists of. The perimeter is defined as the number of
cells (i, j) owned by the country such that at least one of the
cells in the 3 × 3 square1 around the cell (i, j) belongs to a
different country.

For the “battle” of a cell (i, j) we need to define the
neighbors of (i, j). All cells (i′, j′) such that the center of
(i′, j′) is closer to (i, j) than some number R are considered
the neighbors of (i, j). See Fig. 2 for an illustration. More
formally, the relation is that (i′, j′) is a neighbor of (i, j) if
(i′ − i)2 + ( j′ − j)2 � R2. Notice also that a cell is a neighbor
of itself.

We call R ∈ [1,∞) the radius of influence. Countries occu-
pying more of the neighboring cells are stronger, as they have
more of their army in the neighborhood. Denote by NC (i, j)
the number of neighbors of cell (i, j) of country C. The local
power of the country C is its (global) power times its number
of neighborhood cells.

Finally, we add some randomness to the dynamics. This is
controlled by the fluctuation p ∈ [0, 1]. Each country’s power

1For the cell (i, j) the 3 × 3 square around it means the
set {i − 1, i, i + 1} × { j − 1, j, j + 1}, i.e., the nine cells
(i − 1, j − 1), (i − 1, j), (i − 1, j + 1), (i, j − 1), (i, j), (i, j + 1),
(i + 1, j − 1), (i + 1, j), (i + 1, j + 1).
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at the cell (i, j) is multiplied by independent fluctuations
uniformly in (1 − p, 1 + p). We denote the (random) fluc-
tuation of country C in cell (i, j) by �C (i, j). (All �C (i, j)
are independent.) In total, the local power of country C in the
battle of cell (i, j) is given by

�loc
C (i, j) := �C × NC (i, j) × �C (i, j).

The country with the highest local power at cell (i, j) wins the
battle and conquers the cell (i, j) [or, defends, if the country
already occupied cell (i, j)].2

The dynamics is computed at all cells simultaneously. Af-
ter each timestep the map is updated accordingly, and the
process repeats.

We can now describe how the choice of the power in Eq. (1)
gives a more local dynamics. The other relevant choice of
the power �C is the square of the choice in Eq. (1). If a cell
has NA neighbors of country A and NB of country B, then the
local powers (without the fluctuation) are �ANA and �BNB,
whereas for the other choice of the power it would be �2

ANA

and �2
BNB. For the second choice the global powers �A and

�B matter more for the battle of some cell, while for the first
[Eq. (1)] more weight is put on the local effect of how many
neighbors NA and NB the cell has of the different competing
countries.

On the map of Europe, the above-described dynamics is
modified by geographic parameters. Further, we have to de-
scribe boundary conditions. These geographic parameters and
the boundary conditions are explained in Sec. IV. On the
torus (meaning the 200 × 200 cell grid has periodic boundary
conditions) there are neither geographic features nor boundary
conditions and it is thereby a model with no geography.

III. FREEZING TRANSITION ON THE TORUS

The model presented above is a Markov chain on the set of
configurations. As such, any realization of the dynamics will
for large enough time end up in some irreducible recurrence
class [22, Theorem 1.40].3

Clearly, any configuration of only one country occupying
all cells is an irreducible recurrence class (of just one configu-
ration) and one can ask the question if these are the only ones.

To investigate this we define a configuration to be freezing
if it is a recurrence class (of just one configuration, hence
in particular irreducible). That is, the probability of staying
in a freezing configuration is 1 and as such the dynamics
“freezes” if it reaches such a configuration. In particular, the
one-country configurations are freezing.

2One may argue that technically in order for the model to be
a cellular automaton the dynamics has to be local and since the
countries might be arbitrarily large the computation of power and
perimeter may depend on arbitrarily many cells which contradicts
locality. Since we see that our countries stay local we still call the
model a cellular automaton.

3We recall that a set of configurations being a recurrence class
means that the dynamics will stay in the class. The set is irreducible
if any configuration in the class can be reached from any other
configuration, see [22, Chap. 1].
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FIG. 3. Schematic of the battle of a corner cell (•) in a tiling
configuration with the defending country (top right) in light blue
and a strongest attacking country (top left) in light red. The dark
red shaded region (left darker region) is the attacking (red) cells in
the neighborhood. Note that the neighborhood (see also Fig. 2) can
be decomposed into the origin (meaning the corner cell) and four
regions congruent to the dark red shaded region (left darker region).
Hence, NR = 4NA + 1, with NR denoting the number of cells in a
neighborhood of radius R and NA denoting the number of attacking
cells of a strongest attacking country. The defending country has
exactly R + 1 cells more than a strongest attacking one [say in the
central column (in dark blue)], so ND = NA + R + 1 = NR

4 + R + 3
4 .

For small fluctuations p, there may be other freezing con-
figurations, but for p large there are none. Even, for large
enough p (p = 1 is trivially large enough) any other con-
figuration is transient, meaning that, with probability 1, the
dynamics eventually ends up in a one-country configuration.
Thus, there exists a smallest p, the critical pc, such that for
any p > pc the only irreducible recurrence classes are the
one-country configurations.

A necessary condition for the only irreducible recurrence
classes being the one-country configurations is that no other
configuration is freezing. We calculate here the minimal value
ptile for a tiling configuration (meaning all countries are k × k
squares for a k > 2R, see Fig. 3) to be nonfreezing. Trivially
then pc � ptile.

It is a simple calculation to see that for a tiling configura-
tion the cells that are easiest to conquer are the corners. All
countries have the same power (they all have the same shape),
and thus we need

(1 − p)ND < (1 + p)NA (2)

for such a tiling configuration to be nonfreezing. Here ND

(NA) denotes the number of neighbors of the corner of the
defending (respectively strongest attacking) country and we
suppress in the notation the dependence on the cell (i, j). A
counting argument (see Fig. 3) finds that ND = NR

4 + R + 3
4

and NA = NR
4 − 1

4 for integer R, where NR denotes the num-
ber of cells in the neighborhood corresponding to radius of
influence R (see Fig. 2). Thus, Eq. (2) gives

ptile = 2(R + 1)

NR + 2R + 1
.

For large R we have NR � πR2 and so ptile � 2/πR. For small
R the values of ptile are given in Table I.
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TABLE I. Minimal value ptile for a tiling configuration to be non-
freezing. We see that ptile decreases in R meaning that for larger R less
fluctuation is needed for the tiling configuration to be nonfreezing.

R 1 2 3 4 5 6 7 8

ptile 0.500 0.333 0.222 0.172 0.130 0.111 0.0976 0.0841

Finally, an empirical observation is that for large R (R =
6, 7, 8) the shapes of the countries in the simulations turn
out to be approximately hexagonal after many timesteps. A
configuration of hexagonally shaped countries is however
nonfreezing for p smaller than ptile, but it does signify a
metastable configuration. For the value R = 4 used in most
of the simulations, however, we do not see such hexagonal
shapes. Moreover, countries of different sizes coexist, (as we
also see on the European map in Fig. 1).

IV. GEOGRAPHICAL FEATURES

We now describe the geographical features of Europe taken
into account in the model. This differs from the work Ref. [9],
where only the coastline is incorporated. The parameters of
the model are summarized in Table II.

A. Coasts and boundary conditions

We implement the sea as cells that cannot be conquered.
Further, if a cell is on the perimeter of a country only because
it borders the sea [meaning its 3 × 3 square (see footnote 1 on
page 2) contains only sea and its own country], then we add
to the perimeter the sea-border parameter s ∈ [0, 1] instead of
1.

The parameter s models how much easier it is to defend
a country which has the sea instead of neighbors. In all of
the following we set s = 0.5 and therefore do not include it
as a parameter. Similarly, for the boundaries of the map we
choose the same parameter s—our main goal with penalising
the boundaries (which are beyond the Ural, Kaukasus and
Sahara) is to make sure that the boundary conditions do not
influence the center of the map.

TABLE II. Table of the parameters of the model, their symbols,
and their possible/standard values. The standard values are discussed
in Sec. VI.

Parameter Symbol Values Standard choice

Base parameters
Fluctuation p [0, 1] 0.2
Radius R [1, ∞) 4

Geographical parameters

River area Ar [0, ∞) 8
Mountain defense Dm [1, ∞) 2
Mountain perimeter Pm [0, 1] 0.5

FIG. 4. Map of Europe with a plot of the value m (color gradient)
of how mountainous the region is together with the rivers included
(white inland cells).

B. Rivers

Rivers are like the sea implemented as cells that cannot be
conquered and give the same effect to the perimeter as the sea,
through the parameter s (that we set to 0.5). Additionally, if a
country occupies both sides of a river, then it gets a bonus
to its area through the parameter Ar � 0 and the river no
longer counts as a border. Technically this is implemented as
follows. Suppose cell (i, j) is part of the river. If all cells in
the 3 × 3 square around cell (i, j) (see footnote 1 on page 2)
are either part of the river or belong to the same country, then
that country gets a bonus to its area of Ar .

The parameter Ar is supposed to capture the effect that
rivers work as trade routes as well as giving benefits to fertility
and infrastructure, as many civilizations arose around rivers
[23, p.1]. The location of the implemented rivers is seen in
Fig. 4.

C. Mountains

Mountains are implemented by a variable m(i, j) ∈ [0, 1]
at each cell (i, j) indicating how mountainous the cell is.
Mountains have two effects. The first effect is that when
calculating the local powers at cell (i, j) the country already
owning the cell gets a bonus parametrized by the parameter
Dm > 1, i.e., for the defending country D its local power is

�̃loc
D (i, j) = [(1 − m(i, j)) + Dmm(i, j)] × �loc

D (i, j).

Thus, a “fully mountainous” region with m(i, j) = 1 gets the
defensive bonus Dm.

The second effect is that the perimeter contribution of cell
(i, j) is weighted by

πw(i, j) = [1 − m(i, j)] + Pmm(i, j),

where Pm ∈ [0, 1] is a parameter. Here a “fully mountainous”
cell with m(i, j) = 1 contributes only Pm to the perimeter and
a “completely flat” cell with m(i, j) = 0 contributes 1 to the
perimeter. For a country C a cell (i, j) in C is in the perimeter
of C if at least one of the cells in the 3 × 3 square around the
cell (i, j) belongs to a different country (see Footnote 1 on
page 2). The total perimeter πC is then calculated as the sum
of πw(i, j) for all cells in the perimeter of C.
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The parameters Dm, Pm model how much easier it is to
defend mountainous territory. The parameter Dm models a
local effect—it is easier to defend, while Pm models a global
effect—the army of the country may be stationed elsewhere.
The values of m are plotted in Fig. 4.

V. METHODS

In this section, we briefly describe the sources of data
and how we prepare the data. The mountainous parameter is
defined via the elevation data from the GMTED2010 dataset
[24,25]. Major rivers in the EU are from the WISE Large
rivers and large lakes dataset [26] and rivers Don, Volga, and
Ural are from Ref. [27]. All data is changed to the Lam-
bert azimutal equal area projection using QGIS [28]. From
the elevation data, the value m is calculated as follows. For
each cell, the mean deviation from its height (in meters)
to the other eight cells in the 3 × 3 square around it (see
footnote 1 on page 2) is computed as the “curvature” κ (in
meters), then the mountainous parameter m is calculated as
m = 1 − exp(−κ/100). The exact function used here is not
that important. Essentially, we just need that m interpolates
between flat regions where m � 0 and mountainous regions
where m � 1. Finally, the resolution of the data has been
reduced to the 200 × 200 grid used. The rivers have been
hand-curated to fit the 200 × 200 grid reasonably. The total
number of land cells totals 20 787. The result can be seen in
Fig. 4. The code and datasets are available at Github [29] and
ISTA [30].4

The data of historical borders are from Refs. [18,19], which
in turn is based on Ref. [17]. The data consists of maps of
Europe divided into states at 5-year intervals in the period
1200–1790 (i.e., the years 1200, 1205, 1210, and so on). What
exactly constitutes a “state” is discussed in Ref. [17], where
also the dataset is described in more detail. The dataset does
not cover the full extent of the map we use, in particular for
the earlier years. It does however cover most of Europe (apart
from the earlier years, where northern Norway, Sweden and
Finland and Russia east and immediately west of the Urals
is not covered), see Fig. 8. The maps of Refs. [17–19] are
changed to the Lambert azimuthal equal area projection using
QGIS [28] and rasterized to the desired resolution using the
python package “geocube” [31]. By lowering the resolution
of the data to the desired 200 × 200 grid, some of the smaller
countries disappear, as their area is smaller than one cell.

VI. RESULTS

A. Simulations on the torus

To gauge the effect of the parameters p, R on the torus
we perform simulations for various values of p and R. As
a starting point for the investigations of the parameters we
choose (p, R) = (0.2, 4), which were found to give reason-
able dynamics on the European map. Interestingly, the choice
(p, R) = (0.2, 4) is just above the parameters of freezing for
the torus (see Sec. III).

4The simulations were conducted on a 2010 laptop with a dual-core
Intel Core i5-5257U processor and 8 GB RAM for about one year.

1. Fluctuations

In Figs. 5(a) and 5(c) we vary the fluctuations and plot
the average country size as a function of time respectively
the fluctuation. In Fig. 5(c) we see that at timestep number
1000 the average country size has a maximum (in p) around
p = 0.2. In particular, the model is nonmonotone in the fluc-
tuation p and as such, p cannot be interpreted as an effective
temperature of the model.

2. Radius

For completeness, we also study the effect of the radius.
These findings are shown in Fig. 10 in the Appendix. We see
that the average size of countries is monotone increasing in
the radius of influence R.

B. Simulations on the map of Europe

In this section, we vary the parameters to determine their
effects in the European geography. As a starting point, we
again choose (p, R) = (0.2, 4).

Fixing R = 4 the value p = 0.2 is close to the value
of fastest growth on the torus. On the European map,
however, the choice (p, R) = (0.2, 4) is very slow evolving
and barely above frozen [see Fig. 5(b)]. As for the geographi-
cal parameters (Ar, Dm, Pm) we investigate their effects in the
Appendix and find that reasonable choices are (Ar, Dm, Pm) =
(8, 2, 0.5). This leads us to the standard choice of values
(p, R, Ar, Dm, Pm) = (0.2, 4, 8, 2, 0.5) reported in Table II
that we use for most of our investigations.

1. Fluctuations

In Figs. 5(b) and 5(c) we vary the fluctuation size and plot
the average country area as a function of time respectively
the fluctuation. As for the torus we see a nonmonotone de-
pendence of the average country size in the fluctuation p.
For small fluctuation p (i.e., below � 0.8) larger fluctuation
leads to a larger average size at timestep 1000, but for large
fluctuation sizes the dynamics reverses.

Interestingly, the fluctuation p giving the maximal growth
is quite different for the European map compared to that of
the torus. This may be understood as follows.

On the map of Europe, some small island and peninsula
states exist forcing the average country size to be small, even
if mainland Europe is split between few large countries. This
effect explains why (for large times) the average country
size on the map of Europe is much smaller than that on the
torus [see Fig. 5(c)]. This additionally explains the difference
in which p’s give the largest average sizes. Namely, on the
European map, the average country size is essentially given
by the reciprocal of the number of such island and peninsula
states. The dependence of the number of such states on the
fluctuation p is a completely different dynamics than that of
the number of countries on the torus.

2. Geographical parameters

In the Appendix, we discuss the effects of the parameters
Ar, Pm, and Dm and show how the parameters Pm and Dm

contribute in two very different ways.
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FIG. 5. (a, b) Averaged areas of countries over time for different fluctuations p for simulations on the torus (a) and the map of Europe (b).
For the simulations on the torus the parameters are chosen to be R = 4 and for the map of Europe Ar = 8, Dm = 2, Pm = 0.5, R = 4. (c) Plot
of the average areas as a function of the fluctuation parameter p for both simulations on the torus and on the map of Europe at timesteps 20,
100, and 1000. All plotted data are averages over 20 simulations and the shaded regions are between the 5% and 95% quantiles. Notice the
very different behavior of the dynamics on the torus and the map of Europe (for large times) with the fastest evolution taking place for very
different values of p. In panel (c) the fastest evolution corresponds to maximum of the curves shown. In the inserts of panels (a) and (b) we see
that for very short times, the evolutions on the torus and map of Europe are very similar.

Noticeably the parameter Dm is the most influential. The
effect of changing the parameter Pm in comparison is much
smaller. Finally, the average country size is monotone increas-
ing in the parameter Ar .

C. Findings

We finally present the main findings. Namely, that the
model, with appropriate parameters, reproduces some of the
qualitative features of the cultural borders in Europe. In
particular, we find that mountainous regions have a higher fre-
quency of borders, which can be interpreted as higher cultural
diversity in mountains. This effect is also present in historical
data.

1. Locations of borders

In the following, we say that a land cell corresponding to
one country is a border if at least one cell in its 3 × 3 square
(see footnote 1 on page 2) belongs to a different country. In
Fig. 6 the frequency for each cell to be a border is shown and
in Fig. 7 we plot the correlation of the border frequency and
the mountainous parameter m.

We see that mountain regions are more frequently borders
and that larger areas that are flatter tend to have a very low
density of borders. In this way the model reproduces the idea
of mountains acting as natural borders, which we can also
confirm in historical data in Fig. 7 (see also the discussion
below). Further, this reflects the higher cultural diversity that
is often seen in mountainous areas [32].

Inspecting Fig. 6 one sees that the frequency of borders
close to rivers are significantly increased (compare also with
the snapshot Fig. 1), an effect observed in current subnational
borders in Ref. [33].

2. Historical comparison

We next compare to the historical data from Refs. [17–19].
In Fig. 7 we plot the correlation between border frequencies
and the mountainous parameter m also for the historical data
from Refs. [17–19]. The historical borders are of course corre-

lated since the different data points of Refs. [17–19] are only
separated by 5-year intervals. These correlations, in the form
of static borders, are the cause of the border frequency being 1
for many cells with low mountain parameters. However, there
is no inherent reason to use one year over another. We thus
plot in Fig. 7 the average border frequency of the historical
data and compare the simulated data to these. As with the sim-
ulated data, we see a correlation between border frequencies
and how mountainous an area is: More mountainous regions
are more often borders. The verifies historically the idea of
mountains acting as natural borders as we also see for our
simulated data.

In Fig. 8 we plot the border frequencies of the histori-
cal data from Refs. [17–19]. We see that the area that was
then the Holy Roman Empire has a very high density of
borders. This is because the Holy Roman Empire was not
considered a country in the source of the data [17–19].
Instead, all the smaller individual states, usually German,
that were part of the Holy Roman Empire were considered
(a phenomenon sometimes known as Kleinstaaterei [34]).
This digression illustrates the point that our model is not a
model for borders between territorial states, nor for the con-
crete historical borders of Europe, but rather for the cultures
that might to some extend predate the emergence of the terri-
torial state. In particular, one should not compare the specific
border frequencies in Fig. 6 from the model with the historical
data in Fig. 8.

3. Contested areas

Finally, we consider which cells are most contested. For
each square we find how often it was conquered. This is
then averaged over 20 simulations. The results are shown
in Fig. 9. We see that the average number of times a cell
changed countries is higher on the central European plain than
elsewhere, in particular in the mountainous regions in the Alps
and Caucasus. This might be connected to the, from one point
of view, less clear cultural borders on the central European
plain (as can be seen on old historical maps [35,36], although
one should be wary of context of such maps). Together with
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FIG. 6. Heatmap of the frequencies of when cells are borders (color gradient) at timesteps t = 100 (left) and t = 1000 (right). The
parameters are chosen to be p = 0.2, Ar = 8, Dm = 2, Pm = 0.5, R = 4 and the frequencies are computed over an average of 20 iterations.
We see that the border frequencies around rivers are significantly increased. Simultaneously, the figure shows the coarsening effect of the
model from timestep 100 to timestep 1000. Furthermore, comparing to Fig. 4 we see that mountain areas tend to have higher border frequency.

the above discussion on border location we reach the conclu-
sion that not only are mountain regions more often borders,
they are also much more stable borders.

VII. DISCUSSION AND OUTLOOK

We have seen that for suitable choices of the parameters,
the model efficiently reproduces many of the features of his-
torical political and cultural borders:

There is a high density of borders in mountain regions,
along rivers, and along clear and stable borders in mountain

regions and unclear and unstable borders on the large cen-
tral European plain. We underline that this is another way
(popularized in Ref. [10]) of approaching the problem of
culture spreading than what was done in Ref. [9]. Although
the model is designed in such a way borders in mountainous
regions and along rivers should occur more often, the results
show a (somewhat realistic) probabilistic model capturing the
naturalistic approach to border formation exists.

The model provides a simple framework for thinking about
how the geography plays a role in border formation, which
to some extent (on a statistical level) captures properties of

FIG. 7. (Left) A binned plot of border frequencies compared to the mountain parameter m at timestep t = 1000. The parameters are chosen
to be p = 0.2, Ar = 8, Dm = 2, Pm = 0.5, R = 4, and the frequencies are computed over an average of 20 iterations. The (red) line is the
average border frequency for bins of points with similar mountain parameter. The color gradient denotes the number of cells falling inside each
hexagonal region of the plot. (Right) A binned plot of historical border frequencies according to the mountainous parameter m. The historical
data is the average of the data from Refs. [17–19]. We see that the trendline of the historical and simulated match closely. However, looking
at the bins one can see that the historical data have many cells with border frequency 1 as opposed to the simulated data. One reason for this
difference is the correlated nature of the historical data.
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FIG. 8. The proportions of the time between 1200 and 1790 that
each cell was a border region (color gradient) using averaged ver-
sions of the historical maps from Refs. [17–19] discussed in Sec. V.
In particular, the dataset from Refs. [17–19] does not define the Holy
Roman Empire as a country. That leads to a high density of historical
borders in central Europe.

the interplay between geography and borders. Thus, the model
could provide some qualitative insight into the influence of
geography on the political map of Europe.

As discussed one could imagine adding additional geo-
graphical features, but this would come at the expense of
simplicity of the model.

Another point of discussion in regards to the model is that
we have left out the possibility of new “countries and cultures”
to form. With such a possibility one might be able to get a
continual dynamics instead of our coarsening dynamics and
then study the steady state as was done in Ref. [9].

FIG. 9. Heatmap of the average number of times each cell has
been conquered before timestep 1000 (color gradient). The scale is
cut-off at 30 as some squares have been conquered much more than
30 times. The parameters are chosen to be p = 0.2, Ar = 8, Dm =
2, Pm = 0.5, and the result is averaged over 20 simulations. Note that
highly mountainous regions like the Alps and the Caucasus are very
low on the scale whereas the central Eastern European plain tops the
scale.

FIG. 10. Averaged areas of countries over time on the torus (i.e.,
with periodic boundary conditions) for different values of the param-
eter R with the fluctuation fixed at p = 0.2. The results were averaged
over 20 iterations and the shaded regions are between the 5% and
95% quantiles. We see clearly how the rate of growth of countries
increases with R increases.

One potential way to incorporate the possibility of new
countries forming could entail a probability for fracturing of
large countries every timestep. However, this would introduce
more parameters and thus also come at the expense of simplic-
ity of the model. Additionally, many models of our inspiration
in statistical physics (see the review in Ref. [4]) do not include
the possibility of new countries, parties etc. forming. Thus,
our model could still function as a starting point for such
investigations.

FIG. 11. Plot of the averaged country size over time for dif-
ferent value of the river area bonus Ar . Here the parameters were
p = 0.2, R = 4, Dm = 2, Pm = 0.6 instead of the normal choice.
The results were averaged over 20 simulations and the shaded re-
gions are between the 5% and 95% quantiles. The rate of growth
of countries increases when the parameter Ar is increased (due to
countries forming around rivers).
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FIG. 12. Distribution of border frequencies for different choices of the parameters Dm and Pm. The parameters are chosen to be p =
0.2, R = 4, Ar = 0 and averaged over 20 iterations. (a) Plot as in Fig. 7. The shaded areas denote the 25% and 75% quantiles. Note that these
error bars indicate the variation of the points with a fixed (binned) mountain parameter and not the variations over iterations. (b) Violin plot.
The category “flat” corresponds to the 50% land cells with the lowest mountain parameter m. The remaining 50% are split evenly into the three
remaining groups. Note that the two parameters Dm and Pm are clearly different and that Dm is the more important of the two.
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APPENDIX: ADDITIONAL PLOTS

1. Dependence of country size on radius R

In Fig. 10 we plot the average size of countries for simula-
tions on the torus for various values of the radius of influence
R. As one could expect, the average size of countries increases
in as R increases. Effectively countries much smaller than R
do not have enough local power to defend themselves and
get conquered. This leads to a larger average country size for
large R.

2. Influence of the parameter Ar

To study the effect of the parameter Ar we plot in Fig. 11
the average country size against time for different values of
the parameter Ar . We see that countries tend to get larger
(and larger quicker) when the parameter Ar is large. This is
the behavior one would expect, as increased Ar gives coun-
tries around rivers more military strength to expand and get
larger.

3. Comparison of the two mountain parameters

We investigate whether the two mountain parameters have
different effects. To do this we plot the frequency of borders
compared to the mountainous parameter m. In Fig. 12(a)
we make a plot as in Fig. 7. In Fig. 12(b) we bin all
cells into four bins depending on the value m. Judging from
Fig. 12(a) it looks like only the mountain defence parame-
ter has a significant effect on the model, but in Fig. 12(b)
we see that the two mountain parameters have different
effects.
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