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Dynamics, statistics, and task allocation of foraging ants
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Ant foraging is one of the most fascinating examples of cooperative behavior observed in nature. It is
well studied from an entomology viewpoint, but there is currently a lack of mathematical synthesis of this
phenomenon. We address this by constructing an ant foraging model that incorporates simple behavioral rules
within three task groups of the ant colony during foraging (foragers, transporters, and followers), pheromone
trails, and memory effects. The motion of an ant is modeled as a discrete correlated random walk, with a
characteristic zigzag path that is congruent with experimental data. We simulate the foraging cycle, which
consists of ants searching for food, transporting food, and depositing chemical trails to recruit and orient more
ants (en masse) to the food source. This allows us to gain insights into the basic mechanism of the cooperative
interactions between ants and the dynamical division of labor within an ant colony during foraging to achieve
optimal efficiency. We observe a disorder-order phase transition from the start to the end of a foraging process,
signaling collective motion at the population level. Finally, we present a set of time delay ODEs that corroborates
with numerical simulations.
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I. INTRODUCTION

Ants have been an integral part of terrestrial ecosystems
since they appeared about 100 million years ago. There are
about 1016 ants living on earth today, and they perform many
crucial functions, such as aeration of soil, dispersal of seeds,
and decomposition of nutrients that facilitate the creation and
maintenance of biomes and habitats around the globe [1–3].
They have evolved to be highly diverse to better adapt to
local environments and conditions, with more than 15 700
named species and subspecies [4]. Due to their ubiquity,
ants have been studied extensively in the past hundred years.
Ants display a plethora of fascinating behaviors, e.g., highly
complex ways of communication using pheromones, division
of labor via a caste system, eusociality social structure, and
cooperative transport, to name a few [1,5–8].

Ants are known to perform random searches when foraging
for food, leaving behind characteristic zigzag trails [9–12].
Zigzag paths are also found in a variety of walking and flying
insects either following pheromone trails or moving up odor
plumes [13]. The movement of foraging ants, or insects in
general, can be described by the language of random walks
[14–18]. At a small to medium timescale, ants can be mod-
eled as persistent random walkers, i.e., correlated random
walks [19–23], while at longer timescales, they are better
described by Lévy walks [24–29]. A correlated random walk
(CRW) is a random walk strategy where a correlation is ex-
plicitly introduced between the directions of successive steps
(i.e., memory). However, the memory effects have a finite
range, and beyond certain spatial and temporal scales, CRWs
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typically become uncorrelated, i.e., diffusive. A previous
study has proposed a necessary criterion for distinguishing
true superdiffusion from correlated random walk processes
[30]. On the other hand, Lévy walks are superdiffusive in na-
ture stemming from the power-law distribution of the random
walk flight length, �, p(�) ∼ �−μ. A Lévy flight forager will
search intensely in a local region, and the occasional large
flight steps take the forager into faraway uncharted territory.
This characteristic makes Lévy processes highly useful as it
improves success rate under a wide range of search scenar-
ios in biological systems, such as collective searching, group
cohesion, and encounter rate [31–34].

By working cooperatively, ants can overcome their physi-
cal limitations and complete tasks that are otherwise impossi-
ble. They exhibit what is known as collective behavior where
individual ants following simple behavioral rules based on
local interactions result in an organized and complex collec-
tive motion at the population level [9,35–43]. The complexity
of the ant society derives from the level of local interac-
tions between individual ants, and generally, the larger the
colony size, the more advanced are the social traits [1,44–
47]. In small and more “primitive” ant societies (population
size 101 � N � 104), foraging tends to be solitary and rely
on a slow, individual recruitment, i.e., tandem running, where
a recruiter interacts directly with one or a few individuals
[48–51]. The larger and more advanced societies (102 � N �
107) rely on the more efficient mass recruitment, where one
recruiter interacts via a chemical trail with a large number of
potential recruits [35,41,52–54]. Pheromones are a chemical
secreted and deposited by insects, among other creatures, for
communication purposes, and ants are known to use multiple
pheromones with varying chemical compositions, strengths,
and lasting times to inform other ants about the quality of
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a food source [53,55,56]. This prevents recruiting too many
ants to a single food source and thus reduce overall food
intake for the ant colony. Between these two limits, one finds
the different types of recruitment such as leader scouting,
group recruitment, etc. The transition from tandem running
to mass recruitment is characterized by an increasing number
of nest mates that react to the recruiters’ signals and is highly
correlated with an increase in colony size [46,47].

Intriguingly, there is no central control in an ant colony that
regulates the number of workers engaged in each task. Instead,
ants will dynamically switch tasks through local interactions,
e.g., when more food is available, more foragers may choose
to work to collect food. Typically, ants can do a certain number
of interdependent tasks and and the numbers engaged in one
task depend on numbers engaged in another. This dynamic
allocation of tasks depends on the rate of local interactions be-
tween ants and the information shared via these interactions,
and controls how well a colony reacts to changes in envi-
ronment conditions and has direct implications on a colony’s
long-term survivability [5,6,43]. The better the allocation of
tasks, the more efficient is the ant colony, and the larger
population it can support. The larger and more advanced ant
colonies evolved caste system where there is a clear division
of labor, resulting in optimal efficiency [1,57,58].

Despite the wealth of empirical evidence on foraging
behavior in ants, there is currently a lack of quantitative syn-
thesis of how ants work together to forage food. In this paper,
we hope to address this gap in research knowledge by propos-
ing a model that incorporates ant movement, foraging strategy,
task allocation, pheromone trail, and memory effects in a uni-
fied manner. The paper is organized as follows. In Sec. II we
discuss three discrete random walk models for modeling ant
movement. The spatial and temporal statistics of the proposed
ant movement models are investigated in Sec. III. In Sec. IV
a numerical model consisting of three task groups within an
ant colony, foragers, transporters, and followers, is described
that models the dynamic process of task allocation in an ant
colony. In Sec. V we present a ODE model, analogous to the
SIR epidemic model, to describe the time evolution of the
three task groups of the ant colony. In Sec. VI we summarize
the findings of our ant foraging model and conclude with
some future directions. Our study sheds light on the interplay
between different mechanisms that enable collective foraging
in ants and bridges perspectives from myrmecology, statistical
physics, dynamical systems, socioecology, and organizational
behavior.

II. COMPUTATIONAL MODEL OF ANT MOVEMENT

In order to understand the implications of the types of
sinuous paths that an ant may make during foraging, we model
it as a discrete random walk in two dimensions. The turning
angles between steps have been shown to be important in the
efficiency of the foraging process [59,60], a feature which
we will investigate as well. As we are primarily interested in
foraging in a local region, i.e., short to medium timescales,
we will consider only correlated random walk in this work
[15,19]. The path of an ant is discretized into a series of
t temporal steps with t + 1 vertices, {r0, r1, . . . , rt }, sepa-
rated by a fixed step size |ri − ri−1| = �, and turning angles

θi ∈ [−�,�] for i = 1, 2, . . . , t , as shown in Fig. 1(b). Two
random walk step vectors differ only in their angular direc-
tions. The turning angles θi between successive step vectors ri

and ri+1 are assumed to be i.i.d. random variables consisting
of two independent processes, θi = UiVi, where Ui = ±1 is a
random variable that determines the probability of turning left
or right, Vi is a random variable that is uniformly distributed
between [0,�], and � is the maximal directional deviation,
an adjustable parameter.

In this work we will consider three distinct ant movement
by changing the probabilities of turning left or right at each
time step. In the simplest case, which we term a simple ran-
dom walk (SRW), the turns are uncorrelated from each other,
i.e., memoryless, and

P(Ui = +1) = p, if ant turns left (L), (1)

P(Ui = −1) = 1 − p, if ant turns right (R), (2)

which is invariant from step to step. For our work, we will
consider only an unbiased simple random walk, i.e., Brownian
random walkers, in which case we set p = 1/2.

Since foraging ants have a distinctive zigzag path [12,13]
as illustrated in Fig. 1(a), we expect successive step orienta-
tions to be anticorrelated, i.e., a right turn is more likely to
be followed by a left turn. Within our formalism, we can add
correlations to the random walk by modifying the generating
function of U . For the simplest case of CRW, which is a first-
order Markov chain [15], the probability distribution for the
(i + 1)-th step depends only on the ith step. The chain is tem-
porally homogeneous, i.e., P(U2 = u2|U1 = u1) = P(Ui+1 =
u2|Ui = u1) where ui = ±1, with transition probabilities

P(Ui+1 = ±1|Ui = ±1) = γ , (3)

P(Ui+1 = ±1|Ui = ∓1) = 1 − γ , (4)

where 0 < γ � 1/2 is a parameter that controls how anticor-
related the current step is with the previous step. The evolution
of the probabilities to turn left or right for the first few time
steps is shown in Fig. 1(c), with initial conditions given by
P(U1 = ±1) = 1/2. In this work, we will term this type of
movement the first-order correlated random walk (FCRW). As
γ → 1/2, the statistics of the FCRW becomes identical to the
SRW defined earlier.

CRW can become more complex by increasing its memory,
in which case the probability distribution for the (i + 1)-th
step will depend not only on the ith step, but the (i − 1)-th
step, and so on, P(Ui+1 = ui+1|U1 = u1,U2 = u2, · · · ,Ui =
ui ). This changes the statistics of the random walk and leads to
nontrivial asymptotic behavior [14,21,22]. In order to increase
the amount of anticorrelation between successive steps, we
propose a long-range correlated random walk that we term the
zigzag walk (ZW), with the following sets of rules: If Ui = ±1
and P(Ui = ±1) � 1/2, then

P(Ui+1 = ±1) = γ , P(Ui+1 = ∓1) = 1 − γ . (5)

If Ui = ±1 and P(Ui = ±1) < 1/2, then

P(Ui+1 = ±1) = γ P(Ui = ±1), (6)

P(Ui+1 = ∓1) = 1 − γ P(Ui = ±1). (7)
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FIG. 1. Modeling ant movement as a discrete random walk. (a) Distinctive zigzag ant paths of different amplitudes. Image is courtesy of
Ref. [11]. (b) A discrete ant path consist of t temporal steps with t + 1 vertices, {r0, r1, . . . , rt }, separated by a fixed step size |ri − ri−1| = �

and turning angles θi ∈ [−�, �]. Negative θi indicates left turn (L), while positive θi indicates right turn (R). (c) A tree diagram showing the
turning probability PL/R = P(Ti = ±1) of the first three time steps of the first-order correlated random walk (FCRW). Note that 0 � γ � 0.5.
(d) A tree diagram showing the turning probability PL/R of the first four time steps of the zigzag walk (ZW). (e) Two-dimensional discrete
random walks of 20 time steps for SRW (red), FCRW (yellow), and ZW (purple), three sample trails for each type of random walk. There is
noticeable directional persistence in FCRW and ZW.

The probabilities to turn left or right for the first few steps
are shown in Fig. 1(d). The probability of an ant making k
consecutive turns in a single direction is γ k , which quickly
approaches 0 as k increases. This leads to a correlated ran-
dom walk with finite memory that penalizes consecutive
turns in the same direction heavily [21], i.e., ZW pro-
motes turn sequences with alternating left and right turns
such as · · · LRLRLRLR· · · and suppresses sequences such
as · · · RRRRLLLL· · · . Some sample paths generated using
SRW, FCRW, and ZW are shown in Fig. 1(e), and it is evi-
dent that FCRW and ZW demonstrate significant directional
persistence.

In our simulations, ants are represented by self-propelled
point dots with a constant speed of v0 = 0.6 unit length
per unit time with an interaction-vision range of δ = 0.6
unit length. This relative scale of the ant size, speed, and
interaction-vision range is based on a previous study on the
visual capabilities of ants [61]. For each simulation, the ants
can move freely in two-dimensional (2D) real space, R2, ac-
cording to the one of the ant movement models: SRW, FCRW,
or ZW. At each temporal step, the position of every ant is
updated based on the chosen ant movement model.

III. SPATIAL AND TEMPORAL STATISTICS
OF ANT MOVEMENT

By looking at the spatial and temporal statistics of the
random walkers, we can better understand the characteristics
of the sinuous trails produced by the different ant movement

models. We generated 2D ant trails using FCRW and ZW and
compared them with the time series data collected by Lent
et al. [12]. The case of SRW is not considered as it does not
conform with empirical data. Since the ants in our simulations
do not have a goal, the direction of motion is defined by the
direction of the line that cuts the sinuous ant trail into two
equal parts. The goal angle, ζi, defined relative to the direction
of motion, is the running total of the turning angles θi:

ζi =
i∑

k=0

θk. (8)

The amplitude of the CRWs can be varied by the anticor-
relation parameter γ : larger γ leads to bigger amplitudes
[see Figs. 1(a) and 2]. The variations in the goal angle is
approximately sinusoidal with a period that increases with
γ . Qualitatively, we see that both FCRW and ZW produce
paths that are zigzag in nature and reach a high similarity with
experimental results of the foraging paths of wood ants [12].

The mean resultant length of a 2D random walk is given by

ρ = 〈cos θ〉 =
∫ �

−�

dθ f (θ ) cos θ, (9)

where f (θ ) is the probability density function (pdf) for the
turning angles [14]. The value of the mean resultant length re-
flects the amount of directional persistence of a random walk.
For a simple random walk where � = π and f (θ ) = 1/2π ,
we find that ρ = 0. In the extreme case, when the pdf is a
Dirac δ function, i.e., f (θ ) = δ(θ ), the resulting walk is a
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FIG. 2. Temporal statistics of ant movement. (a) Sample sinuous ant trails of 20 time steps generated by FCRW (left panel) and the
corresponding goal angle (right panel) as a function of time step for � = 60◦ and γ = 0.45 for top row (large), 0.25 for second row (medium),
and 0.1 for bottom row (small). (b) Sample ant trails of 20 time steps (left) generated by ZW and the corresponding goal angle (right) as a
function of time step for � = 60◦ and γ = 0.49 for top row (large), 0.3 for second row (medium), and 0.1 for bottom row (small).

straight line and ballistic in nature, with ρ = 1. For a given set
of parameter values, � and γ , we find that the mean resultant
lengths for FCRW and ZW are almost identical. As seen from
Fig. 3(a), ρ does not appear to depend on γ , i.e., ∂ρ/∂γ = 0,
and has a quadratic dependence on the � given by

ρ(�) = 1 − 3.9e−4� − 4.1e−5�2, (10)

which approaches 1 as � → 0 as expected.
All CRWs possess a characteristic timescale τ associ-

ated with the exponentially decaying correlations present in
Markov processes. The dimensionless two-point correlation
function of a random walk is defined by

C(| j − i|) = 〈r j · ri〉
〈r jri〉 = e−| j−i|/τ , (11)

where i, j are integer indices representing time step and r j =
||r j || is the magnitude of the position vector r j [14]. The cor-
relation functions for FCRW and ZW are shown in Fig. 3(b),
where we find that the correlation time of ZW to be larger
than that of FCRW for any given � and γ , τZW > τFCRW,
which is expected since ZW is a CRW with longer memory
than FCRW.

A random walker is known to return multiple times to
previously visited territories, a phenomenon known as over-
sampling [14]. The territory covered by a random walker is a
well-studied problem dating back to the great mathematician
G. Pólya, who established the mathematical framework of

studying random walks on a lattice [62,63]. Let S1(t ) be the
number of distinct sites visited by a single (Brownian) random
walker in a t-steps walk. S1(t ) provides a direct measure of
the territory covered by a single foraging ant. In this work,
we will consider only the case of spatial dimension d = 2.
The expected value of S1(t ), i.e., 〈S1(t )〉, is discussed by
Dvoretzky and Erdős [62–64], who found that

〈S1(t )〉 ∼ πt

log t
as t → ∞. (12)

In writing the tilde (∼), we emphasize only the scaling relation
and ignore all numerical coefficients.

Larralde et al. addressed the problem of evaluating the
number of distinct sites covered by a set of N-independent
(Brownian) random walkers in d dimensions, 〈SN (t )〉, initially
placed at the origin [65–67]. When there are N random walk-
ers searching for food collectively, not only must each forager
not oversample the sites it has previously visited, it also must
not oversample the sites visited by the other N − 1 walkers.
〈SN (t )〉 is a useful concept in ecology, chemical reactions,
and spreading phenomena and in situations where there are
multiple foragers in the system, such as the ant colony studied
in [25]. It is evident that 〈SN (t )〉 is not related simply to
〈S1(t )〉. The asymptotic form of 〈SN (t )〉 for N 
 1 depends
on the dimension of the lattice, d , as well as the timescale
of foraging, with three distinct time regimes. For d = 2 and
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FIG. 3. Spatial statistics of ant movement. (a) The mean resultant length, ρ, for FCRW and ZW is almost identical for any set of � and γ .
ρ has a quadratic dependence on �. Inset: ρ does not depend on γ . (b) The dimensionless two-point correlation function of a random walk for
FCRW and ZW. τZW = 13.86 and τFCRW = 13.17. 〈Sn(t )〉 is the average number of distinct sites visited by i random walkers in a t-steps walk,
where n = 1 or N [see Eqs. (12) and (13)]. Plot of 〈Sn(t )〉 and its corresponding fitted curve for FCRW and ZW under different parameter
values: (c) 〈S1(t )〉 (average of 30 simulations), (d) 〈S50(t )〉 (average of 15 simulations), and (e) 〈S100(t )〉 (average of 15 simulations). (f) Plot of
〈S100(t )〉 and 〈A100(t )〉 [see Eq. (14)] for ZW with � = 60◦ and γ = 0.2 under different resolution R. Set of visited sites, SN (t ), as a function
of time, t , for � = 60◦, γ = 0.2, and R = 1/6: (g) SRW (N = 50), (h) FCRW (N = 50), (i) ZW (N = 50), (j) SRW (N = 100), (k) FCRW
(N = 100), and (l) ZW (N = 100).
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log N < t < eN , it is known that

〈SN (t )〉 ∼ t log

(
N

log t

)
. (13)

At very long times (t > eN ), the random walkers are so
sparse that they can be treated independently, in which case,
〈SN (t )〉 ∼ N〈S1(t )〉.

At timescales comparable to the correlation time τ , 〈S1(t )〉
and 〈SN (t )〉 depend on the specific details of the CRW. At
timescales much larger than the correlation time, i.e., t 
 τ ,
all CRWs will appear Brownian, i.e., uncorrelated. Hence, we
expect the general scaling behavior of 〈S1(t )〉 and 〈SN (t )〉 for
CRWs to be given by Eqs. (12) and (13), respectively. For
a persistent random walker in two dimensions that cannot
reverse direction, it has been shown that mean number of
distinct sites visited scales as Eq. (12) as expected [68].

To facilitate the calculation of 〈S1(t )〉 and 〈SN (t )〉, we tile
our 2D space by regular grid squares of length a, including
the square centered at the origin, with the center of each
square taken as a lattice site. Each time an ant wanders any-
where inside a grid square, we count the associated lattice site
as visited. For the case of N ants, new territory is counted
only when a site is visited for the first time. It is useful to
define the resolution, R, as the inverse of the lattice spacing
a. The results of 〈S1(t )〉 and 〈SN (t )〉 are shown in Figs. 3(c),
3(d), and 3(e) for � = 30◦ or 60◦, γ = 0.2, and R = 5/3. The
figures provide intuitive views of how foraging ants explore
area around their starting spot. The numerical data can be
fitted by either Eqs. (12) or (13), and generally, we find that
the proportionality constant increases with decreasing �. For
most of the parameter values tested, we find that ZW results
in a slightly larger number of distinct sites visited, implying a
higher foraging efficiency as compared to FCRW.

The mean total foraging area is given by [69]

〈Ai(t )〉 = a2〈Si(t )〉, (14)

where n = 1 or N . As we increase the resolution, the number
of distinct sites visited Si(t ) will increase as shown in Fig. 3(f).
Due to the vision range of the ant as well as the size of the
ant, we introduce a lower bound to the length of the square,
a � 0.5. We find that this allows for a sensible interpretation
of the foraging area.

Figures 3(g) to 3(l) show the geometry of the set of visited
sites, SN (t ), from our numerical simulations for the different
ant movement models with � = 60◦, γ = 0.2, and R = 1/6.
At very small times, there are more ants than accessible sites,
and the boundary of the set SN (t ) grows isotropically in a
disklike shape with relatively smooth boundary. As the ants
forage further from the origin, eventually the number of ac-
cessible sites outgrows the number of ants, N , and not all the
accessible sites are visited. At longer times, the ants become
more isolated and the boundary of the visited set becomes
progressively rough with noticeable fractal patterns [65,66].

IV. DISORDER-ORDER TRANSITION IN FORAGING ANTS

We consider the dynamics of the division of labor within
an ant colony during foraging using mass recruitment, i.e.,
pheromone trails, and investigate the effects of cooperative in-
teractions between foraging ants and how these may influence

the emergent behavior observed in such systems [5,55,70]. Or-
ganisms such as social insects typically exhibit some form of
“order-disorder” transitions whereby aggregations of insects
go from an initial “disordered” state to a final coordinated
collective state such as foraging transition in the Pharaoh’s
ant in [71], chaotic to periodic transitions in ants [39], and
density-dependent transition in [72,73]. Our ant colony is as-
sumed to be homogeneous, with no caste system, i.e., identical
ants. To this end, we classify ants into three task groups, i.e.,
population compartments, depending on their roles, namely,
foragers, transporters, and followers [6,39,43]. Foragers are
responsible for the scouting of food; transporters, aside from
transporting food, deposit pheromone to recruit and guide
other ants en masse to the food source; followers follow
pheromone trail to the food source. During the the course of
a foraging cycle, the role of individual ants will evolve based
on local behavioral rules: A forager can turn into a transporter
if it discovers a food source, or it can become a follower if
it encounters a pheromone trail. A transporter will turn into
follower after it deposits food at the nest, while a follower
will turn into a transporter once it reaches the food source.
Eventually, all the ants are either followers or transporters
moving along the pheromone trail.

Foraging ants can memorize the location of their nest using
landmarks and path integration and can therefore traverse
home from the food source with little difficulty [37,54,55,74].
In fact, ants need to memorize only some parts of their
spatial movement to be able to retrace their way back to
the nest [51,75,76]. Consider the sinuous path of a forag-
ing ant given by � = {x0, x1, . . . , xt }, where x0 and xt are
the locations of the nest and the food source, respectively.
In this work we assume that each ant only memorizes a
third of its positional information over time, including the
locations of the nest and the food source, i.e., �1 = (�) =
{x0, x3, . . . , xk, xk+3, . . . xt }. The resultant route �1 is a sim-
pler path with less meandering, and hence the transporter ant,
through retracing its steps, can return to the nest in a shorter
time.

Transporters will deposit a pheromone to transmit infor-
mation to other foraging ants about the presence of the food
source. In our study, we only consider a single kind of
pheromone because there is only one limitless food source
and the route between the nest and the food source is simple.
The density of the pheromone reflects the the credibility of a
path: when encountering multiple pheromone trails, ants will
choose to move along the one with the largest concentration
of pheromone [53–55]. The pheromone trails will shift with
time, eventually stabilizing into a single optimal path between
the nest and the food source, which is a straight line in our
setup.

We can understand why the pheromone trails in our model
are self-optimizing as follows: The operation  defined above
is an example of coarse graining, which is a procedure that
removes less relevant features from a physical system [77].
If we repeat this coarse-graining operation a sufficiently large
number of times on any path �, eventually we will be left
with a straight path connecting the nest and the food source.
In reality, the picture is more complicated as there are multiple
pheromone trails from different ants that interact with one
another. There is a fine interplay between the coarse-graining
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FIG. 4. Disorder-order phase transition in foraging ants. We simulate N = 100 ants in a box with reflective boundaries. Ants can take on
the role of foragers (F ), transporters (T ), and followers ( f ). At t = 0, ants (all foragers) leave the nest in random directions in search of food.
(a) Snapshot of the position of the ants at t = 1000. (b) The pheromone trail between the nest and the food source is well established by
t = 4000. (c) By t = 10 000, most of the ants are moving along the pheromone trail as either transporters or followers between the nest and
the food source. Time evolution of the (d) orientation order parameter φi [see Eq. (16)] and (e) nematic order parameter ψi [see Eq. (17)] from
three simulations using SRW, FCRW, and ZW. Initially, the ant colony is in a disordered state, i.e., φi ≈ 0 and ψi ≈ 0.64. The order parameters
start to increase rapidly at around t = 2000 for FCRW and ZW, while the rise in SRW starts at t = 6000 and at a slower rate. By t = 10 000,
simulations from FCRW and ZW attain φi ≈ 0.785 and ψi ≈ 1, indicating that the ant colony is in an ordered state.

effects of memory and behavioral rules from pheromone trail
interactions. Eventually, the route of the transporter ant con-
verges to a straight line for our setup, which is the optimal
path to travel between the nest and the food source.

Our simulation box is a 2D area of size A = L × L (L =
300 unit length) with reflective boundaries, consisting of an
ant nest with population N = 100 and an (inexhaustible) food
source. The angle that the line connecting the nest and the
food source makes with the horizontal axis is π/4 ≈ 0.785 as
seen in Fig. 4(a). This set of food foraging simulations was
done with parameters set to γ = 0.1 and � = 50◦.

The position of the αth ant at time step i during foraging
is given by x(α)

i = (x(α)
i , y(α)

i ), where i = 0, 1, . . . , t and α =
1, 2, . . . , N . The orientation angle of the αth ant at the ith step
is defined by

φ
(α)
i = arctan

(
y(α)

i − y(α)
i−1

x(α)
i − x(α)

i−1

)
. (15)

The orientation angle is defined over the range (−π/2, π/2)
as we do not distinguish an ant that is moving in the v̂ direction
from another that is moving in the −v̂ direction. This implies
an equivalence in the velocity v̂ ≡ −v̂. The orientational order
parameter, which is the average orientation angle of the whole
ant colony at time step i, is given by

φi = 1

N

N∑
α=1

φ
(α)
i . (16)

At the start of the foraging process, all the ants are foragers
and they set off in different random directions from the nest in
search of food. The orientational order parameter φi fluctuates
about zero, indicating that the ant colony is in a disordered
state. In the early stages of the foraging process, only a few
ants are able to locate the food source. When a forager locates
a food source, it becomes a transporter and starts bringing
food back to the nest. Note that the physical process of trans-
portation of the food is not in the scope of this research [8],
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and only the movement of ants is considered. As more ants
discover the position of the food source, a pheromone trail
begins to form which helps to spread spatial information about
the food source. Over time, many ants begin to move along
an increasingly optimized and well-defined pheromone path
and the orientation order parameter φi slowly approaches π/4
as expected. Overall, we observe a disorder-order transition
from an initial random state φi ≈ 0 to an emergent collec-
tive motion where φi ≈ π/4. This transition happens much
faster for simulations ran using FCRW and ZW as seen from
Fig. 4(d), generally reflecting the higher efficiency of foraging
and better division of labor for both FCRW and ZW.

Another useful order parameter to consider is the 2D ne-
matic order parameter ψi, which is the average normalized
velocity of the ant colony of N ants at time step i (i =
0, 1, . . . , t), with the equivalence in velocity v̂ ≡ −v̂, i.e.,
mathematically equivalent to the director of a nematic liquid
crystal [78]:

ψi = 1

Nv0

∣∣∣∣∣
N∑

α=1

v(α)
i

∣∣∣∣∣ = 1

N

∣∣∣∣∣
N∑

α=1

v̂(α)
i

∣∣∣∣∣. (17)

The order parameter space is RP1 where the antipodal points
of the unit circle are identified [77]. Note that v̂(α)

i = v̂
(α)
i,x i +

v̂
(α)
i,y j.

In the early stages of foraging, the average normalized ve-
locity ψi fluctuates about 2/π ≈ 0.64, indicating that the ant
colony is in a disordered state. Since the angular distribution
of the ants is roughly uniform at the start, we find that

1

N

N∑
α=1

v̂
(α)
i,x ≈ 1

π

∫ π/2

−π/2
sin θ dθ = 0, (18)

1

N

N∑
α=1

v̂
(α)
i,y ≈ 1

π

∫ π/2

−π/2
cos θ dθ = 2

π
, (19)

and hence, the nematic order parameter ψi is 2/π ≈ 0.64.
The nematic order parameter ψi starts to increase shortly after
the first ant locates the food source. After a pheromone trail
between the nest and food source is established, most ants are
moving along this route transporting food. This orderliness is
reflected in the average normalized velocity which asymptotes
to one over time, ψi → 1 as i grows, indicating the emergence
of an ordered collective motion at the population level [39,71].
As seen from Fig. 4(e), ψi rises significantly faster in simula-
tions with ants performing either FCRW or ZW as compared
to SRW, consistent with what we saw in φi.

From the time evolution of the orientation order parame-
ter φi and the nematic order parameter ψi, one can observe
the disorder-order transition in the motion of the ants. The
growth in the order parameters is due to the discovery of
the food source by the first ant and the subsequent for-
mation of a pheromone trail. The time at which the order
parameter changes nontrivially is commonly known as the
first-passage time (FPT), or first hitting time, in stochastic
processes [22,79,80], and indicates when a stochastic event
occurs for the first time. Due to the random nature of this time,

FIG. 5. Mean first-passage time (MFPT) as a function of the
maximal directional deviation, �, and the anticorrelation parameter,
γ . MFPT is defined as the average time an ant colony first finds the
food source; each data point (vertex of surface) is the average from
30 simulations.

it is more meaningful to look at the mean first-passage time
(MFPT) instead, which in our case, is the average time taken
for the first ant from the colony to find the food source.

We calculated the MFPT for both FCRW and ZW at differ-
ent combinations of the maximal directional deviation, �, and
the anticorrelation parameter, γ , by averaging the FPT from
30 simulations. In our study, we set � ∈ [π/6, π/2] (radian)
and γ ∈ [1/10, 1/2]. When � is small, e.g., � = π/6, an
ant can turn by only a small angle from step to step and the
resultant ant path is relatively straight. As we increase �,
e.g., � = π/2, the ant can rotate significantly and the path
becomes sinuous. γ controls how biased the probabilities of
turning are, from totally unbiased at γ = 1/2 to extremely
biased at γ = 1/10. The full results for the MFPT is shown
in Fig. 5. SRW is not shown because it performs significantly
worse than FCRW and ZW.

Intriguingly, ZW has a smaller MFPT than FCRW for most
of the range of parameters analyzed in our study, suggesting
the superiority of ZW over FCRW for food foraging. The
long-range correlations of ZW result in paths that are less
sinuous and reduce the issue of oversampling. The difference
between the two random walks is more apparent when the turn
parameter γ is large, as oversampling becomes increasingly
problematic, particularly for FCRW. Under these conditions,
FCRW becomes similar to SRW, while ZW still maintains
characteristics of a zigzag walk with a good degree of direc-
tional persistence.

V. DYNAMICAL MODEL FOR ANT FORAGING

Ordinary differential equations (ODEs) are used to model
the dynamics of a wide variety of systems, from the epidemic
spreading to the regulations of phenotypes circuits [81–83].
These theoretical models provide an intuitive and insightful
way to understand the evolution of complex systems, and offer
predictions of different outcomes as the parameters are varied.
Here we propose a simple theoretical model to understand
the division of labor during ant foraging [55,84], analogous
to the famous SIR epidemic model, which tracks the number
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of ants in each of three groups: foragers (F), transporters (T),
and followers (f), given by

dF (t )

dt
= − AF (t )H (t − t1)︸ ︷︷ ︸

F to T

− B
(
1 − e− T (t )

T0
)
F (t )︸ ︷︷ ︸

F to f

, (20)

dT (t )

dt
= AF (t )H (t − t1)︸ ︷︷ ︸

F to T

+ D
(
1 − e− f (t−t0 )

E
)︸ ︷︷ ︸

f to T

− C
(
1 − e− T (t−t0 )

E
)︸ ︷︷ ︸

T to f

, (21)

df (t )

dt
= B

(
1 − e− T (t )

T0
)
F (t )︸ ︷︷ ︸

F to f

+C
(
1 − e− T (t−t0 )

E
)︸ ︷︷ ︸

T to f

− D
(
1 − e− f (t−t0 )

E
)︸ ︷︷ ︸

f to T

, (22)

where H (t − t1) is the Heaviside step function, t1 is the time
it takes for the first ant to find the food source, i.e., the first-
passage time, T0 is the average number of transporters needed
to form a pheromone path, t0 is the average commute time
between the food source and the nest, A is the probability
of foragers finding the food source, B is the probability of
foragers finding a pheromone trail, C is the average rate at
which transporters turn into followers, D is the average rate at
which followers turn into transporters, and E is a number that
reflects the effects of saturation for transporters and followers
[Fig. 6(a)].

Initially, all the ants in the colony are foragers: F (0) = N ,
T (0) = 0, and f (0) = 0, and this continues until t = t1. This
is enforced by the presence of the Heaviside step function.
After t � t1, F , T , and f start to evolve with time but overall,
the total ant population is time invariant, i.e., F (t ) + T (t ) +
f (t ) = N . Our ant model has no probabilistic component,
except for the assumption that the population is large enough
so that transitions based on average rates can be used. A
forager can turn into either a transporter once it finds the food
source at a constant rate of AF (t ) or a follower after finding
the pheromone at a rate B(1 − e−T (t )/T0 )F (t ). The transition
rate into follower will asymptote to BF (t ) as T (t ) becomes
large because even though pheromone could accumulate in-
finitely in our simulations, most of it is confined to a small
region between the nest and the food source, and hence the
chance of a forager finding the pheromone trail is necessarily
bounded. A transporter can turn into follower at a rate of
C(1 − e−T (t−t0 )/E ) and the reverse rate is D(1 − e− f (t−t0 )/E ).
These terms provide a self-regulatory negative feedback loop
to the population of transporters and followers [40,70].

The time lag of t0 reflects the time to commute between the
food source and the nest. ODEs with time lag are known as
time delay ordinary differential equations (TDODEs) and are
frequently used in biomedical science and engineering [85].
Figure 6(b) reveals excellent agreement between the deter-
ministic ODE model and the numerical simulation, which is
stochastic in nature. The trajectories from the stochastic nu-
merical simulation are continuous but nondifferentiable, while
the solutions to the set of ODEs are smooth and differentiable.
A new set of ODE parameters is required to fit each real-
ization of the numerical simulation. The number of foragers

FIG. 6. A simple model of ant foraging. (a) Three task groups in
our model: foragers (F ), transporters (T ), and followers ( f ). (b) One
realization of the numerical model (F = cyan, T = green, and f =
magenta), which is stochastic in nature, is shown. Our deterministic
ODE model (F = black, T = red, and f = blue) can fit the main
qualitative features of the numerical simulation.

decreases monotonically from N = 120 to zero as foragers
are continuously converted into either transporter or follower
(F (∞) ≈ 0). Once a pheromone trail is established, most
ants are moving along this route transporting food, alternating
roles between transporter and follower, and generally reflect-
ing the ordered collective motion at the population level.
The trajectories of T and f grow with time and asymptote
to a value of approximately N/2 = 60, and we observe that
T (∞) + f (∞) ≈ N .

The small-amplitude modulations in the trajectory of T
and f are roughly the same size and out of phase with each
other, with the amplitude and period controlled by the model
parameters C, D, and E . As the population of T increases,
the rate of transition out of T increases correspondingly until
dT/dt eventually becomes negative and T starts to drop. On
the other hand, as f decreases, the rate of transition out of f
decreases until df /dt eventually becomes positive, at which
point f starts to grow again. The interplay between T → f
and f → T transitions leads to oscillatory behavior in the
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population of T and f . The amplitude modulations in the
numerical simulation stem from inhomogeneity in the spatial
distribution of transporters and followers on the pheromone
trail. Since the ants move at constant speed, once they stabilize
their motion on the pheromone trail, their relative positions are
fixed, and any spatial inhomogeneity will persist indefinitely.

VI. CONCLUSION

In this work, we investigate the foraging behavior ob-
served in ant colonies, using a combination of mathematical
and numerical techniques. To understand the significance of
zigzag patterns in ant trails, we present two realistic ant move-
ment models, FCRW and ZW, and obtain the temporal and
spatial statistics of these discrete correlated random walks.
We construct a realistic ant foraging model that incorpo-
rates simple behavioral rules within three task groups of the
ant colony (foragers, transporters, and followers), pheromone
trails, and memory effects. We simulate the foraging cycle,
which consists of ants searching for food, transporting food,
and depositing chemical trails to recruit and orient more ants
(en masse) to the food source. Our analyses show that ants
adopting ZW has a higher efficiency in foraging based on a

smaller mean first-passage time, faster disorder-order transi-
tion, and larger foraging area. Finally, we present a set of
TDODEs, similar to the SIR epidemic model, that models
the time evolution of the three task groups in an ant colony
during foraging which corroborates with numerical simula-
tions. The basic ant foraging framework introduced here can
be readily extended to model more realistic factors: larger
search range, random walks with reorientation events (i.e.,
saccade-like turns), Lévy walks, egocentric and geocentric
navigation, multiple food source, multiple pheromones, trail
longevity (i.e., evaporation), effects of obstacles, visual mem-
ories, effects of humidity, among others.
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