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Limited efficacy of forward contact tracing in epidemics
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Infectious diseases that spread silently through asymptomatic or pre-symptomatic infections represent a
challenge for policy makers. A traditional way of achieving isolation of silent infectors from the community
is through forward contact tracing, aimed at identifying individuals that might have been infected by a known
infected person. In this work we investigate how efficient this measure is in preventing a disease from becoming
endemic. We introduce an SIS-based compartmental model where symptomatic individuals may self-isolate and
trigger a contact tracing process aimed at quarantining asymptomatic infected individuals. Imperfect adherence
and delays affect both measures. We derive the epidemic threshold analytically and find that contact tracing alone
can only lead to a very limited increase of the threshold. We quantify the effect of imperfect adherence and the
impact of incentivizing asymptomatic and symptomatic populations to adhere to isolation. Our analytical results
are confirmed by simulations on complex networks and by the numerical analysis of a much more complex
model incorporating more realistic in-host disease progression.
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I. INTRODUCTION

Containing the propagation of infectious diseases that
are able to spread silently through asymptomatic or pre-
symptomatic infections is particularly challenging [1–5]. A
traditional way of achieving isolation of silent infectors with-
out applying restrictive policies to entire populations (such
as lockdowns) is through the so-called contact tracing (CT)
measure, considered in the past to cope with outbreaks of
SARS [6,7], Foot and Mouth disease [8], smallpox [9,10],
tubercolosis [11], HIV [12], Ebola [13,14], SARS-CoV-2
[15]. Being at higher risk of infection, the contacts of a known
infected person are retrieved and recommended to quarantine.
However this measure still constitutes a considerable social
burden, as it may isolate also healthy individuals from the
community and requires intense logistical efforts for tracing
contacts—a particularly difficult task for airborne diseases
like COVID-19. As fatigue sets in and adherence to iso-
lation mandates and to pharmaceutical interventions fades
[16], it is not clear under what conditions it is convenient
to simplify the policies and rely only on case-isolation and
vaccination strategies or when, instead, implementing CT is
crucial for epidemic control. This is the question we tackle in
this work.

The success of contact tracing in the past has not been uni-
versal. While some outbreaks could be controlled [17], others
required more intense interventions to achieve epidemic con-
trol [18,19]. The efficacy of the contact tracing measure has
been studied in a number of works, with various approaches
ranging from stochastic simulations [5,20–25] to analytical
investigations [26–33].

The utility of contact tracing has often been considered
in opposition to or in combination with other contain-
ment strategies. Hasegawa et al. [24] found that quarantine

measures outperform the random and acquaintance preventive
vaccination schemes for what concerns transmission reduc-
tion. The work of Horstmeyer et al. [25] suggested instead that
a combination of self-distancing and isolation is particularly
effective to contain a disease. Through a delay differential
equation model, Heidecke et al. [27] found that the efficacy of
the test-trace-isolate-quarantine is limited and is required to be
combined with other enhanced hygienic measures to achieve
disease control. They also warned upon the self-acceleration
of disease spread that can be caused by limited capacities of
tracing.

Some works focused specifically on the contact tracing
measure, investigating the role played by different parameters
on its efficacy for the containment of the spread of infectious
pathogens. Kerr et al. [21] and Burdinski et al. [22] found
that the efficacy of contact tracing improves with incidence.
In the specific context of the early COVID-19 pandemic
in Seattle, an agent-based model calibrated to demographic,
mobility, and epidemiological data predicted that the contact
tracing measure would allow the reopening of society in the
absence of massive vaccination coverage while maintaining
epidemic control, if performed strongly, i.e., with high testing
and tracing rates, high quarantine compliance, short testing,
and tracing delays and moderate mask use [21]. Similarly,
Reyna-Lana et al. [29] concluded, by means of a Markovian
treatment of a SIR model for the simultaneous contagion
processes of infection and contact tracing, that the combina-
tion of case-isolation and contact tracing is beneficial to the
outbreak containment but requires high adoption of digital
contact tracing apps to identify superspreaders. Optimal app
coverage was also studied by Bianconi et al. [30] through
a message-passing model. High app adoption, in particu-
lar by high-degree nodes, appeared to be crucial. However,
adoption of digital contact tracing apps seems unlikely to be
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FIG. 1. Schematic description of the transitions between compartments in (a) the model with self-isolation, delay, fatigue and (b) the
same model with the addition of contact tracing. The quantity Itot is the fraction of individuals that are infectious: Itot = U + I + F in (a) and
Itot = US + U +

A + U −
A + I + F in (b).

achieved by high degree nodes. Crucially, this was found by
Mancastroppa et al. [20] to undermine the performance of dig-
ital contact tracing compared to manual one, as a consequence
of a quenched sampling from the population in contrast with
an annealed one. Through numerical simulations, Hellewell
et al. [23] and Burdinski et al. [22] concluded that efficacy of
the forward contact tracing measure is limited.

According to the simulation work of Kojaku et al. [31] on
synthetic and empirical contact networks, tracing the potential
infector of a known case instead of its potential infectees
(backward instead of forward contact tracing) was excep-
tionally efficient at detecting superspreading events, since it
leverages two statistical biases. Homophily in adoption of
digital contact tracing apps leads to improved performance
of contact tracing when coverage is low [32,33]. Also the
clustering of networks appears to favor CT performance in
many settings [22,28,34].

Despite intense recent activity, an analytical understanding
of the impact of imperfect adherence and implementation
delays on the efficacy of contact tracing is still missing.
In this work we fill this gap, by considering an SIS-based
compartmental model for the self-isolation of symptomatic
individuals and the quarantine of their asymptomatic contacts.
More specifically, we study the influence of three kinds of im-
perfect adherence to self-isolation and to quarantine—delay
to isolation, imperfect compliance, and anticipated exit from
isolation—on the value of the epidemic threshold. Within a
mean-field approach, we derive an analytical expression for
the epidemic threshold, defined as the critical virus trans-
missibility that separates a healthy absorbing phase from an
endemic phase. This allows to evaluate the performance of
contact tracing and compare it to the efficacy of self-isolation
alone as a function of the parameters describing behavioral
and physiological features of the population. We further de-
termine analytically the role of the contact tracing measure
on the stationary fractions of infected individuals. Finally,
we show that heterogeneities in contact patterns and more
complex in-host disease progression do not qualitatively alter
the findings of the mean-field approach.

II. THE MODEL AND ITS MEAN-FIELD SOLUTION

The model we consider is a variation of the SIS-based
epidemic model with self-isolation, delay, and fatigue devel-
oped in Ref. [35]. We shall hereafter refer to it as “IDF”
(isolation-delay-fatigue).

According to the IDF dynamics [see Fig. 1(a)], the con-
tact of a susceptible (S) individual with an infectious one
(state U , I , or F , see below) leads to the infection of the
former with rate β. Newly infected individuals are assumed
to be immediately infectious but not yet settled on whether
to enter isolation or not (undecided, U ). After a time interval
distributed with Poissonian rate μU they decide (with prob-
ability pQ) whether to fully interrupt contacts with the rest
of the population by entering the isolated compartment Q or
(with probability 1 − pQ) to disregard their infectious state
and keep the same rate of interactions with the community,
by transitioning to the I compartment. The delay between
infection and isolation (of mean duration TU = 1/μU ) mod-
els logistical delays as well as behavioral ones. In order to
account for isolated individuals exiting isolation before being
fully recovered, as a consequence of fatigue, a transition from
Q to another infectious compartment (fatigued, F ) occurs at
rate μQ.

In the present work, infected individuals are assumed to
either stay asymptomatic through the whole infectious pe-
riod (with probability qA) or to develop symptoms (with the
complementary probability 1 − qA). For this reason the orig-
inal U compartment is split here into three compartments.
Individuals developing symptoms enter compartment US upon
infection. Being aware of their infected status, symptomatic
individuals all go through the decision process (still with rate
μU ) on whether to isolate (going to state Q, with probability
pS

Q) or not (going to state I , with complementary probability
1 − pS

Q). Asymptomatic individuals can instead only initiate
the decision process if they are infected by a symptomatic
individual (who traces them). We therefore distinguish be-
tween the asymptomatic individuals who are infected by a
symptomatic individual US and are thereby traced (U +

A ) and
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TABLE I. Model parameters.

Parameters Description

β rate of infection
qA share of asymptomatic
μ rate of recovery
μU rate of decision
μQ rate of exit from isolation
pCT probability of being traced
pS

Q compliance probability if symptomatic
pA

Q compliance probability if asymptomatic
〈k〉 mean node degree

those who are not (U −
A ). Imperfect tracing capacity is taken

into account with only a fraction pCT of the contacts of symp-
tomatic individuals being successfully traced.

Symptoms are assumed to appear immediately upon infec-
tion and thus to lead to immediate tracing of the contacts of
US individuals. Traced asymptomatic individuals (U +

A ) decide
with rate μU whether to enter the quarantined Q state or
not (thus transitioning to the I state). As symptoms likely

play a major role in determining compliance to containment
measures, we consider the probability pA

Q that a traced asymp-
tomatic decides to self-isolate distinct from (and in particular
smaller than or at most equal to) the analogous probability pS

Q
for a symptomatic individual. Again, individuals in Q may exit
isolation before being fully recovered by transitioning through
compartment F , as a consequence of fatigue. We assume the
same transmissibility across all infectious compartments U −

A ,
U +

A , US , I , and F and perfect isolation of individuals while
residing in compartment Q. As the progression of the disease
does not depend on the isolation status, spontaneous recovery
transitions may occur from states U −

A , U +
A , US , I , Q, and F to

the susceptible state S, at the same recovery rate μ.
For a complete summary of all the transitions and their

respective rates see Appendix A. The parameters of the model
are summarized in Table I. Figure 1(b) presents a complete
description of the epidemic compartments and the transition
rates at the homogeneous mean-field level, where each indi-
vidual has 〈k〉 contacts.

In this setting the dynamics of the fractions of individuals
in states U −

A , U +
A , US , Q, I , and F is governed by the following

set of differential equations:

U̇ −
A = βqA〈k〉S(U −

A + U +
A + I + F + US (1 − pCT)) − μU −

A

U̇ +
A = βqA〈k〉SUS pCT − (μ + μU )U +

A

U̇S = β(1 − qA)〈k〉S(U −
A + U +

A + I + F + US ) − (μ + μU )US

Q̇ = μU pA
QU +

A + μU pS
QUS − (μ + μQ)Q

İ = μU
(
1 − pA

Q

)
U +

A + μU
(
1 − pS

Q

)
US − μI

Ḟ = μQQ − μF, (1)

where the notation Ẋ = dX
dt indicates the time derivatives of the fractions of individuals in each compartment and S = 1 − U −

A −
U +

A − US − Q − I − F .
The Jacobian matrix obtained by linearization around the disease-free equilibrium (S,U −

A ,U +
A ,US, I, Q, F ) =

(1, 0, 0, 0, 0, 0, 0) has four real eigenvalues that are always negative and two other real eigenvalues which become positive as
λ = β/μ is increased. The largest one becomes positive (thus making the disease-free equilibrium unstable) above the epidemic
threshold

λc = 1 − √
1 − 2χ

χ
· λIDF

c (qA), (2)

where
λIDF

c (qA) = 1
〈k〉

1

1− pS
Q (1−qA )(

1+ TU
T

)(
1+ T

TQ

)
T = 1/μ

TU = 1/μU

TQ = 1/μQ

χ
(
qA, pS

Q, pA
Q

) = 2qA(1−qA )(pCT pA
Q)(

1+ T
TU

)(
1+ TU

T

)(
1+ T

TQ

) 1(
1− pS

Q (1−qA )(
1+ TU

T

)(
1+ T

TQ

))2 .

(3)

We observe that the epidemic threshold is given by the expres-
sion for the IDF case (i.e., in the absence of contact tracing,
taking into account that a fraction 1 − qA of the individuals
is symptomatic and self-isolates) multiplied by a factor de-
pending on the various timescales and behavioral parameters
of the model, combined in the single quantity χ . As shown

in Appendix B, χ lies in the range between 0 and 1/2, for
all values of the parameters, thus ensuring that the epidemic
threshold is always real.

The factor 1−√
1−2χ

χ
in Eq. (2) is an increasing function

of χ growing from 1 (for χ = 0) to 2 (for χ = 1/2). This
leads to the remarkable conclusion that the quarantine of
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asymptomatic individuals, possible because of the contact
tracing procedure, leads to an increase of the epidemic thresh-
old that cannot be larger than a factor 2. As a consequence, if
β/μ for a given pathogen is larger than twice the critical value
λc, contact tracing, even if perfectly implemented, cannot
prevent the epidemic, i.e., take the system below the epidemic
threshold.

When asymptomatic individuals do not quarantine (be-
cause their compliance probability pA

Q = 0 vanishes or be-
cause the share of traced contacts pCT = 0 vanishes), Eq. (2)
gives back the IDF result, λIDF

c (qA). Similarly, the IDF re-
sult is recovered when all individuals are either symptomatic
(qA = 0) or asymptomatic (qA = 1), trivially because contact
tracing is deactivated by the absence of individuals to be
traced or individuals triggering the tracing, respectively. In the
latter case, when all individuals are asymptomatic, we recover
λIDF

c (qA = 1) = 1/〈k〉, the standard SIS result. Moreover, we
notice that in the expression for the epidemic threshold an
imperfect tracing capacity pCT < 1 simply acts as a rescaling
of the probability pA

Q that traced asymptomatic individuals
will quarantine.

Equation (2) points out that the epidemic threshold can
diverge for perfect contact tracing and perfect compliance
to isolation (pS

Q → 1, TU /T → 0 and TQ/T → ∞) if only
symptomatic infections are present (qA = 0). A diverging
threshold means that no pathogen, no matter its transmissi-
bility β, can become endemic. Instead, in a population where
a share of individuals develops asymptomatic forms of the
infection (qA > 0), λc is necessarily finite and there is no way
(even with perfect contact tracing and perfect compliance to
isolation) to eradicate extremely infective pathogens.

III. EFFICACY OF CONTACT TRACING

A quantitative measurement of the effect of CT is provided
by the ratio between the epidemic threshold in the case of full
compliance of asymptomatic individuals to isolation and in
the case where they do not isolate at all (similarly to Ref. [27]).
It is highly unlikely that asymptomatic individuals are more
compliant to the self-isolation prescription than symptomatic
individuals; hence, max(pA

Q) = pS
Q. Indeed, mild symptoms or

lack of symptoms may ruin the motivation to respect isolation,
as physical conditions are not an impediment to carry out
the daily routine. The efficacy of contact tracing can then be
defined as

εCT = λc
(
pA

Q = pS
Q

)
λc

(
pA

Q = 0
) =

1 −
√

1 − 2χ
(
pA

Q = pS
Q

)
χ

(
pA

Q = pS
Q

) . (4)

This quantity is bounded in εCT ∈ [1, 2]: as already dis-
cussed above the contact tracing measure may only bring
about a limited increase of the epidemic threshold. More
dramatic effects on the threshold value may be due to the
λIDF

c (qA) factor, i.e., to the self-isolation of symptomatic in-
dividuals.

From Eq. (4) it is possible to get insight on how virus
characteristics (qA, μ) and behavioral parameters (pS

Q, μU ,
μQ) influence the performance of the contact tracing measure.
For instance, as a function of the share of fully asymptomatic
infections, the efficacy of contact tracing attains a maximum

FIG. 2. (a) Plot of the efficacy of CT εCT as a function of qA

for various values of pS
Q. (b) Plot of the threshold λc against qA for

the same parameters of (a). Parameter values: μ = μQ = 1, μU = 4,
pA

Q = pS
Q, pCT = 1, 〈k〉 = 6.3.

[see Fig. 2(a)] for a value

q∗
A = (1 + TU /T )(1 + T/TQ) − pS

Q

2(1 + TU /T )(1 + T/TQ) − pS
Q

= 1

1 + λIDF
c (qA = 0)

.

(5)

Interestingly, this value always falls in the range q∗
A ∈

[0, 1/2]; it is a decreasing function of pS
Q and of the mean

isolation period TQ, while it grows with the delay to isolation
TU . Note however that, while a positive share of asymptomatic
individuals q∗

A > 0 may maximize the efficacy of contact
tracing, it does not maximize the threshold [Eq. (2)], which
reflects the combined efficacy of self-isolation of symptomatic
individuals and quarantine of their asymptomatic contacts.
Indeed, under the realistic assumption pA

Q � pS
Q, the epidemic

threshold is always maximized by the complete absence of
asymptomatic infections, qA = 0 [see Fig. 2(b)].
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FIG. 3. (a) Maximum value of εCT against pS
Q for (a) various values of TU (TQ = 1/2, T = 1); (b) various values of TQ (TU = 1/2, T = 1).

We consider the case where pCT = 1.

Plotting εmax = εCT(q∗
A) as a function of pS

Q for various
values of TU and TQ (Fig. 3) we find that, despite εCT assuming
in principle values up to 2, the CT performance is much more
limited: the contribution to the value of the epidemic threshold
due to CT is in practice always of the order of a few percent.

Moreover, while λc is maximized by TU → 0, from Eq. (4)
we find that the efficacy of CT is maximized by a delay
that can be positive, depending on the value of the other
parameters

T ∗
U = T

(
1 − (1 − qA)pS

Q

1 + T/TQ

)
, (6)

but is nevertheless always shorter than the recovery time T
(see Fig. 4).

This is a consequence of a nontrivial tradeoff between two
competing effects. On the one hand, a short TU implies that

FIG. 4. Plot of the maximum value of εCT against TU /T for
various values of pS

Q, showing the presence of a maximum. Parameter
values: TQ = 1, pCT = 1.

essentially no asymptomatic is traced. On the other hand, for
very long delays to isolation, many individuals are traced,
but since they take a lot of time to quarantine they may
infect many other individuals, thus reducing the effect of
CT. Assuming that it is possible to act on all parameters,
improvement of the efficacy of contact tracing is achieved
when TU , qA → 0, pA

Q, pS
Q, pCT → 1, TQ → ∞.

In Appendix C we present an analysis of the minimal
values of the compliance pS

Q or pA
Q needed to eradi-

cate an epidemic characterized by a given supercritical
transmissibility λ.

IV. PREVALENCE IN THE ENDEMIC PHASE

This simple model for self-isolation and quarantine allows
us also to analytically compute the stationary fractions of
individuals in each compartment:

(U +
A )∗ = qA(1 − qA)

(1 + T/TU )2
pCTλc〈k〉 · λ − λc

λ
,

U ∗
S = (1 − qA)

1 + T/TU
· λ − λc

λ
,

Q∗ = 1

λ〈k〉
(

1 − λc〈k〉 + λ〈k〉

×
1 + apS

Q −
√(

1 − apS
Q

)2 − 4 a
1+T/TU

pCT pA
QqA

2

)
,

F ∗ = T

TQ
Q∗,

I∗ = T

TU

(
1 − pS

Q

)
(US )∗ + T

TU

(
1 − pA

Q

)
(U +

A )∗,

(U −
A )∗ = (1 + T/TU )

[
qA

1 − qA
U ∗

S − (U +
A )∗

]
, (7)

where a = (1−qA )

(1+ TU
T )(1+ T

TQ
)
.
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FIG. 5. Plot of the difference between the stationary fractions
of individuals with (pA

Q = pS
Q = 0.9) and without (pA

Q = 0) CT, as
a function of the distance (λ − λc )/λ from the threshold. Parameter
values: μ = 1, μU = 4, μQ = 1, qA = 0.5, pCT = 1, 〈k〉 = 6.3.

In the limit where qA → 0, we recover the prevalences
of the IDF model [35], where the fractions (U +

A )∗ and
(U −

A )∗ vanish, while U ∗
S → 1

1+T/TU

λ−λc
λ

. In the same limit,
the fraction of isolated and quarantined individuals reduces to

Q∗ = pS
Q

(1+T/TQ )(1+TU /T )
λ−λc

λ
.

Considering a virus transmissibility standing at a fixed
distance λ−λc

λ
from the epidemic threshold we are able to

compare the dependence on pA
Q of these stationary fractions

of individuals above λc. At a fixed distance from the epidemic
threshold, the stationary fraction of symptomatic individu-
als U ∗

S remains unaffected by changes in the compliance pA
Q

of asymptomatic individuals. However, since the epidemic
threshold is an increasing function of pA

Q, (U +
A )∗ increases

with pA
Q while (U −

A )∗ decreases. The quarantine of asymp-
tomatic individuals therefore enhances the system’s tracing
capacity. Having U +

A individuals transitioning to Q instead
of I indeed reduces the chances of having infectors I that
do not trace their asymptomatic contacts. The total fraction
of undecided individuals (U +

A )∗ + (U −
A )∗ + U ∗

S is expected
overall to decrease, while the fractions of individuals in Q and
F increase when asymptomatic compliance pA

Q increases.
This is supported by Fig. 5 where we see, for a given choice

of the parameter values, the increasing or decreasing effect of
pA

Q on the quasistationary values, at a given distance from the
epidemic threshold. We consider the stationary fractions of
individuals in a generic compartment X when pA

Q = pS
Q (con-

tact tracing is maximally operative) and when pA
Q = 0 (contact

tracing is not active), as functions of (λ − λc(pA
Q = pS

Q))/λ
and (λ − λc(pA

Q = 0))/λ, respectively. We then plot the dif-
ference between the stationary fractions of individuals in these
limit cases, so that positive values indicate that the activation
of contact tracing populates the corresponding compartment.
We find that the amount by which (U +

A )∗ and I∗ decrease is
perfectly balanced by the amount by which Q∗, F ∗, and (U −

A )∗
increase, overall resulting in a fraction of infected individuals
Q∗ + I∗

tot = 1 − S∗ invariant under changes in adherence of

asymptomatic individuals, at a fixed distance from the epi-
demic threshold.

At a fixed spreading rate, the shift of the epidemic thresh-
old induced by the implementation of the contact tracing
measure, reduces the distance of the system from the critical
point, in the supercritical regime. This has the effect of mak-
ing the system reach a lower stationary state (and also more
slowly) than in the absence of contact tracing.

V. NUMERICAL SIMULATIONS

In order to check whether the results obtained in the mean-
field setting also hold for the fully stochastic dynamics, we
perform numerical simulations using a Gillespie optimized al-
gorithm [36] to implement the SIS-like dynamics on networks
built according to the uncorrelated configuration model [37].
We consider power-law degree-distributed networks with ex-
ponent γ and network size N = 104. The node degrees are
constrained in the range k ∈ [kmin = 3, kmax = √

N]—in or-
der to have an uncorrelated network without multiple and
self-connections. In this setting, we estimate the epidemic
threshold by finding the value of λ at which the susceptibility
of the system reaches a maximum [38]. We implement the
quasistationary state method [38], for which the dynamics
never allows the system to reach the healthy absorbing state.
We consider both homogeneous (γ = 10) and strongly het-
erogeneous (γ = 2.5) networks and compare the results with
the mean-field theory.

In Fig. 6 we show that there is a good agreement between
numerical simulations and analytical results.

To perform numerical simulations one needs to specify
how the symptomatic/asymptomatic status and the compli-
ance to isolation/quarantine are chosen for each individual.
To obtain the results presented in Fig. 6 we have assumed
that the choice is annealed, in the sense that, for a given
individual at each infection event, the development of an
asymptomatic form of infection and the decision to isolate
are drawn randomly with the corresponding probabilities.
A possibly more realistic alternative is that the probability
of developing an asymptomatic form of infection and the
probability of self-isolating are individually based. This corre-
sponds to the quenched case, where a given individual always
develops the same form of infection (whether symptomatic or
asymptomatic) and always takes the same decision concerning
isolation (whether it is to isolate or not to isolate). The im-
mune history of individuals is indeed known to play a role in
the probability of developing asymptomatic forms of infection
[39] while personal conditions and beliefs concerning self-
isolation from the community likely determine compliance at
an individual level [40].

In Fig. 7 we compare the results we obtain in all possible
scenarios of quenched or annealed treatment of the develop-
ment of an asymptomatic form of infection and of the decision
of isolating or not. The figures show minimal differences
between the various cases, even for a strongly heterogeneous
degree distribution.

VI. A MORE REALISTIC MODEL FOR IN-HOST
DISEASE PROGRESSION

The stylized model we considered analytically does
not only oversimplify the contact network, it also makes
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FIG. 6. Efficacy of contact tracing in a homogeneous network
(γ = 10) and in a strongly heterogeneous network (γ = 2.5) (ana-
lytical prediction, numerical estimates for both γ = 2.5 and γ = 10).
(a) εCT as a function of qA, with pS

Q = 0.9. (b) εCT as a function of pS
Q,

with qA = 0.5. Parameter values: μ = μQ = 1, μU = 4, pCT = 1.

unrealistic assumptions concerning the way the disease pro-
gresses within infected individuals. In particular, the assump-
tion that infection and recovery transitions are Poissonian and
the constant infectiousness over the course of infection are un-
realistic for the modeling of COVID-19. Moreover, the latent
period during which newly infected individuals are not infec-
tious yet and the pre-symptomatic period are not considered
at all. These assumptions might strongly affect the efficacy
of the contact tracing and case isolation measures. The model
also neglects the fact that the contact tracing measure is able to
isolate not only asymptomatic contacts but also symptomatic
contacts in their pre-symptomatic phase.

In this section we check whether our conclusions on the ef-
ficacy of the contact tracing measure also hold in a much more
complex and realistic model of disease progression. We con-
sider the propagation of the Omicron variant of SARS-CoV-2
on the branching process model for disease propagation in-

FIG. 7. Role of quenchedness (numerical predictions and hetero-
geneous mean-field estimates achieved by substituting the homoge-
neous mean-field topological factor 1/〈k〉 by 〈k〉/〈k2〉. (a) λc vs qA

for all quenched-annealed combinations, with pS
Q = 0.9. (b) λc vs pS

Q

for all quenched-annealed combinations, with qA = 0.5. Parameter
values: μ = μQ = 1, μU = 4, pCT = 1.

troduced in [41]. Such a model takes into account different
transmissibilities for symptomatic and asymptomatic individ-
uals, an evolution of infectiousness over the course of the
infection (through a distribution of generation intervals) with
a latent period, and a pre-symptomatic period (through a
distribution of incubation periods). It also models different
levels of immunity across the population (different numbers
of doses of vaccine administered to each individual with a
waning of protection against infection and symptomatic infec-
tion informed by available estimates for the Omicron variant),
time varying test sensitivity (sensitivity of antigenic tests vary-
ing over the course of infection), and imperfect adherence
to the measures (delay to isolation, partial contact reduction
during the isolation period, imperfect share of successfully
traced contacts, imperfect compliance to testing and to iso-
lation, anticipated exit from isolation as a consequence of
fatigue).
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FIG. 8. Comparison between estimates of the maximum efficacy
(as a function of pS

Q) of the contact tracing measure in the branching
process model of [41] and in our compartmental model (recovery
time T = 1 and tracing capacity pCT = 1). “delay to iso.” in the
BP model refers to the delay between information of infection and
isolation.

For a better comparison with our analytical results, we
cancel the effects of heterogeneous immunity across the pop-
ulation (all individuals are equally susceptible to infection, all
individuals being considered as unvaccinated), the effect of
being asymptomatic on the potential to further transmit the
disease (same transmissibility for symptomatic and asymp-
tomatic individuals) and the role played by testing (perfect test
sensitivity, perfect compliance, and vanishing delay to test-
ing). We fix our baseline parameters to conditions that favor
the performance of CT: vanishing delay between information
of being infected and isolation, perfect isolation from the
community during the isolation period, long isolation duration
(population mean of 11 d, i.e., 1.6 times the infectious period
that we use as a proxy of the time for recovery), perfect tracing
capacity, perfect compliance to recommendations in terms of
isolation duration.

In order to have a quantitative measurement of the efficacy
of contact tracing akin to our definition in the mean-field
model, we take εCT as the ratio between two “critical” basic
reproduction numbers, determined in the case asymptomatic
compliance to isolation is maximum (pA

Q = pS
Q) and in the

case where it is minimum (pA
Q = 0). The “critical” basic re-

production number for a given set of parameters is the initial
value of R0 that generates an effective reproduction number
Reff = 1, when interventions (self-isolation and/or CT) are
implemented.

In Fig. 8 we compare the maximum efficacy (as a function
of qA) of the contact tracing measure as computed within
our mean-field model and as estimated through the branching
process model. We approximate the time between infection
and information of being infected with the mean incubation
period of the branching process model. Disregarding the de-
lay between information of being infected and isolation, this
implies a ratio TU /T = 0.49 between the delay from infection

to isolation (approximated by the mean incubation period
of 3.48 d) and the time for recovery (approximated by the
mean infectious period of 7.04 d). The figure shows that even
a complex and realistic in-host disease progression model
predicts a limited efficacy of the contact tracing measure.
Even in extremely favorable conditions, the increase of the
epidemic threshold remains smaller than 25%, in line with our
SIS-based compartmental model.

VII. CONCLUSIONS

In this work we developed an SIS-based epidemic model
for self-isolation and (forward and first-order) contact tracing
measures in the presence of imperfect compliance and delays.
We find that the quarantine of asymptomatic contacts has
a very limited impact on increasing the epidemic threshold.
Moreover, it only decreases the total fraction of infected
individuals through the achieved increase of the epidemic
threshold. It is however especially useful to quarantine asymp-
tomatic patients in case of outbreaks caused by viruses that
generate low to intermediate shares of asymptomatic infec-
tions, and that propagate in populations where behavioral and
logistical delays to isolation are smaller but close to the time
for recovery. We find that it is always crucial to incentivize ad-
herence to isolation, especially for symptomatic individuals.

These conclusions are supported by analytical results in
a homogeneous mean-field setting, allowing for an explicit
characterization of the interplay between disease properties
and behavioral conditions. The role of more realistic contact
network characteristics and more complex in-host disease pro-
gression, involving for instance delayed onset of symptoms
is investigated too, with overall conclusions remaining unaf-
fected.

In SIR-like models, the duration of an outbreak and the
height of the peak of the fraction of infected individuals are
very important observables and the efficacy of CT can be mea-
sured by the reduction in their values. In the present SIS-like
model, these observables are not defined. The effect of CT
on the temporal evolution is given here by the increase of the
temporal scale τ governing the initial exponential growth of
the epidemic. Since τ ∝ 1/(λ − λc), the effect of CT can be
ascribed to the increase of the threshold.

In this study we have only considered the effect of forward
contact tracing, as the tracing process allows the quarantine
of asymptomatic individuals who have been in contact with
a symptomatic infector. Backward contact tracing, i.e., the
search for the asymptomatic infector of the symptomatic in-
dex case, with the goal of quarantining him/her and thus
preventing further spreading, is known to be highly effective,
in particular in heterogeneous networks [31]. It would be in-
teresting to check how the results presented here are modified
if also backward contact tracing is in place. A different model
where both types of CT are at work indicates that in such a
case contact tracing may lead to a stronger increase of the
epidemic threshold [20]. Our model also does not study the
tracing of susceptible contacts of index cases (which would
represent an interesting quantity to measure the social weight
of the intervention) nor the tracing of infected contacts that
were not infected by the index case. A model by Lee et al.
[26] focuses on these two aspects of CT, which however do not
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change the value of the epidemic threshold. Indeed, the former
does not isolate infected individuals and the latter necessitates
the contact between two infected individuals that becomes
irrelevant near the disease-free equilibrium.

The present study focuses on a population with homo-
geneous infection rates, thus neglecting heterogeneities in
immune history (whether provided by previous infections or
vaccination) and in age-related immune response. Moreover,
the possibility of correlations among individuals with respect
to biological and/or behavioral features is disregarded. The ex-
istence of clustering in the contact network has been neglected
as well. While containment measures such as vaccination and
CT are expected to suffer from assortativity in adherence
[33,42], at least in some regimes [32], the contact tracing
measure is predicted to benefit from clustering [22,28,34].
Finally, we make a set of assumptions that might lead to
overestimates of the efficacy of the contact tracing measure.
Our model neglects the role of diagnostic tests, massively
used during the COVID-19 pandemic. It does not distinguish
between the intrinsic transmissibilities of asymptomatic and
symptomatic individuals. Even symptomatic individuals who
do not comply with isolation trace their contacts, which is not
realistic. We moreover assume immediate tracing of contacts
upon infection.

The analysis of modifications of the current framework,
where one or more of these simplifying assumptions are lifted,
constitutes an interesting avenue for further research.
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APPENDIX A: LIST OF TRANSITIONS

(i) Spontaneous decays to S

Transition Rate

I → S μ

US → S μ

U +
A → S μ

U −
A → S μ

Q → S μ

F → S μ

(ii) Spontaneous decays to F

Transition Rate

Q → F μQ

(iii) Transitions from undecided states

Transition Rate

US → Q μU pS
Q

US → I μU
(
1 − pS

Q

)
U +

A → Q μU pA
Q

U +
A → I μU

(
1 − pA

Q

)

(iv) Infections by US nodes

Transition Rate

S + US → U +
A + US βqA pCT

S + US → U −
A + US βqA(1 − pCT)

S + US → US + US β(1 − qA)

(v) Infections by X = (U +
A ,U −

A , I, F ) nodes

Transition Rate

S + X → U −
A + X βqA

S + X → US + X β(1 − qA)

APPENDIX B: DEMONSTRATION THAT
THE THRESHOLD λc IS ALWAYS REAL

We want to show that χ � 1/2. Let us start from the more
restrictive condition χ � pCT pA

Q/2, which can be written as a
second order inequality for qA:

q2
A

[(
pS

Q

)2 + 4
TU

T TQ
(T + TQ)

]

+ qA

[
2pS

Q

(
T

TQ
+ TU

T
+ TU

TQ

)
− 4

TU

T TQ
(T + TQ)

]

+
(

T

TQ
+ TU

T
+ TU

TQ

)2

� 0. (B1)

We now show that this condition holds for any qA ∈ [0, 1].
The minimum of the left hand side (L.H.S.) of Eq. (B1) is

always located at values of qA < 1. Indeed,

argminqA
L.H.S. < 1,

−2
TU

T TQ
(T + TQ) − (

pS
Q

)2 − pS
Q

(
T

TQ
+ TU

T
+ TU

TQ

)
< 0,

(B2)

which is always true.
The condition for the minimum of the L.H.S. to be located

at qA > 0 is

argminqA
L.H.S. > 0,

pS
Q <

2TU (T + TQ)

T 2 + TU (T + TQ)
. (B3)

Hence it depends on pS
Q whether the minimum is for qA

smaller or larger than zero.
In the first case, Eq. (B1) is always satisfied between qA = 0

and qA = 1, because it is already true for qA = 0 and the
L.H.S. is a growing function of qA.

In the other case, Eq. (B1) is always satisfied because it is
satisfied in the minimum. Indeed, the minimum of the L.H.S.
is positive if the following condition on the parameters holds:(

T

TQ
+ TU

T
+ TU

TQ

)2

� TU

T TQ
(T + TQ) − pS

Q

(
T

TQ
+ TU

T
+ TU

TQ

)
. (B4)
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FIG. 9. (a) Critical value of the compliance probability of symptomatic individuals against λ〈k〉 for various values of asymptomatic
probability qA ∈ [0, 1] (pA

Q = 0.6). (b) Critical value of the compliance probability of asymptomatic individuals against λ〈k〉 for various values
of asymptomatic probability qA ∈ [0, 1] (pS

Q = 0.6). Parameter values: μ = 1, μU = μQ = 2.

Under the assumption of argminqA
L.H.S. > 0 [using

Eq. (B3)], we find that it is always true because(
T

TQ
+ TU

T
+ TU

TQ

)2

� TU

T TQ
(T + TQ) − 2TU (T + TQ)

T 2 + TU (T + TQ)

(
T

TQ
+ TU

T
+ TU

TQ

)

(B5)

= TU

T TQ
(T + TQ) − 2

TU

T TQ
(T + TQ)

= − TU

T TQ
(T + TQ). (B6)

We conclude that the condition χ � pCT pA
Q/2 is always

met in the interval qA ∈ [0, 1]. When argminqA
L.H.S. < 0,

the L.H.S. is positive in the interval qA ∈ [0, 1] and when
argminqA

L.H.S. > 0, we have min(L.H.S.) > 0 implying too
that χ � pCT pA

Q/2. Since pA
Q, pCT ∈ [0, 1], χ � 1/2 and the

epidemic threshold is real.

APPENDIX C: CRITICAL COMPLIANCE

In this Appendix we study the role of the compliance of
symptomatic and asymptomatic individuals in containing the
spread of the epidemic. Given a pathogen with a specific
value of λ, what are the values of pS

Q that are sufficient to
make λ < λc so that the epidemic becomes subcritical and
disappears?

Setting λ = λc and inverting Eq. (2), the expression of pS
Q

that allows the system to reach the epidemic threshold is easily
derived: (

pS
Q

)
c =

[
1 − χ (λ/λIDF

c (qA))2 + 2

2(λ〈k〉)

]

× (1 + TU /T )(1 + T/TQ)

1 − qA
. (C1)

This expression for (pS
Q)c is not a priori limited to the [0, 1]

interval. Values of (pS
Q)c < 0 imply that the system does

not require isolation of symptomatic individuals to reach the
epidemic threshold. In practice this means that λ is already
subcritical in the absence of isolation of symptomatic individ-
uals. Values (pS

Q)c > 1 mean instead that even the isolation
of all symptomatic individuals is not sufficient to drive the
system to the disease-free state.

These results can be translated into ranges of values of the
virus transmissibility λ〈k〉 that the isolation of symptomatic
individuals is able to contain. Isolation of symptomatic indi-
viduals is not necessary when

λ〈k〉 � λIDF+CT
c (qA)|pS

Q=0〈k〉 (C2)

= 1 − √
1 − 2χ

χ
, (C3)

as the outbreak would be contained regardless of their isola-
tion. On the other hand, thanks to the isolation of symptomatic
individuals, the outbreak can be contained for values of the
transmissibility rate λ〈k〉 larger than the SIS result but as
long as

λ〈k〉 � λIDF+CT
c (qA)|pS

Q=1〈k〉 (C4)

= 1

1 − a
· 1 − √

1 − 2χ

χ
, (C5)

where a = (1−qA )

(1+ TU
T )(1+ T

TQ
)
.

In Fig. 9(a) we plot the dependence of (pS
Q)c on λ〈k〉 for

various values of the probability qA of being asymptomatic.
We see that the isolation of symptomatic individuals is the
more useful to contain the spread of more transmissible
infectious pathogens the lower the share of asymptomatic
individuals in the infected population.
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We repeat the above reasoning with the compliance pA
Q of

asymptomatic individuals with isolation mandates. The criti-
cal value of pA

Q that allows to reach the epidemic threshold is

(
pA

Q

)
c
= 1

δ

1

λ〈k〉
[

1

λIDF(qA)〈k〉 − 1

λ〈k〉
]
, (C6)

where δ = qA(1−qA )pCT

(1+ T
TU

)(1+ TU
T )(1+ T

TQ
)
.

The outbreak can be contained by quarantining traced
asymptomatics if

λIDF+CT
c (qA)|pA

Q=0 � λ � λIDF+CT
c (qA)|pA

Q=1, (C7)

1

1 − apS
Q

� λ � 1

1 − apS
Q

1 −
√

1 − 2χ
(
pA

Q = 1
)

χ
(
pA

Q = 1
) . (C8)

In Fig. 9(b) we show the dependence of the critical value of
pA

Q on λ〈k〉 for various values of qA ∈ [0, 1]. A comparison
with panel (a) of the same figure shows that for the chosen
values of the parameters, the role played by the isolation of
symptomatic individuals is significantly larger than the one
played by the quarantine of asymptomatic individuals.
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