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Effect of collaborative-filtering-based recommendation algorithms on opinion polarization
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A central role in shaping the experience of users online is played by recommendation algorithms. On the
one hand they help retrieving content that best suits users taste, but on the other hand they may give rise to the
so-called “filter bubble” effect, favoring the rise of polarization. In the present paper we study how a user-user
collaborative-filtering algorithm affects the behavior of a group of agents repeatedly exposed to it. By means
of analytical and numerical techniques we show how the system stationary state depends on the strength of
the similarity and popularity biases, quantifying respectively the weight given to the most similar users and to
the best rated items. In particular, we derive a phase diagram of the model, where we observe three distinct
phases: disorder, consensus, and polarization. In the last users spontaneously split into different groups, each
focused on a single item. We identify, at the boundary between the disorder and polarization phases, a region
where recommendations are nontrivially personalized without leading to filter bubbles. Finally, we show that our
model well reproduces the behavior of users on the online music platform last.fm. This analysis paves the way
to a systematic analysis of recommendation algorithms by means of statistical physics methods and opens the

possibility of devising less polarizing recommendation algorithms.
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I. INTRODUCTION

The growth of polarization and radicalization observed in
recent years [1-3] is a phenomenon that can potentially un-
dermine the functioning and stability of democratic societies.
In this context, the critical role played by online platforms has
been widely recognized [4-6], but the detailed mechanisms
by which exposure to online content drives polarization at the
population level are still to be fully clarified. Recommenda-
tion algorithms, together with more traditional media such
as television [7], are believed to be among the key factors,
since they strongly influence users’ online experience by se-
lecting, based on past behavior, the new information users
are exposed to [8—10]. Such algorithms are fundamental for
filtering and selecting the content we are interested to, a sorely
needed task, given the overwhelming amount of information
available online. On the other side, however, recommendation
algorithms produce a feedback loop that naturally tends to
bias future choices, reducing the diversity of available content
and thus favoring the so-called “filter-bubble” effect and the
consequent polarization of opinions [11-15]. Filter bubbles,
occurring when users are mainly exposed to news and content
aligned to their beliefs, are similar to the much investigated
“echo chambers” [16-18]. While the latter result from ho-
mophylic interactions among users, which tend to interact
with people sharing the same opinions, the former are pro-
duced by algorithmically biased recommendations on online
platforms.
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Recommendation algorithms are widely used by most of
the web sites we visit everyday, examples being “suggested
for you” posts on Facebook, recommended items on the Ama-
zon online shop, or Google personalized PageRank. Such
algorithms are designed to allow easy access to content we
are expected to be interested in so as to maximize our en-
gagement with the platform. Collaborative filtering [19,20]
is a paradigmatic approach to algorithmic recommendation
which, despite its simplicity, is employed by online giants
such as Amazon [9,10]. The underlying principle is that past
behavior of users can be exploited to determine the similarity
between them or between items, which can then be used to
identify new content users will most likely appreciate. The
first case corresponds to “user-user” collaborative filtering,
while the latter to the “item-item” one. In the following we
will use interchangeably the terms “item” or “opinion” as
equivalent ways to refer to a generic piece of content available
on the platform.

In past years much attention has been devoted to the study
of how microscopic interactions among users shape collective
phenomena at the population level [21,22] and in particular to
the investigation of how the polarization of opinions emerges
from such interactions [23-27]. The effect of recommendation
algorithms has received less attention, and only recently have
scholars started to model their interplay with the dynamics of
opinions. For instance, Refs. [28,29] approached the problem
by endowing a voter model with an external field which repre-
sents users’ interaction with their past history, thus mimicking
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content recommendation. A similar methodology has been
proposed in Ref. [30], where the effect of recommendations
based on agents’ present state is considered, while in other
works [31,32] the effect of the recommendation algorithm is
modeled by filtering the interactions between an individual
and its neighbors, depending on their state. In all cases the
conclusion is that recommendation algorithms may play a
crucial role in enhancing opinion polarization and fragmen-
tation. Also the effect of link recommendations (algorithms
suggesting new social connections) has been analyzed, reveal-
ing that personalized suggestions of new friends can increase
polarization [33-35] and favor inequality and biases [36,37].

All the studies concerning content recommendations, de-
spite providing useful insight on the possible effects of their
implementation, consider exceedingly simple algorithms,
coupled to highly stylized opinion dynamics models. As a
consequence they do not shed much light on the effect of real-
istic recommendation algorithms adopted by online platforms.
In order to fill the gap between theoretical modeling and real
implementations, in this paper we present a systematic study
of a model for user-user collaborative filtering. We find that,
depending on two parameters (the strength of the similarity
bias « and of the popularity bias B; see below for definitions),
the system can be in three different phases: disorder, con-
sensus, and polarization. In particular, when the two biases
are sufficiently large, the system undergoes a spontaneous
breaking of user and item symmetry, leading to the forma-
tion of polarized groups and giving rise to the filter bubble
effect. Such a drawback can be avoided at the boundary be-
tween disorder and polarization, where the algorithm provides
meaningful recommendations without inducing opinion polar-
ization. Finally, we use our model to reproduce the behavior of
users in the online music platform last.fm, determining, within
our modeling framework, the strength of the similarity and
rating biases they are subject to.

These results show that a statistical physics approach to
recommendation algorithms is crucial in understanding their
effect on opinion polarization, while also being a powerful
tool for determining the best parameters to be used in their
implementation.

II. DEFINITION OF THE MODEL

Let us consider a system composed of N users which
iteratively choose (click) among M items or opinions. We
denote by U (with |[U| = N) the set of all users, while I (with
|I| = M) is the set of items. At time 7, each user u is described
by a M-dimensional vector r,(t) = {r,(t),..., @)}
whose components r,;(t) are given by the number of times
user u has clicked on item i so far. In the following we refer
to the r,; as ratings and we assume that clicking on an item
expresses (positive) interest in it. Initially all ratings are set
equal to ry, i.e., r,;(0) = ry for all users u and items i. These
initial conditions reflect the absence of any a priori knowledge
about users’ taste and mimic the so called “cold start” of
recommendation algorithms [38]. Note that in real systems the
number of items available to users is typically enormous. For
instance there are almost 100 million tracks on Spotify and
around 350 million products are available on Amazon online
store. As a consequence in the following we will be interested

in taking the large M limit. In order to do so, as explained in
Appendix A, we have to set ro ~ M~'; in the following we
take 7o = 1/(M — 1) unless specified otherwise.

At each time step, of duration 6t = 1/N, a user u is selected
at random and he or she clicks on item i with probability
Rui (t ) s

Rui(t) = P(rui(t + 5[) = rui(t) + 1)
= Prob (u is selected at time ¢ and clicks on 7).

The specific form of this normalized probability
(Zu,iRm-(t) =1) encodes how the recommendation
algorithm affects the user behavior. The idea behind the
collaborative-filtering mechanism is that such a probability
should be the larger the more item i is positively rated by
users similar to u. More precisely, we quantify the similarity
S between users u and v as the cosine similarity of their
rating vectors,
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In these terms we define the transition probability R,;(¢) as
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The two parameters o and B quantify the strength, respec-
tively, of the similarity bias and of the popularity bias. Indeed,
the larger «, the more users are biased toward items liked by
the agents they are more similar to, while the larger 8 the
more users are biased toward items already selected in the
past. Equation (1) is a direct generalization of the standard
user-user collaborative filtering expression [9,39]. The latter
corresponds to « = 8 = 1 and reads

Score,; = E suu
I

The clicking probability of a user is then obtained normalizing
the scores by their sum. Note that with the present definition
the probability for user u is affected by the “self-interaction”
with his or her past, as the sum includes the term weighted by
s. = 1. Because of self-interaction, when o« — oo each agent
interacts only with him- or herself and users are completely in-
dependent. The framework we are considering corresponds to
a collaborative filtering with implicit feedback, meaning that
the appreciation users give to items is not directly available,
but rather it is derived by the number of times users click on
items. This situation occurs, for instance, in music streaming
platforms, where r,; corresponds to the number of times user
u listened to song (or artist) i.

Rui(t) = (1)

Tvj

III. BEHAVIOR FOR LIMIT VALUES
OF THE PARAMETERS

By inspecting Eq. (1) it is easy to anticipate that, depending
on the strength of the similarity and popularity biases, the
system can show very different behaviors. In particular, three
distinct phases can be identified by considering simple limits:

(1) B =0, Va: disorder
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Without a popularity bias, Eq. (1) reduces to
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and thus all users behave as random clickers. In this case all
the items share the same probability of being clicked and the
system is disordered, meaning that any user rates equally (on
average) any item.

(2) @ =0and B = oo: consensus

When the similarity bias is set to o = 0 the transition
probability simply is

1
Ruizﬁz

and is independent of the user u. Moreover, since the popu-
larity bias is maximal, it holds rﬁ. /> ; rf ; = 8i,, where i, is
the most rated item by user v. As a consequence, denoting as
N; =Y, 8, the number of users having i as the most rated
item, we get

B
Ti

B
jToj

1 N;
R =+ > b, = N

This expression implies that users are more likely to click on
the globally most popular item, thus originating a feedback
loop which for large time is expected to make such an item be-
come the most rated for each user. This means that the system
evolves toward a consensus phase, where all users agree on the
same opinion. In this consensus phase the recommendation
algorithm always suggests the same item to all users.

(3) @ = oo and B = oo: polarization

In this case both the rating and the similarity biases are
maximal and Eq. (1) becomes

R ! 8
ui — N 0y

where i, is the opinion more frequently clicked on by user u.
As a consequence users persistently stick to their first random
choice (note that at ¢+ = 0 all ratings are the same, and so all
items have the same probability to be chosen), giving rise
to polarization and to the filter bubble effect. Indeed, in the
polarized phase the recommendation algorithm suggests to
each user just one specific item, but such an item varies from
user to user.

In order to investigate the model, it is useful to introduce
the normalized ratings 7,;, defined as

rui(t) rui(t)
Zirm‘(l‘) - t—G—MrO’

where the approximation comes from the assumption that in a
time interval At = N§t = 1 each user is updated once on av-
erage. The normalized ratings satisfy, for asymptotically large
times, the Martingale property, i.e., E[7,;(t + §t)] = E[7,;(¢)].
Since they are also limited in (0,1), this ensures that these
random variables converge to an asymptotic limit for large
times. Thus they are the right variables to look at in order to
find asymptotic stationary solutions of the system. By looking
at the evolution of the normalized ratings 7,; for various values
of the biases we can observe the different phases identified
by inspecting the behavior of the model in the limit cases

f'ui(t) = (2)

discussed above. First, we focus, without lack of generality, on
a specific user, u = 1, and we study the behavior of the ratings
71;(¢) for such a user. Figure 1(a) shows the temporal evolu-
tion of these quantities for M = 25 items and @« = 8 = 0.5:
all normalized ratings converge to the value 1/M, meaning
that the user under consideration equally rates all possible
opinions. This corresponds to a disordered configuration in
which the algorithm provides random recommendations and
the users behave as random clickers. The situation radically
changes when the popularity bias is increased to 8 =5, as
shown in Fig. 1(b). In this case one of the normalized ratings
converges to one, while all the others go to zero, meaning that
the user ends up always choosing the same opinion. Hence the
symmetry among items, found for small values of g, breaks
down when the popularity bias is increased. Analogously, we
can focus on a given item (we choose the first without lack
of generality) and study the rating that different users give
to it. Figure 1(c) shows the evolution of the N normalized
ratings 7, (t), corresponding to the various items, for @ = 0.5
and B = 5. We observe consensus among users, since for all
of them the normalized rating of item 1 converges to one,
while all other normalized ratings (not shown) go to zero.
Finally, we report in Fig. 1(d) the behavior of 7,;(#) when
also the similarity bias « is set to 5. The symmetry among
users breaks down. While for small « they all act the same,
here their behavior is heterogeneous: some of them maximally
rate the first item, while for others the normalized rating
corresponding to such an opinion vanishes, thus giving rise
to a polarized configuration in which users are divided into
groups depending on the opinion they support.

IV. PHASE DIAGRAM AND ASSOCIATED TRANSITIONS

When the control parameters « and 8 are varied between
the limit values discussed above, phase transitions take place,
associated to distinct symmetry breakings. For small values
of the biases both users and items are completely symmetric
and the system is in a disordered phase where all users rate
all items in the same way. The popularity bias 8 is respon-
sible for the item-symmetry breaking: when this parameter
gets sufficiently large each user only clicks on a specific
item. Analogously, an increase of the similarity bias « breaks
the user symmetry, leading to heterogeneous user behavior.
The polarized phase observed for large values of the biases
emerges when both symmetries are broken, while consensus
occurs when only the item symmetry is broken. Note that no
phase where only the user symmetry is broken is possible:
if all items are equally rated by each user, necessarily all
users are similar. In this section we show how these consider-
ations can be made, by analytical and numerical means, more
grounded and precise.

A. Master equation

The master equation for the probability distribution of 7,

O(ruis 1) is

d 1 Q(rui - la t)Rui(rui - 1)
a9t = 5[ ~Rui(ru)Q (i, r)} ®
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(a) Ratings of user 1 on different items. N = M = 25,
a=0.5and 8 =0.5.

1.0

= o =
=~ o o0
| | |

Single user’s ratings 71;(t)

<
o
1

=
=
]

| | | | |
0 100 200 300 400 500
Simulation time ¢

(c) Ratings for item 1 of different users. N = M = 40,
a=0.5and #=5.
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(b) Ratings of user 1 on different items. N = M = 25,
a=0.5and g =5.
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(d) Ratings for item 1 of different users. N = M =40, a =5
and g = 5.

FIG. 1. Temporal evolution of the normalized ratings for different values of & and B. (a) All M normalized ratings 7;(¢) for user u = 1 are
shown. The configuration is disordered; all items are clicked on indifferently, and as a consequence all ratings fluctuate around the mean value
1/M (users are random clickers). (b) Again all M normalized ratings 7;(¢) for user u = 1 are shown. Since we are above the transition in f,
the user tends to a single-item configuration, i.e., asymptotically only one item is clicked on; its normalized rating converges to 1 while the
others go to 0. The comparison between panels (a) and (b) reveals the features of the multiple-item to single-item transition. (c) Ratings 7, (¢)
of all users for the item i = 1 are shown. This is a consensus configuration; all users, which asymptotically tend to a single-item state, click on
the same item i = 1. (d) Again the ratings 7, (¢) of all N users for item i = 1 are shown. Since o > «, users are polarized; some of them tend
to click only on item i = 1, but others tend to click only on a different item /. The comparison between panels (c) and (d) reveals the features

of the consensus-polarization transition.

from which the drift coefficient is readily obtained,
d (r ui) 1

Vui = = o,

dt 8t

It follows the expression for the drift of the normalized rat-
ings,

(Rui) = N(Ryi). 4)

N d <?‘ ui) 1

Dui = N

dt t+ Mry

Detailed computations of Eqs. (3)—(5) are reported in Ap-

pendix B. Focusing on the long-time behavior of the system,

diffusion can be neglected and the evolution of the normalized

ratings can be approximated by means of the drift terms only,
diyi _ 1

dt t+ Mry

The stationary solutions of the dynamics are those for which
the time derivative reported above is equal to zero, that is,

(N (Rui) = (Fui))- S

(NRui - f'ui)~ (6)

NR,; — 7, = 0. It is easy to show (see Appendix C) that
disorder, consensus, and polarization are solutions of this
equation. In particular, these solutions are defined, in terms
of normalized ratings, as follows:

(1) Disorder: All ratings are equal, 7,;, = 1 /M, Vu, Vi.

(2) Consensus: The ratings for one item are 1 for all users
(rui = 1, Yu), while the ratings for all other items are O for all
users (r,; =0, Yu, Vj # i).

(3) Polarization: There are at least two groups of users, la-
beled by k and k', with consensus within each group (r,;, = 1,
ruj = 0,Vj # ix, Yu € k), but the selected item is different for
different groups (ix # ir). It is important to remark that in the
polarized phase, the interaction induced by the recommenda-
tion algorithm is such that users sharing a different opinion do
not influence each other.

As shown in Appendix C, also other configurations,
where 0 <m < M items are equally rated, have a null
drift. In order to understand which are the true stationary
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states of the system it is necessary to consider their
stability.

B. Stability analysis
1. The transition from multiple item to single item

Let us consider the case @ = 0o. From the phenomenolog-
ical considerations presented above we expect the disordered
solution occurring for 8 = 0 to be stable also for small g,
while users should stick to a single item for larger values
of the popularity bias. In the disordered phase all items are
equally likely to be clicked on. A disordered (multiple-item)
configuration is then described by all normalized ratings equal
to 1/M with small fluctuations €,;:

VD), Ri= e 6l < o @
u,t), nry= .- €uis €ui -
M M

The fluctuations can be either positive or negative, and they

are constrained by the normalization of ratings,

Y, :Z<Ail+euj> 15 Y e =0. ®
i J

By plugging Eq. (7) into Eq. (6), recalling that r,;/ > r,; =
P4i/ Y 7 and expanding for small €, it is easy to show (see
Appendix D) that

déui 1 9
7 x (B — 1ey. )]

If B < 1, fluctuations ¢,; are exponentially suppressed. The
system is then always driven back to the disordered solution,
which is therefore stable. When 8 > 1 fluctuations are instead
amplified and the multiple-item solution is unstable. By a
similar argument (see Appendix D) it is possible to show
that the single-item solution, for which in the large time limit
P4=1and 7,; =0V j#1iis stable when 8 > 1, while it
is unstable if 8 < 1. Moreover, solutions characterized by
users equally rating more than 1 but less than M items are
found to be unstable both for § <1 and 8 > 1, showing
the nonexistence of a fourth stable phase. We thus conclude
that at 8. = 1 a transition between the multiple-item and the
single-item solution occurs, associated with the breaking of
symmetry among items. In Appendix D we show that the same
picture applies in the general case o < co.

2. The transition from consensus to polarization

For the transition in 8, we can study the transition in «
by looking at the stability of the consensus and polarization
solutions. Since we already know that for 8 < 1 the single-
item solution is never observed, we can assume 8 > 1; for
simplicity here we set 8 = oo, while we refer to Appendix E
for the general case. We assume users close to the single-item
solution,

7 ui = 1— €

Vj D 1o

Puj = ——

Y M-

with 0 < € <« 1. Note that here we made the assumption that

€ does not depend on u and i, but the same results can be ob-

tained also considering the more general case of fluctuations
of the form ¢,;.

In the consensus configuration all users are aligned along
the same item 7, and so all similarities are approximately equal
to 1. As a consequence, since § = 0o, we can write Eq. (6) as

~ a
drui ~ 1 <Zu Suv(si,iu _; )
ui

dt 1+ Mr, s
L a—a-ey=——>0
— — —€)) = > U,
t+Mry t+ Mry

where we used the fact that all similarities are equal to 1 and
i, = i for all users. Since this quantity is always positive re-
gardless of «, the normalized rating along i keeps increasing,
asymptotically converging to the consensus solution 7,; = 1.
Considering instead an item j # i, we get for the drift

dar uj 1 ( € )

— = 0-— <0,

dt t+ Mry M—1
meaning that the normalized ratings of the other items con-
sistently go to zero. These results imply that the consensus
solution is an attractor of the dynamics for any value of the
similarity bias «.

We can then turn to the study of the polarized state. In this
case the similarity between two users polarized on the same
item is again 1, while for users polarized on different items it
holds

2(M — 1)e — Mé?
Suy =
' 1 —2¢ + Me?
where i, is the item user u is polarized on. Assuming for

simplicity K < N/2 distinct users polarized on item i,, and
the remaining N — K polarized along i,,, Eq. (6) reads

diui 1 K
N [ - —e)].

di 14+ MoK + (N — K)e
This quantity is negative for o < 1, while it is positive for
o > 1. Analogously, the drift of the rating of user u along item
ipis

=0(¢e) ifi, # iy,

dry;, N 1 Ke* €
dt t+Mrg|(N—K)+Ke* M—1]

which is positive for ¢ < 1 and negative for o > 1. These
results imply that for @« < . = 1 the K users polarized along
i, will not remain polarized as the system evolves, finally
polarizing along the item i, shared by the majority of agents.
Conversely, for @ > «, the drift reinforces the minority and
a polarized state consisting of two different group of users
emerges. The analysis thus indicates that for « < 1 only the
consensus state is stable, while we expect to observe both
consensus and polarization above the critical value.

The overall phase diagram of the model is summarized in
Fig. 2.

3. The simplest case: N =M =2

We can easily visualize the transitions in the simplest
possible case N = M = 2. In this situation the state of the
system is described in terms of two variables only. Indeed,
from the normalization of the ratings it follows that we
can focus on the ratings users give to the first item, i.e.,
711 and 7,;. This allows us to visualize the drift given by
Eq. (6) through a stream plot in the square (0 < 7 < 1,
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FIG. 2. Phase diagram of the model. Graphical representation of the phase diagram. The (c, 8) plane is split up into three regions according
to the distinct observed phases. The 8 = 1 line divides the multiple-item (disorder) regime from the single-item one. This is in turn split up
into the consensus phase, where all users agree on the same item, and the polarization phase where users stick to different items. The line
at « = 1 is exact only in the N — oo limit, while for finite-size systems the transition (crossover) is observed for larger «. The panels
around the diagram show the ratings streamlines for N = 2, M = 2 at different («, §) values. The red streamlines represent the evolution
of the ratings when starting from the respective red dots, showing the fixed points of the dynamics. The basins of attractions are separated
by black dashed lines. In the disorder phase the only fixed point is the point (7 1, 7»,1) = (0.5, 0.5), as in panel (a). In the consensus phase
(71,1, 72,1) € {(0,0), (1, 1)}, as in panel (b). Above (c, B) = (1, 1) two new attraction basins arise which are related to the emergence of
polarization states, (71,1, 72.1) € {(1,0), (0, 1)}, as in panels (c) and (d). Eventually, when o — oo (e) the phase space is equally divided into

consensus and polarization.

0 < 7,1 < 1). The disordered state D corresponds to the point
(711 = 721 = 0.5), consensus C to the two points (7]} = 7| =
1, 711 = 7,3 = 0), while polarization P corresponds to the
points (71} = 1, 7»; = 0) and (7, = 0, 7»; = 1). Figure 2(a)
shows the vector field D = (D;y, ¥2;) for « = 0.5 and B8 =
0.5. As discussed above, all stream lines point toward the
disordered state D, which is the only attractor of the dy-
namics. This is also shown by three different trajectories (in
red), which all end up in the central point of the stream
plot. The situation changes by increasing the popularity
bias above the critical value 8. =1 to 8 = 1.5, as shown
in Fig. 2(b). Disorder stops being an attractor, and all the
stream lines point toward the two consensus configurations C.
The transition is abrupt, since as soon as the popularity bias
exceeds S, the attraction basin of the disordered state disap-
pears, while that of consensus occupies all the phase space.
In the same way we can investigate the transition driven by
the similarity bias. Starting from Fig. 2(b), where consensus
is the only attractor, we increase the similarity biasto o = 1.5
[Fig. 2(c)], a value above the critical value o, = 1. This makes
the polarized state P emerge, although its basin of attraction

still remains small compared to that of consensus. For larger
values of « the basin of attraction of polarization grows
[Fig. 2(d)], reaching the same size of the attraction basin of
Consensus in the limit of infinite similarity bias [Fig. 2(e)]:
the phase space splits into four quadrants, two belonging to
the Consensus attractor, the other two to the Polarization one.
Starting from a fully disordered initial condition (the center
of the square) and neglecting diffusion, in the o = oo limit
we expect to reach consensus in half of the realizations of the
process. For smaller values of « > 1 this probability will be
larger than 1/2.

C. Numerical investigation of the phase transitions

The phase diagram deduced in the previous subsections
and sketched in Fig. 2 can be validated by means of numerical
simulations of the model behavior. In particular, it is possible
to define two order parameters, related to the variance of
normalized ratings, whose values mark the two transitions,
associated to the breaking of user or item symmetries. See
Appendix F for details. While the transition controlled by
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FIG. 3. Probability of consensus as a function of M and N. Fraction of 1000 runs going to consensus. Panel (a) shows that, for fixed
o =10, P tends to 0 as N is increased. Larger values of M imply a better agreement with Eq. (11), derived for & = co. Panel (b) shows
that, already for o = 2, the power-law dependence of P- on M with exponent 1 — N [see Eq. (11)] is obeyed for sufficiently large M, with an

N-dependent prefactor.

B occurs as expected, with an abrupt jump of the order
parameter around B = 1, the analysis of the consensus-to-
polarization transition, controlled by «, requires more care,
since above o, = 1, both consensus and polarization solutions
are stable.

In the N = M = 2 case, in the limit of large «, the phase
space splits into four equally sized regions, two belonging to
the basin of attraction of consensus, the others to the basin
of attraction of polarization. The initial condition we adopt,
with all ratings equal, lies in the center of the phase space,
corresponding to a perfectly disordered configuration. This
means that, neglecting diffusion, the very first random click
completely determines whether the system evolves toward
consensus or polarization. Since the first click corresponds,
in the stream plot, to a step along one of the diagonals with
equal probability, we expect consensus to be reached with
probability Pc = 1/2.

In the case of generic N and M and o = oo the picture
is similar. Since every user is completely independent from
the others he or she gets polarized along one item uniformly
selected at random among the M possible values. Global
consensus is reached only if, by chance, the selected item is
the same for all users. All other configurations correspond
to polarization. The probability Pc that all users randomly
choose the same item is

Pczﬁ%zM‘N“. (11)
In the limit of large M (or large N) this probability of con-
sensus P vanishes: polarization is the only stationary state
actually reached by the dynamics. Consensus gets harder and
harder to be observed due to entropic effects. This can be also
seen by noticing that the consensus corners form a countable
set, while the polarization corners are an uncountable one,
since the latter can be also seen as the set of all infinite binary
sequences.

Equation (11) implies that, exactly as for N = M = 2, for
generic N and M and o = oo the phase space is divided in
MY quadrants of which only M lead to consensus. By analogy

with the N = M = 2 case we expect that, also in the generic
case, the basin of attraction of polarization starts gradually
growing from the “corners” of the phase space as o becomes
larger than 1, eventually invading the whole quadrants. Note
that the system is always initialized in the center of the phase
space, because all ratings are initially equal. Then the first
random click moves it toward the periphery of the phase
space, where the polarization basin lies. Since in the large
system limit there are infinitely more polarized corners than
consensus ones, we expect random fluctuations to lead the
system to a polarized state very easily and thus the consensus
probability to go to zero very rapidly also for values of «
close to the critical point o, = 1. The scenario just described
is confirmed by numerical simulations. Figures 3(a) and 3(b)
show a comparison between Eq. (11) and the probability
of consensus measured in numerical simulations. For fixed
and large enough M, the exponential decay in N, M N+,
is perfectly recovered in simulations, while for small M we
observe strong discrepancies. This behavior derives from the
fact that, as discussed in Appendix F, by increasing N only, the
transition gets sharper, but occurs at values of « larger than 1.
Conversely, when M is increased, the transition moves toward
o, = 1 while also getting sharper. Keeping instead N fixed
and looking at the consensus probability as a function of M
we observe a good agreement for what concerns the scaling
exponent, 1 — N, although with a much larger prefactor. In
any case, we can conclude that, for N and M sufficiently large,
entropic effects make consensus very hard to be reached as
soon as o > o, = 1. Hence in large systems the phase dia-
gram is composed of three pure phases: disorder, consensus,
and polarization.

V. CRITICAL RECOMMENDATIONS

The analytical approach and the numerical simulations
show that the collaborative-filtering model is characterized by
three distinct phases: disorder, consensus, and polarization.
Only in the latter does the algorithm really provide personal-
ized recommendations. Indeed, in the disordered phase users
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get completely random recommendations, while in the con-
sensus phase there is no personalization, as all users receive
exactly the same suggestion. Conversely, in the polarization
regime users spontaneously split into groups, each character-
ized by a different recommended item. Thus, in this phase
the algorithm provides to each user personalized recommen-
dations perfectly in line with his or her past choices. Note,
however, that in the long run each user is exposed only to a
single item. Users are trapped into a filter bubble preventing
them from being exposed to all other items.

Understanding if and how personalized recommendations
can be obtained without users being completely stuck in a
filter bubble is of crucial importance. With this goal we fo-
cus on the transition between multiple item and single item,
where an intermediate behavior is expected to be found. This
transition corresponds to the line 8 = B, = 1. For such value
of the popularity bias, the probability for user u to click on
item i reads, from Eq. (1),

Z
w uw Z ryj

—Z

In the disordered phase all normalized ratings 7,; for a
given user u are concentrated around the value 1/M, and, for
large ¢, they are described by a § distribution. In the polarized
phase they are instead described by the superposition of two
§ functions, one in zero and the other in one, corresponding
to the winning opinion. We want to understand if, on the
critical line, the distribution of ratings assumes a nontrivial
form between these two limits. We first consider the limit
o — 00, where each agent is coupled only to his or her past,
different agents being completely independent. We can focus
on just one user and set N = 1. In this way the transition rates
become

uu _u

t+Mr0

U) uw

Ti

Ri=R; = M 12)
where we indicate for simplicity with r; the ratings of the
user under consideration. Equation (12) can be seen as the
transition rate for a Polya Urn model with balls of M distinct
colors [40]. Indeed, we can interpret r; as the number of balls
of color i inside the urn and R; is the probability of randomly
extracting a ball of such a color.! Since at each time step
exactly one item is clicked on and the corresponding rating
is increased by a unit, there is a perfect mapping between
the collaborative-filtering model for « = co and 8 =1 and a
Polya Urn with reinforcement parameter S = 1. This implies
that the probability P(f) of observing a normalized rating
vector ¥ = (7, ..., Py ) is given by

l—[M ro/S—1

PO = s

(13)

ISince ry is noninteger, the interpretation in terms of balls in an
urn does not strictly apply here. However, the theory for Polya Urns
works also for real ;.

where S = 1 is the reinforcement parameter of the Polya Urn,
ro = (19, ..., rp) is the vector of initial conditions and D(-) is
the multivariate 8 function [40,41].

The distribution of a single normalized rating P(7;) can be
obtained by marginalizing Eq. (13) over the remaining M — 1
ratings, obtaining

~rg—1 (1- ;,i)(M—l)rO—l

P = o 1 = Do)

where B(x, y) is the Euler 8 function. Depending on the value
of ry this distribution has different shapes (see Appendix G
for details). In particular, for ro = 1/(M — 1), it is a pure
power law with exponent —(M — 2)/(M — 1). This means
that on the critical line 8§ = 1, for « = 0o users are neither
completely polarized nor behaving randomly. Rather they
show a nontrivial distribution of the ratings, thus conciliating
personalized recommendations with the exploration of the
whole item space. Figure 4(a) confirms this prediction also for
values of the similarity bias smaller than infinity: for « =~ 10
users behave as if they were independent. We can see this also
by looking at the popularity w; = )", r,;, whose distribution
quantifies how much different users agree on the same items.
When users are practically independent, we expect such a
distribution to be peaked around its mean value. Indeed, dif-
ferent users select different items as their favorite, and thus
summing on all users gives, for all items, approximately the
same popularity value. This behavior is shown in the inset
of Fig. 4(a), where we report the complementary cumulative
distribution of the popularity in the large o regime.

What happens when users cannot be considered effectively
independent? For ¢ = 0 an approximate mapping to a Polya
Urn (see Appendix G) yields a distribution of normalized
ratings perfectly analogous to Eq. (13), with only ry replaced
by ro/N. As a consequence, P(#;) is a B distribution (see
Appendix G), which for initial condition ry = 1/[N(M — 1)],
decays as a power law 7 !. This behavior is checked in
Fig. 4(b), where we show the distribution of the ratings for
various values of @ and ro = 1/[N(M — 1)]. For « =0 we
observe deviations from the predicted behavior, but as «
is increased, the system more closely follows a power-law
distribution. Also in this case we show in the inset the com-
plementary cumulative distribution of the popularity, which
is broader than the one of a Polya Urn for small o, while it
becomes more and more similar to it as « increases.

In conclusion, even if for intermediate values of o an exact
mapping to a Polya Urn is not possible, what we observe
numerically is that the behavior of the system for § = 1 and
generic « is well described either by the o = 0 limit or the
o = oo. In all cases we find broad rating distributions. Note
that the behavior we observe on the critical line depends on
the point where we cross it, i.e., if we move from disorder
to consensus or from disorder to polarization. An analogous
power-law scaling is found only using a different r( in the two
cases. In particular, when « is small, users shows a stronger
degree of collective consensus, while for larger « they behave
more individualistically. It is also important to remark that
when M, N are large enough, the transition occurs at §. = 1
independently of the number of users or items. This implies
that the critical recommendation regime is stable when new
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FIG. 4. Distributions of the normalized ratings for 8 = 1. (a) Distribution of normalized ratings for N = 1000, M = 500, 8 = 1, and
different values of «. The system is initialized with initial conditions r(()” = 1/(M — 1). In this case we expect a power-law distribution with

exponent —1 for large values of o (straight line), which we observe already for o« = 10. When o = 2, the approximation of independent
users breaks, and the distribution is no more approximated by a power law. The inset shows the complementary cumulative distribution of the
popularity. For large « it coincides with that of a Polya Urn (black line) since users are independent, while as « decreases it becomes broader,
due to the emergence of correlations among users. (b) As in the left panel, but initializing the system with initial conditions réz) =1/NWM —1).
In this case the model approximately follows a Polya Urn dynamics for o = 0; as expected, the distribution is close to a power law with
exponent —1 (straight line). For larger values of «, when users are mostly independent, a peak at 7;,; = 1 appears in the power law distribution.
Also in this case, the inset shows the complementary cumulative distribution of the popularity, that becomes more and more similar to that

obtained from independent Polya Urns (black line) as « increases.

users or items enter the system, a crucial requirement for
applying the recommendation algorithm in realistic scenarios.
Moreover, the standard implementation of the user-user col-
laborative filtering, corresponding to « = § = 1, lies on the
critical line, and it is thus in the optimal region of the algo-
rithm’s phase space.

VI. MODELING MUSIC RECOMMENDATIONS

The model we consider describes a recommendation algo-
rithm with implicit feedback, where the ratings are computed
from users’ behavior and not directly from their votes. This
is the typical situation in online music platforms; in such a
context the number of times a user plays a song, i.e., what
we call rating, is a proxy of how much the user likes that
song. Thus, it is very natural to compare the model behavior
with data coming from an online music platform. The popu-
lar website last.fm is a suitable platform for such a task, as
it provides full listening histories of a large amount of its
users. These data have been already analyzed in a number
of studies [42—44], and they represent a sort of standard in
the music recommendation system. In particular, we focus on
the Music Listening Histories Dataset, which contains more
than 27 billion time-stamped logs extracted from last.fm [45],
using it as used in the paper. In order to build a rating matrix
out of the dataset, we selected N random users (with N =
1000, 2000, 5000) and the top M most popular artists (with
M = 500, 1000). We then defined the entry r,; as the number
of times the uth user listened to the ith artist.

The empirical distributions of the ratings for different com-
binations of M and N are displayed in Fig. 5(a), while the
distributions of the similarities among users are reported in
Fig. 5(b). Both distributions turn out to be very broad. Also
the popularity of individual artists, w; = ), ry;, is broadly

distributed [see Fig. 5(c)]. This is a clear indication that users
tend to give high ratings to the same set of artists, i.e., they
do not behave independently. If users were completely inde-
pendent, each one would prefer a different artist, and thus the
popularity distribution would tend to be peaked.

The broad distribution of ratings suggests that to reproduce
last.fm empirical data we should consider our recommender
model at the border between multiple item and single item,
ie., for § = 1. We perform numerical simulations of the
model dynamics for 8§ = 1 and determine the value of the sim-
ilarity bias « that best fits the empirical distributions. In this
way we quantify the level of interaction among users. Since
we know that the popularity is broadly distributed, we set
ro = 1/[N(M — 1)], a value that for « = 0 gives a broad pop-
ularity distribution. We then perform numerical simulations
for various values of «, determining the one best reproducing
the data. The model dynamics is run for a time equal to the
average number of plays per user in the last.fm dataset. It is
worth pointing out that even if we set the average values equal,
in the real system the number of plays largely fluctuates from
user to user, while in our model each user clicks more or less
the same number of times.

Results of numerical simulations are compared with the
empirical evidence in Fig. 5, and a partial agreement is ob-
served; more details about the adherence of the model to real
data are reported in Appendix G. We selected the o values
such that the distributions most closely reproduce empirical
data. These values are close to 2 in all the cases considered,
suggesting that a non-negligible amount of interaction under-
lies users behavior in last.fm. These results indicate that our
model is capable of reproducing the main features of users’
behavior on the online platform last.fm and allow us to gauge
the strength of the collaborative filtering they are exposed to,
even if other mechanisms we are neglecting also may play
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FIG. 5. Empirical data from last.fm (a) Histogram of the empirical ratings from last.fm (symbols) for three combinations of N, M:
(N, M)' = (1000, 500), (N, M)?> = (2000, 1000), (N, M)> = (5000, 1000). Each rating represents how many times a given user listened to
a particular artist. Distributions obtained by simulating the model with a fixed parameter a: ! = 1.74, ™2 = 1.78, ™3 = 1.98 are shown
as solid lines. (b) Histogram of the cosine similarity for the same set of parameters of the previous panel. Empirical data are plotted as
symbols; results from simulations of the model are shown as solid lines. (c) Complementary cumulative distribution of the popularity defined
as w; = Y, r,;. Empirical data show a wide distribution of the popularity, a feature which cannot be fully recovered by our model.

a role. Despite our model making significant improvement
in modeling recommendation algorithms, we observe some
discrepancies between numerical simulations and empirical
data. These may arise from several features not considered in
our schematic representation. For instance, last.fm, like many
other online platforms, features a social network structure
that influences the content to which users are exposed. Addi-
tionally, real users demonstrate temporal correlations in their
behavior, fluctuations in music consumption, and personal
preferences.

VII. CONCLUSIONS

Understanding the effects of recommendation algorithms
in social phenomena and their role in the polarization of
opinions is a central problem to be tackled in order to prevent
the rise of radicalization. The feedback loop these algorithms
tend to establish represents a serious threat to our society,
as users are trapped in filter bubbles where they are exposed
only to content and news confirming their past beliefs. In this
paper we addressed this issue by considering the effects of
user-user collaborative filtering, a paradigmatic approach to
algorithmic recommendations, on a group of N users allowed
to repeatedly choose among M different items or opinions.
Depending on the strength of the similarity bias «, which sets
the importance the algorithm gives to choices made by similar
users, and on the magnitude of the popularity bias B, which
gauges the weight given to items with high ratings, the phase
diagram of the system is characterized by three phases:

(1) A disordered phase for B < 1 and any «, where all
users rate items in a completely random manner

(2) A consensus phase for § > 1 and o < 1, where all
users share the same opinion

(3) A polarized phase for f > 1 and o > 1, where each
user sticks to a given item, the system being split into various
communities corresponding to different selected items.

None of these phases correspond to viable recommen-
dations. Indeed, in the disordered phase the algorithm
recommends just random items; in the consensus phase it

treats all users in the same way; and in the polarized phase
the filter bubble problem emerges, since each user is exposed
to a single opinion. However, by looking at the transition line
between disorder and polarization we showed that it is pos-
sible to operate the recommendation algorithm in an “ideal”
regime, featuring both personalized and diverse recommenda-
tions, without the onset of filter bubbles. On this critical line
users explore more than just a single opinion, as confirmed
by a broad distribution of the normalized ratings. We believe
the approach we introduced represents a step toward the de-
velopment of a general theory of collaborative-filtering-based
recommendation algorithms, allowing us to understand their
optimal regimes and their potential drawbacks.

We then compared our model with empirical data coming
from the last.fm music platform. We observe broad distribu-
tions of the user ratings, of the similarity among users, and
of the artists popularity. In the framework of our model, these
results can be interpreted as the outcome of a recommendation
system operating a collaborative-filtering algorithm on the
critical line B = 1. By fitting our model to the data, we were
able to qualitatively recover a broad distribution of the ratings,
of the popularity, and of the similarity. In particular, we find
values of the similarity bias o &~ 2, which show the presence
of a non-negligible effective interaction among users.

Clearly many realistic ingredients have not been taken into
account in the present work and deserve to be investigated.
In particular, we assumed that users have an infinite memory,
so that the initial condition is never completely forgotten and
influences the properties of the steady state. The consideration
of a system where only ratings expressed in a finite time
window in the past determine the algorithmic recommenda-
tion is an extremely interesting avenue for future research.
Additional important ingredients we neglected are the het-
erogeneities in the rate of clicking, as observed in last.fm, or
possible different initial conditions for users. Understanding
whether these modifications change the overall phenomenol-
ogy is an interesting further development. Also, for a closer
comparison with empirical data from real recommender sys-
tems it would be interesting to analyze not only the properties
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of the stationary state of the system, but also the timescales
needed to reach it. Finally, while this study intentionally ex-
cluded network structure to maintain model simplicity, many
platforms, including last.fm [46], are characterized by the
presence of a social network, which is an important factor in
the enhancement of polarization [31,47]. Future research will
delve into the social interaction aspect that has been set aside
in this initial model, adding depth to the understanding of the
influence of these algorithms.

Despite the heterogeneity of users and artists and the lim-
itations we discussed, our model with small similarity bias
reproduces the phenomenology of last.fm users. These re-
sults point to the presence of a collaborative-filtering-based
recommendation algorithm in the online music platform we
considered and show that a relatively simple model can cap-
ture its main features and allow one to assess the relevance of
its rating and similarity biases.

APPENDIX A: SCALING OF INITIAL CONDITIONS

Let us consider a specific item that has been clicked on k
times at time ¢, i.e., r,;(t) = ro + k. The variation of the nor-
malized rating 67 = 7,;(t + 1) — 7,;(¢), assuming it is clicked
once in a time unit, is

M—Dro+1t—k 1

5F = .
Mrog+1t+ 1)Mry+1) Mry

where the limit of # < Mry has been taken, implying that
we are dealing with the very first moments of the dynamics.
Depending on the scaling of ry with M we can distinguish
three possibilities:

(1) If ro ~M~¢ with a > 1, 67 vanishes when M — o0;
this means that in the large M limit the system is not able to
move in the phase space

(2) If ro ~ M~ with a < 1, 87 increases with M, being
upper bounded by 1; this means that in the large M limit the
system is able to arrive with the first click on the border of the
phase space not being able to explore it all

(3) If instead ro ~ M~', then 87 remains constant to a
value smaller than 1 in the large M limit; this is the right
scaling we are looking for to preserve the phenomenology of
the system regardless of the value of M.

The conclusion in that in order to take the large M limit the
initial condition must scale as rog ~ 1/M.

APPENDIX B: MASTER EQUATION FOR THE RATINGS
Denoting by Q(r,;, t) the probability distribution of r,; at
time ¢, its temporal evolution is
Q(ruiyt +6t) = Q(ryi — 1, )Ry (ri — 1)
+ [1 = Rui(rui))Q(rui, 1),
reflecting the nondecreasing evolution of the r,;.

Expanding the Lh.s. in the continuous time limit §t =
1/N — 0 one obtains Eq. (3)

ui 17 Rui ui_l
001 = [Q(r Dl )}

—Rui(ri)O(rus t) |

The drift coefficient, i.e., the time derivative of the average
value (r,;(t)), can be derived by writing

d(r,(1)) d
T = Z ruzd Q(rul’t)

rui=ro

oo

and inserting Eq. (3) into it,

= i Z rul Q(rui —

"m—’O

- Q(rui’ t)Rui(rui)v t)]

ut t
r—() 1 OR(ryi — 1)

1 [o¢]
= g Z [(rui + 1) - I‘ui]Q(rui, t)Rm-(rm.)

Tui=ro

R 1
=5 2 QU DR(ri) = —(Rui)

Tui=ro
= N(Rui),

where we have set Q(rp — 1,#)R(ro — 1) =0

So far we have considered the values of the ratings. If we
want to consider the normalized ratings 7,;(¢) = r,;(¢)/(t +
Mtry), the drift is given by

A d(fui) d (rui)
Vui = X —
dt dt l‘+MI‘0

L d(ra) (rui)
Ct+Mry dt t +Mrp)?

APPENDIX C: STATIONARY SOLUTIONS

The system of differential equations (6) at stationarity
reads

Fui = NR,; =

N A
Z S(ljv (t ) rfl (t ) (Cl )
DI NODSNAOY

The solution of these N x M equations gives the stationary
states of the model.

The configurations fulfilling this requirement are the fol-
lowing.

Disorder solution. Under this condition all normalized rat-
ings are equal to 7,; = 1/M for large times, since all items are
rated on average the same number of times. Similarities are
then all equal to 1, thus Eq. (C1) is fulfilled for any value of u
and i:

1 i 1 MF 1

M~ NMM=* M
In this phase the distribution of normalized ratings is a §
function centered around 7,; = 1/M, while the distribution of
similarities is a § function centered around s, = 1/M.

Consensus solution. Only one item is clicked on in the limit
t > 1, then #,; = 1 for some i, and #,; = 0, Vj # i, and this
holds for any user. Since also in this case all similarities are
equal to 1, Eq. (C1) reads, for item i,

N 1,3

1
= ——:1
;Nlﬂ—i—(M—l)Oﬁ ’
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while for the items j # i

N

1 0P
0= [ ———)]
ZNlﬂ—i-(M—l)Oﬂ

v=1

Hence the stationarity condition is satisfied for any u and i.
In this phase the distribution of the normalized ratings is the
superposition of two § functions, one centered in 0 (weight
1 — 1/M) and one centered in 1 (weight 1/M). The distribu-
tion of similarities is a § function centered in 1.

Polarization solution. Only one item is clicked on by each
user in the limit # > 1, but it is not the same for all users.
Let us assume that for K users 7,;, = 1 and 7,; = 0 for j # iy,
while for the other N — K users #,;, = 1 and 7,; = O for j #i.
In this case the similarity is 1 for users rating the same item,
while it is O otherwise. It is simple to check that Eq. (C1) is
satisfied. It is also easy to check that the stationarity condition
is satisfied by any possible polarized configuration (more than
two groups, of any size). In this phase, the distribution of nor-
malized ratings is again the superposition of two & functions,
centered in 0 and 1, as for the consensus solution. Also the
distribution of similarities is given by the superposition of a
6 function centered in 0 and one centered in 1, with weights
depending on the distribution of group size.

Other solutions. In principle, there exist also other sta-
tionary solutions. These are all configurations where multiple
items are rated by a single user exactly in the same propor-
tion. For example, m < M items are equally rated by user u,
ie., # =---="*,, =1/m for m items, while r,; =0 for
j #1i1, ..., 1. These solutions are stationary both if the m
items are the same for all users and if they differ for different
users. This holds for any value of m (for m =1 we have
single-item solutions, while for m = M we have disorder). In
the next Appendix it is shown that these solutions are unstable
for any values of the parameters 8 and «.

APPENDIX D: THE TRANSITION FROM MULTIPLE ITEM
TO SINGLE ITEM

In this Appendix we present explicit calculations about the
multiple-item to single-item transition occurring as a function
of B, for any value of «.

1. The multiple-item solution

Let us start from the case o« = oco. Plugging the disorder

solution Eq. (7) into the expression Eq. (6) we obtain, apart

from the factor ——

t+Mry’
B
dAui d ui = + €ui 1
dLIdLO(%—<M+EM> (Dl)
! LY tew)
1+ Me,;)? 1
x g _ <_ + 6m‘)- (D2)
Y (I +Me)p  \M

Expanding for Me¢,; < 1 leads to

dey; (I+ BMe,;) ( 1 )
a0+ pMey)  \M

Since Zj €,;j =0 [see Eq. (8)] then Zj(l + BMe, ) =M
and hence

deui
dt

that is, Eq. (9).

If « is finite, the similarities do not cancel from Eq. (6), and
we should consider all of them. We now show that similarity
terms are equal to 1 up to corrections of the second order in €,,;,
which we can safely neglect for any o > 0. In this case the
situation is substantially equivalent to the case o = 0, where
all similarities are exactly equal to 1.

Let us recall the expression of the cosine similarity

Zi ;\'uii;ui
A2 A2
i) 2 P
and plug into it the ratings corresponding to the disorder
solution Eq. (7),

1 1
08 M(l +,3M€ui) - M(l +M6ui) = (,3 - 1)61,,',

Suy =

G re)te)
VI 4 e) VI (& +en)’

Multiplying by M? both the numerator and the denominator
and expanding the terms in the square roots at denominator
[which is equivalent to neglect terms of order 0(€2)] we can
rewrite

Suy =

YL+ Me)(1 + Mey;)
V(1 +2Me) /Y (1 + 2Me,;)
_ Z,‘(l + Me,; + Me,; +M2€ui€vi)
T (0 2Mey) /S (1 + 2Mey)

Exploiting once again the fact that ), €,, = D, €,; = 0 we
finally obtain that

M+ M?Y, €€y
Suy N T'M =1 +M26ui€via

~

SMU

1

thus confirming the fact that s,, = 1 — O(M?€?); we specify
the minus sign to remind that similarities cannot be larger
than 1. Note that, for this reason, the term Zi €,4i€y; 1 always
negative.

To show what happens if similarities can be put equal to
1, for simplicity let us consider directly the case @ = 0 where
similarities are exactly equal to 1. In this case expression (6)
reduces to

dPu; 1 1 P
S o e —y
dt t+Mrg\ N - Z fﬂ

Jvj

o 1 (& +eu)’ <1 >
S | N2 Gy

Following the same procedure as in the case o = 0o, we can
simplify this expression obtaining
d?ui dem

1
ar 7 X N,B Zj:evi — €ui = B€vi) — €uis

where (-) = ﬁzv
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Reapplying the average over users we obtain

d(eui)
dt

Similarly to the case o = 0o, in which we had only one
user, this expression means that when 8 < 1, the items which
are on average underrated would tend to increase, while items
which are on average overrated would tend to decrease, en-
suring the stability of the disorder solution. When g > 1 the
situation is reversed, and thus the disorder solution is unstable.

= (Blevi) — €ui) = (B — 1)(€vi).

2. The single-item solution

Let us now consider a configuration close to a single-item
solution, i.e., a situation in which the normalized ratings are
as in Eq. (10).

Let us start from the case o = oo for simplicity. Plugging
Eq. (10) into Eq. (6) yields

de_ 1 d—cp ~(—e)
dt_t+Mr0_(1—e)‘3+(M—1)ﬁ
_\B _ _ ﬁ+1_€(—6
R R T e
_I+Mr0 65
— )8 _
(1 €)+(M_1)ﬂ—l

Neglecting the prefactor and the denominator, which are pos-
itive, stability requires the numerator to be positive,

B(1 —
(1—e)ﬁ—(l—e)ﬂ+'—ﬁ>0.

Some straightforward algebra leads to

RIS

Raising to the power 1/(8 — 1), the sign of the inequality is
conserved if 8 > 1, and thus
M—-1

M

(M—l)(é—1)>1=>e<

Hence for small € the single-item solution is stable if 8 > 1.
On the other hand, if 8 < 1, the sign of the inequality is
reversed, and thus we obtain

M-1

(M—l)(§—1><l & € >

In such a case for small € the single-item solution is unstable.

A similar computation can be carried out for the drift of the
least rated items j # i; it is easy to obtain that d7,;/dt < 0
for B > 1 as long as € < (M — 1)/M, while d?,;/dt > O for
B < 1 under the same assumption. All these results indicate
that the multiple-item solution is stable for 8 < 1, while the
single-item solution is the stable one for § > 1.

Considering the case with finite o does not change much
the reasoning. The only difference would be to consider ex-
plicitly the similarity terms in Eq. (6); we can get rid of them
considering a consensus single-item configuration, i.e., where
all users have similarity very close to 1; the computations then

trivially reduce to the case of considering only one user when
o = 00.

Finally, we look also at the stability of other possible solu-
tions of Eq. (C1), those in which m < M items are rated in the
same proportion:

Pui ~ — + €, formitems
m

Puj ~ €,5 for M — mitems

Performing computations similar to those previously ex-
plained, it is possible to realize that these solutions are stable
neither for 8 < 1, because the large ratings would decrease
while the small ones would increase (deviations are sup-
pressed), nor for 8 > 1, because the large ones would increase
while the small ones would decrease (deviations are ampli-
fied).

APPENDIX E: THE TRANSITION FROM CONSENSUS
TO POLARIZATION

In this Appendix we present explicit calculations about the
transition between consensus and polarization occurring, as a
function of «, for g > 1.

Let us consider two users # and v who are close to the
single-item state. Each of them is described by Eq. (10), but
with different selected items: i, # i,,. The similarity between
these two users is, in the limit Me < 1,

_2M —1)e—Me*  2(M —1)e
WS T et M 1-2e

= OMe). (El)

Let us consider B = oo. If K users are close to the single-
item state with item i, selected, while the remaining N — K
users have selected item i, the expression of the drift is

Ay 1 o0 .
7 — ZU suv wo rul . (E2)
dt t+Mro\ ), 5%,

Since similarities between users in the same group are s, ~
1, while similarities between users of different groups are
S A Me, we can write

—(1- e)].

dtu, 1 K
dt t+Mrg | K+ N —-K)Me)™

The sign of the drift coefficient is thus related to the sign of

the following expression:

K—(1—-¢)K+ (N —-K)(Me)]
= —(N — K)(Me)* + Ke + (N — K)M*e**'.  (E3)

If @ € [0, 1), taking the limit € — 0, the dominant term
is the one of order €%, and d#,;, /dt < 0. So in this case the
rating of the most rated item would tend to decrease, and the
polarized solution is not stable. On the contrary, if o > 1, the
dominant term is the one of order €, so that d7,;, /dt > 0 and
the polarized solution is stable.

At the same time, if one considers j # i,, an analo-
gous computation gives, in the limit of small €, d#,;/dt > 0
for @ < 1 (instability of the polarized solution) d#,;/dt < 0
for o > 1 (stability of the polarized solution). In particular,
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for o = 1 the drift is still negative since it is proportional to
—(N —K)e + Ke + (N — K)e? = —=Ne + (N — K)é?,

which is a negative quantity if € < 1. Thus we can conclude
that at the critical point « = 1, the basin of attraction of the
polarized solutions is still null. A very rough estimate of the
amplitude of the basin of attraction can be obtained from the
expression (E3) by neglecting the higher order term (N —
K)e“*!, thus obtaining a solvable inequality which states that
the drift points toward the polarized solutions at least until

K\
€ < —_— .
=

The same argument applies to any possible polarized solution,
i.e., every value of K between 1 and N — 1 and an arbitrary
number of groups.

For what concerns the case of generic 8 > 1, the only
difference with Eq. (E2) is that the terms f’fi /> j f'f ; must be
considered explicitly; but in the limit of small € we have

. rm' . (1 _e)ﬁ
lim —‘Aﬂ = lim 7
e—0 Zj ru] e—0 (1 — e)ﬂ + (M — l)m
=liml—-0()=1
e—>0

B —Eﬂ

Fuisti —1)8
lim 2% = Jim Uinb) —
€—>0 Z]? €—~>0 (I—E)ﬁ“‘(M—l)WST)ﬁ

= lirr(l) O(e) =0,

thus we are led back to Eq. (E2). As a consequence, for every
B > 1, we obtain that the critical value of the transition is
o =1

APPENDIX F: THE ORDER PARAMETERS

We define the item fluctuations V; as

M?* 1 1 5 | 2

ST RN
which is the variance of users’ normalized rating vectors
t, = (Fu1, Pu2, - - -, Fuyr) averaged over all users. The factor
M?/(M — 1) ensures that V; varies in the interval [0, 1]. In the
disordered phase it holds 7,; = 1/M, and so we have V; = 0.
Conversely, when users stick to a single item, the normal-
ized ratings satisfy 7,;, = 1 and 7,; = 0 for j # i, thus giving
Vi=1.

Analogously, we introduce the user fluctuations V,, as

M2N-D [ o
MV 1ML [ﬁzrii_(jlvzrui) :|, (F2)

u

V, =

which is the variance of the items’ normalized rating vectors
t; = (P, P2, - . ., Py;) averaged over all users and normalized
to be in [0, 1]. It is easy to see that both in disorder and
consensus it holds V, = 0, while in polarized states V, > 0,
the precise value depending on the size distribution of the
groups. In terms of these order parameters the three phases
are identified by the following:

Disorder: V; =0andV, =0

Consensus: V; > 0and V, =0

Polarization: V; > 0 and V,, > 0.
In order to validate the phase diagram discussed above, we
perform computer simulations of the model dynamics, fo-
cusing on the order parameters just defined. We run the
simulations for a time equal to T = 1000M.

First, we look at the multiple-item to single-item transition,
occurring as a function of 8. We show in Figs. 6(a) and
6(b) the order parameter V; as a function of B for « = 5 and
different combinations of M and N. As expected we observe a
transition in B, = 1 that becomes increasingly sharper as the
system size grows.

Figure 6(c) shows how the order parameter V, depends
on « for fixed N. As M is increased, the transition becomes
sharper and sharper and moves to the critical point «.. For
fixed M the transition is instead observed at & > . = 1 and
becomes sharper with growing N [Fig. 6(d)]. This indicates
that our predictions are accurate when M is sufficiently large,
a situation always occurring in real recommendation systems.

APPENDIX G: THE POLYA URN MODEL

The Polya Urn model considers an urn where initially there
are ro = {rig, ..., ruo} balls of M different colors; at each
time step a ball is randomly extracted from the urn, then it
is reinserted with S other balls of the same color.

From the general results of the Polya Urn model [40] it
can be obtained that the distribution of the normalized ratings
follows a multivariate 8 distribution:

RO
-1 aro—1
A i’ i
py T
D(¥) D)

where D is the multivariate 8 function, S = 1 since each
rating is increased by one subsequently to a click, and we
focus on the case of uniform initial conditions rl.(o) =1y for
any i. This distribution is defined on the standard (M — 1)
simplex by the constraint of the normalization of the ratings.

These initial conditions also imply that each rating 7; is
statistically equivalent to the others; thus it is sufficient to
obtain the marginal distribution of a single rating to have the
complete statistics of the system.

In particular, the marginal one-dimensional distribu-
tion of a multivariate B function gives a S distribution
B ai, Z#i a;), which in our case reads

f.{’o—l (1- ;\,i)(Mfl)rofl
1

P(Fi) = Blisro. (M — Dro] = Blry, (M — 1)rg]

where B(x, y) is the Euler 8 function.

Depending on the value of ry we thus have different behav-
iors. For ry = 1/(M — 1) the distribution of the single ratings
shows an exact power-law decay:

1
"(5)
— ;}.f(M*Z)/(M*I). (G1)

(1)
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FIG. 6. Order parameters and phase transitions. Panels (a) and (b) show the order parameter V; for the multiple-item to single-item transition
as a function of B, for « = 5. Curves are computed averaging over 1000 realizations of the dynamics. The increase of M or N has no
effect on the critical value . but simply sharpens the transition. Panels (c) and (d) report the behavior of the order parameter V, for the
consensus-polarization transition. It turns out that increasing M moves the transition towards «, = 1. Increasing N for fixed M has little effect
with regard to the location of the transition while it makes the transition sharper. This indicates that at fixed M, also in the limit N — oo we

eff

> 1.

can see the transition only after a value ¢
If ro < 1/(M — 1), the power-law decay for small 7; is fol-
lowed by a divergence in 7; = 1 so that the distribution is
bimodal. If instead ry > 1/(M — 1), then P(7;) is truncated
by an exponential cutoff.

The mapping to a Polya Urn can be used also for the case
o = 0, although in this case the matching is only approximate.
Indeed, for « = 0 Eq. (1) becomes

1 Fyi
Ri=— Y =2,
o ;Zj’"vf

and since on average each user is updated once at each time
step we can write

1 Fi 1 Fyi
R, ~ — ~ — ,
“ Nz;t+Mro Nt+Mry

where we have assumed that, since « = 0, all users behave the
same so that 1/N )" r,; & ry,;. Defining the variable w,; =
rui/N we get

~ Wyi
l-{—M}"o’

ui

which has the same form of Eq. (12). As a consequence also
the dynamics of the variable w,,; is described by a Polya Urn,
but now the reinforcement parameter is S = 1/N. Since the
normalized variables 7,; and ,; coincide, we can then write
P(#yi) = P(Wui)
?{0N71(1 _ ;,\i)(M—l)roN—l

B(roN, (M — I)VQN)

If wesetry = 1/[N(M — 1)], this expression implies a power-
law decay for 7,;, with exponent —(M — 2)/(M — 1). As in
the case @ = oo we considered above, other values of ry give
different broad distributions.

APPENDIX H: ADJUSTED R? FOR REAL DATA FITS

In this Appendix, we present the outcomes of the adjusted
R? analysis for the distributions of ratings, similarity, and pop-

ularity. The R’ is a measure of the extent to which the variation
in the dependent variable is predictable from the independent
variable. This value aids in evaluating the efficacy of a model’s
prediction against actual observed data.
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TABLE I. Adjusted R? for the distribution of the Ratings, Sim-
ilarity, and Popularity. In this last case, real data are also compared
with the results from a standard Polya Urn model.

=2 =2 -2 -2
N M Rrat Rsim Rpop,CF Rpop,um
1000 500 0.880 0.964 0.639 0.411
2000 1000 0.909 0.933 0.726 0.504
5000 1000 0.932 0.963 0.585 0.292

Given the real data (xq, ..., x,) and their relative predic-

tions (z1, . . ., z,), then we define the R? as
R2 —1_ Z:res
EI‘Ut

where Xes = D (x; — 7;)? is the sum of squares of the resid-
uals, while %, = Zi(xi — %)%, where X is the average of the
data, is the total sum of squares (proportional to the variance
of the data).

The value of R? spans from 1 when the data are exactly
explained by the model (£ = 0) to 0 in the case of a baseline
model which always predicts X. Negative values of R? are
associated with m_ozdels under the baseline.

The adjusted R refines this metric by counteracting the
tendency of R’ to increase when additional independent

variables are introduced to the model, even if these variables
insignificantly contribute to the explanation of the variance.
The adjusted measure is obtained considering a normalization
based on the number of independent variables of the model k&
and the number of observations n:

RZ=1—(1—R? e
( )n—k—l

This adjustment addresses overfitting, as an excessive num-

ber of extraneous variables leads to a decrease in R . The
resulting values still range from O to 1 and retain the same
interpretation.

We perform this analysis in the three scenarios: N = 1000,
M =500, N = 2000, M = 1000, and N = 5000, M = 1000.
Additionally, for the popularity distribution, we include a
comparison with the R obtained from simulations of a stan-
dard urn model. The summarized results are presented in
Table I.

The results reveal high values for the adjusted R* for the
distributions of ratings and similarity. As for the popularity
distribution, the values are slightly smaller but still within an
acceptable range. Furthermore, it is noteworthy that our model
outperforms the standard urn model in all cases, as evidenced

by the higher K .
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