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Probabilistic description of dissipative chaotic scattering
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We investigate the extent to which the probabilistic properties of chaotic scattering systems with dissipation
can be understood from the properties of the dissipation-free system. For large energies, a fully chaotic scattering
leads to an exponential decay of the survival probability P(t ) ∼ e−κt , with an escape rate κ that decreases with
energy. Dissipation leads to the appearance of different finite-time regimes in P(t ). We show how these different
regimes can be understood for small dissipations and long times from the (effective) escape rate κ (including
the nonhyperbolic regime) of the conservative system, until the energy reaches a critical value at which no
escape is possible. More generally, we argue that for small dissipation and long times the surviving trajectories
in the dissipative system are distributed according to the conditionally invariant measure of the conservative
system at the corresponding energy. Quantitative predictions of our general theory are compared with numerical
simulations in the Hénon-Heiles model.
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I. INTRODUCTION

Chaotic scattering is a prevalent phenomenon in open
Hamiltonian systems, which describes a wide range of phys-
ical phenomena, from complex astrophysical motions to the
interactions of charged particles [1–3]. In such problems,
there is a bounded region of the potential, the scattering re-
gion, in which generic trajectories remain confined (survive)
for a long time before eventually escaping towards infinity.
Chaotic scattering is well understood as a phenomenon of
transient chaos [3], which explains how hyperbolic scattering
leads to exponential decay of trajectories from the vicinity of
a chaotic set and nonhyperbolic scattering leads to algebraic
decay due to the stickiness around KAM islands [4].

More recent studies have focused on the effect of perturba-
tions on the general chaotic scattering picture, with the goal of
expanding its applicability to other physical situations [5]. For
instance, it has been shown that the effect of white noise leads
to enhanced trapping and intermediate-time regimes in the
survival probability that depend on the noise strength [5,6].
Another important type of perturbation, on which we focus
in this paper, is the effect of dissipative forces [5,7], which
appear not only in mechanical systems but also in astrophysi-
cal problems (due to radiation pressurelike effects [8]) and in
advection of particles in fluids (inertial effects [9]).

Dissipation has a strong effect on chaotic scattering as it
can lead to new asymptotic dynamics (e.g., attractors) that
are not possible in the Hamiltonian setting and it necessarily
alters the escape rate (or distribution of trajectory lifetimes)
as monotonic energy decay due to dissipation implies that
the average speed of any particle is decaying. It also non-
trivially affects nonhyperbolic dynamics: dissipation added to
an area-preserving map had the effect of stabilising periodic
orbits inside the KAM islands or destroying them entirely [9];
dissipation added to a mechanical system in which the energy
decayed to a unique minimum [10] led to piecewise-adiabatic
invariance of the action integrals, which manifested as com-
plicated tubelike structures in the extended phase space. In

any case, the destruction of the KAM islands, the phase space
objects responsible for stickiness [4], causes the decay law
of the survival probability to become exponential. The fractal
properties of scattering systems is also strongly affected by
dissipation, with the appearance of different regimes at differ-
ent strengths of the dissipation [5,7,11].

A novel theory to describe the motion of trajectories in
nonlinear systems with dissipation is to view it as doubly tran-
sient chaos [3,12,13]. As suggested by its name, the idea is to
view the invariant sets underlying (dissipation-free) transient
chaos to be transients due to the loss of energy. This theory
has been shown to describe the systems in which the dissipa-
tion acts as a nonautonomous element in the dynamics, with
mechanical systems such as the magnetic pendulum receiving
particular attention [12]. The transient chaos properties of
such systems are found to be surprisingly distinct from those
in the conservative case. Key features include time-dependent
settling rates to attractors, and scale-dependent fractal dimen-
sions of attractor basin boundaries. Reference [14] explored
further properties of doubly transient chaos by analyzing the
time evolution under dissipation of phase space structures of
the dissipation-free system, proposing new tools to analyze
how the complexity of the motion decays in time.

Most existing works on doubly transient chaos have fo-
cused on closed mechanical systems [12,14,15], wherein
every trajectory of an otherwise permanently chaotic system
eventually settles to a fixed point when dissipation is added. It
is not clear from these studies what to expect when dissipation
is added to open systems whose generic behavior is already
transient. Scattering systems are a natural example, as the only
orbits with infinite lifetimes can often form measure-zero frac-
tal sets. An interesting exception is Ref. [13], which applies
the theory of doubly transient chaos to a Hamiltonian sys-
tem subject to parameter drift whose unperturbed dynamics
is transiently chaotic (a decaying open flow), describing the
escape process using time-dependent (effective) escape rates
that can be understood as the decaying system evolving along
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snapshots of the system without parameter drift. An important
simplifying property of the system studied in that work is that
all trajectories experience the same dynamics at time t . In
more typical scenarios, as the ones we consider in this paper,
the dissipation depends on the trajectory (e.g., on the velocity)
and thus different trajectories experience a different unper-
turbed dynamics (have a different energy) at the same time t .

In this paper we build on the previous works on
dissipative scattering and doubly transient chaos to propose
a probabilistic description of the effect of dissipation on
scattering problems. Instead of focusing on invariant sets
and specific dynamics quantities (e.g., escape rates or fractal
dimensions), we focus on the probability of a trajectory being
in a phase space region at long times t and show how this
allows us to derive the observable quantities of interest, such
as the survival probability as a function of time P(t ) and the
phase space (fractal) distribution of long-living trajectories.
In particular, we propose that the trajectories at time t and
energy E (t ) will be distributed according to the conditionally
invariant measure (c-measure) of the Hamiltonian system
with the same (fixed) energy. Importantly, we specify the
ranges of time t , energy E , and dissipation strength γ for
which this holds, showing that this description can be made
arbitrarily precise even at finite (yet small) dissipation γ . This
description has important and testable consequences. Namely,
dynamical properties of ensembles of trajectories evolving in
the dissipative system can be approximated by the properties
of the dissipation-free system with the corresponding energy,
but differences are expected at small spatial scales. To account
for these differences, we describe an entire ensemble at time
t as a combination of c-measures over the range of trajectory
energies, weighted by the distribution of trajectories at these
energies. We also show that dissipation typically acts to slow
down the escape process, leading to enhanced trapping that
can be well approximated from the relevant quantities in
the Hamiltonian system. This works particularly well for
small dissipation, large initial energy, and if the underlying
conservative dynamics is hyperbolic.

We divide the paper as follows. We start in Sec. II by
discussing the well-known case of conservative (no dissipa-
tion) chaotic scattering. We briefly discuss how the survival
probability P(t ), escape rate κ , and conditionally invariant
measure μc are related and depend on E . We also introduce
the Hénon-Heiles system and present some visualizations of
the aforementioned quantities in the conservative setting. In
Sec. III we describe how we add dissipation to the Hénon-
Heiles system, and show how the survival probability and
fractal properties change. We go on to introduce our proba-
bilistic model for the dissipative system and test our ideas by
comparison with numerical results. General discussions and
conclusions appear in Sec. IV while details of the numerics
appear in the Appendix and in the repository [16].

II. CONSERVATIVE SCATTERING

A. Theory

1. Setting

We are interested in chaotic scattering defined as the
dynamics of Hamiltonian systems for which trajectories

approach arbitrary large positions in configuration space after
performing a transiently chaotic motion [17]. The simplest
setting in which this happens are Hamiltonian systems with
two degrees of freedom with energy for a unit mass given by

H = 1
2

(
p2

x + p2
y

) + V (x, y), (1)

where x, y are the position variables, px, py are the momenta
and V (x, y) is a potential function that leads to a nonlinear
(nonintegrable) dynamics in a trapping region � close to the
origin. In this setting, the energy E = H is preserved and acts
as a control parameter. For small energies E , the trajectories
typically remain trapped close to the origin performing regular
(periodic or quasiperiodic) motion and scattering is not pos-
sible. Increasing the energy, one typically observes a regime
in which regular and (transiently) chaotic motion coexists,
while for very large energies most trajectories quickly leave
the region of interest apart from a cantor set of orbits that
remain.

To study the continuous-time flow induced by the Hamilto-
nian (1), we consider its intersection with a Poincaré surface
of section. This allows us to visualize the trajectories in a two-
dimensional (2D) space, for example the configuration space
(x, y), and it defines a true-time map, i.e., a discrete-time sys-
tem h mapping consecutive intersections with the section in
which the time T between intersections is recorded [18,19].
We start trajectories in the surface (x, y) ∈ � at the same
energy E . This choice of initial conditions inside the scattering
region differs from usual scattering settings, in which particles
approach � but start far from it. Our choice simplifies numer-
ical computations and is more suitable for settings in which
dissipation acts globally (for instance, orbits coming from
infinity would never reach �). In the conservative setting, this
choice affects the stickiness exponent in the intermediate-E
(nonhyperbolic) regime [20]. However, it has no significant
impact on our simulations (which are typically at larger E )
and conclusions.

2. Survival probability

Transient chaos theory provides a description of the tran-
sient dynamics using the properties of the nonattracting fractal
set of orbits that remain in the system for t → ±∞. This
chaotic saddle and its invariant manifolds control the rate
at which nearby trajectories leave the system and thus the
long-term properties of the survival probability P(t ) of typical
initial conditions [3]. More precisely, we define P(t ) as the
proportion of an initial ensemble of trajectories that remain in
the system (have not escaped) until time t . Equivalently, P(t )
is the probability that a trajectory remains inside � after time
t . For uniformly hyperbolic chaotic saddles, we observe

P(t ) ∼
{

irregular t ∈ [0, τ0]
f0e−κt t > τ0,

(2)

where the initial period [0, τ0] depends sensitively on the
choice of initial density e.g., some trajectories may escape
quickly before approaching the saddle, and the exponent κ is
called the escape rate, and characterizes the global (in)stability
properties of the saddle.

For systems with mixed phase space, such as Hamilto-
nian systems in parameter regimes allowing for KAM tori,
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the escape dynamics is more complicated [4,20]. A chaotic
trajectory that comes too close to a KAM island can spend
an arbitrarily long time in its vicinity before leaving. This
stickiness phenomenon happens because the local Lyapunov
exponents approach 0 near such regions. As a consequence,
such orbits will exhibit an effective escape rate much lower
than those that never come close to these regions. The effect
on the survival probability is that, on some timescale τ �, the
dominant asymptotic decay switches from exponential to a
power law [3,19]:

P(t ) ≈
⎧⎨
⎩

irregular t ∈ [0, τ0]
f0e−κt τ0 < t < τ�,

f�t−z t > τ�,

(3)

where the time τ � indicates the transition from exponential to
algebraic decay due to stickiness. In such cases, one can speak
of the saddle as possessing both hyperbolic and nonhyperbolic
components [11,19,21]. In the system we consider in this
paper, the phase space of the dissipation-free system can be
either strongly chaotic or mixed, depending on the value of
the energy E .

3. Conditionally invariant measures

For long times, the probability of a surviving trajectory
being in any region A ∈ � approaches μc(A), where μc is
the conditionally invariant measure of the system and is dis-
tributed along the unstable manifold of the saddle [3,19,22].
This measure acts as an attractor for generic ensembles of
initial conditions (which intersect the stable manifold of the
saddle) so that a smooth ensemble of points initiated will after
some time t∗ � 1

κ
be effectively distributed according to μc.

It is μc, which characterizes the process by which points leave
� and it describes the relevant quantities in chaotic scattering.
For instance, the escape rate κ of a hyperbolic discrete-time
map h is given by [23]

κ = − ln[1 − μc(E )], (4)

where μc(E ) = 1 − μc[h−1(�)] is the c-measure of the set E
of trajectories that exit � in one iteration of the map h. For
true time maps, as considered here, κ is given implicitly by
[18] ∫

�

eκT dμc = 1 + μc(E ), (5)

where T is the time between intersections of the Poincaré
surface of section.

B. Numerical results

1. Model system

We study trajectories of the Hénon-Heiles system [24],
a Hamiltonian system introduced as a toy model of stellar
motion in a 2D galactic potential that shows the generic prop-
erties discussed above. The potential function in Eq. (1) is

V (x, y) = ω2

2
(x2 + y2) + λ

(
x2y − 1

3
y3

)
, (6)

which combines a harmonic potential with cubic terms
that create nonintegrable dynamics with parameters ω and

λ. Through Hamilton’s equations, we are led to a four-
dimensional ODE:

ẋ = ∂H

∂ px
= px, (7a)

ẏ = ∂H

∂ py
= py, (7b)

ṗx = −∂H

∂x
= −ω2x − 2λxy, (7c)

ṗy = −∂H

∂y
= −ω2y − λ(x2 − y2). (7d)

The system is often studied in a perturbative setting (i.e., for
λ 	 1) to demonstrate how chaos emerges as the harmonic
terms in the potential become less dominant. However, here
we fix ourselves firmly in the nonintegrable setting, taking
λ = ω = 1. See Appendix for details of the numerical sim-
ulations, including how initial conditions were chosen, the
Poincaré section, the criteria for escape or non-escape of
trajectories from �.

2. Scattering dynamics

As is typical for these kinds of systems, there is a certain
value of the Hamiltonian, which we call the critical energy and
denote by Ec, below which the contours of the potential are
closed and escape from near the origin becomes impossible.
For the potential (6) with ω = λ = 1, Ec = 1/6. For E > Ec,
three openings are created and particles may escape through
any of the exit channels. We emphasize that it is only for
energies above Ec that escape is possible, and thus transient
chaos is observable. At E = Ec, the potential contours form
an equilateral triangle with vertices at saddle points. This is
shown graphically in Fig. 1(a). We present an approximation
of the support of the conditionally invariant measure of the
Hénon-Heiles system (in the same Poincaré surface of sec-
tion as the initial conditions, see Appendix A 2) in Fig. 1(b).
The measure is plotted for two values of the energy as a visual
comparison of how an initial ensemble relaxes to a different
object at each energy.

The escape dynamics in the Hamiltonian problem have
been extensively studied [1,25]. A typical orbit moves about
the scattering region until it passes through one of the three
exit channels and escapes to infinity. The existence of special
unstable periodic orbits, called Lyapunov orbits [26], allow
for the definition of a meaningful criterion for escape from the
region around the origin. These orbits straddle the exit channel
openings, and persist for all energies E > Ec. Trajectories that
cross these orbits with outward velocity vectors can never
return to the central region. For our problem, we thus define
the scattering region � to be the region of configuration space
bounded by the potential contours V = E and the Lyapunov
orbits at energy E connecting neighboring contours.

3. Survival probability

Numerical computations of the survival probability in sys-
tem (6) are summarized in Fig. 2. The top panel confirms the
existence of all the generic regimes described in Sec. II A 2,
depending on the initial energy E . Importantly, even if for
small energies the existence of KAM islands hinders the decay
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FIG. 1. Phase space section (x, y) of the Hénon-Heiles system (7). (a) Contours in the potential (6) for 20 values of the energy E ∈
(0.0, 0.5). The contour corresponding to E = 1

6 is shown in blue. The saddle points of the potential, are indicated by green dots. Darker colors
correspond to smaller values of E . (b) Support of the conditionally invariant measure in the Hénon-Heiles system for E = 0.35 (orange points)
and E = 0.3 (black points). These approximations were computed via the sprinkler method [3]: integrating a large uniform ensemble of initial
conditions for a long time t � 1

κ
and plotting the positions of the points still inside � at the next intersection with the Poincaré surface.

to be nonexponential, there is an effective escape rate κ at
intermediate times t [11,19], as described in Eq. (3), that
governs the escape of the majority of the initial conditions. It
is thus possible to investigate the dependency of the (effective)
escape rate κ on the energy E for all values of E > Ec. The nu-
merical results in Fig. 2(b) suggest a continuous dependence
of κ on E0, with a roughly linear dependency for E in the
hyperbolic regime.

III. DISSIPATIVE SCATTERING

A. Numerical results

1. Dissipation

We study the effects of weak dissipation on the escape
dynamics of the open system by introducing an additional
term to Eqs. (7) modeling a drag linearly dependent on the
velocity v. The dynamics of the resulting dissipative system is
given by

ẋ = px, (8a)

ẏ = py, (8b)

ṗx = −ω2x − 2λxy − γ px, (8c)

ṗy = −ω2y − λ(x2 − y2) − γ py, (8d)

where γ � 0 controls the strength of the dissipation and ω =
λ = 1 as before. The system is no longer Hamiltonian and the

energy of a trajectory decays as

dE

dt
= −γ

(
p2

x + p2
y

) = −γ v2,

= −2γ [E − V (x, y)].
(9)

The decay rate of the energy will thus differ for each initial
condition depending on the potential V (x, y) they experience.
For large times t long-living trajectories perform a similar
movement in �. The variations across such trajectories will
be small and the potential can be approximated (on average
across t) as a fraction of the total energy V (x, y) = (1 − μ

2 )E ,
where μ ≈ 1 is a proportionality factor. Using this approxi-
mation in Eq. (9), we obtain

E (t ) = E0e−μγ t . (10)

For damped oscillations around a stable fixed point, the lin-
earized system has eigenvalues with real part −γ /2, and thus
E should decay at a rate γ and thus μ = 1.

We numerically test the validity of Eq. (10) for our system
in Fig. 3. The decay is well described by an exponent of
μ = 0.91 for the time interval [0,200], after which the only
remaining orbits will be slowly collapsing towards the origin.
The energy of such long-lived orbits decays faster than the
overall fit (the red-curve slightly overestimates the numerical
results for large t). This, and the expectation from the calcu-
lations of the linearized system mentioned above, suggest that
μ approaches 1 for increasing t .
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FIG. 2. Survival probability P(t ) and escape rate κ = κ0 in the
Hamiltonian system. (a) P(t ) for two values of the energy E0 > Ec =
1/6 (see legend). For the smaller energy (E0 = 0.23), a crossover
occurs between an exponential and a power-law decay at at t = τ � ≈
100, as described in Eq. (3). For the larger energy (E0 = 0.27), there
is no crossover and the decay is exponential as in Eq. (2), which
suggests a uniformly hyperbolic dynamics. The dashed lines have
been added as a visual aid, with the approximate decay exponents for
the exponential and power-law regimes annotated. N0 = 107 initial
conditions were used for each curve. (b) Dependence of the escape
rate κ0 on the energy E0 in the Hamiltonian system. Note that the
x axis is translated by Ec. Each point is the mean of four separate
estimates of κ made by least-square fits of the logarithm of P(t )
across different time intervals. There is an observed nonlinear scaling
which ends at around E0 = 0.27 (marked with the purple dash-dotted
line) after which the dependence becomes linear. Parametric fits of
the nonlinear [green dashes, κ = 13.63(E − Ec )2 + 0.03(E − Ec )]
and linear [orange dashes, κ = 1.41(E − Ec )] regimes are overlaid.

FIG. 3. Energy dependence on time in the dissipative system.
The dark blue line shows the mean energy 〈E〉 computed over an
ensemble of trajectories inside � at time t . The blue ribbon shows
three standard deviations. The dashed red line is a fit to Eq. (10)
obtained via least squares of the log-transformed data. (Inset) His-
tograms showing the distribution of energies at times corresponding
to the colored dots in the main plot. The parameters are (E0, γ ) =
(0.3, 0.01).

FIG. 4. Distribution of trajectory lifetimes in the dissipative
Hénon-Heiles system for various small dissipations γ . The survival
probability for the Hamiltonian setting (γ = 0, blue curve) is added
for comparison. For the purple curve (γ = 10−2), the approximate
positions of the time points τ0, τ1 and τ2 are marked.

2. Survival probability

We now focus on the survival probability P(t ) of tra-
jectories. Dissipation creates an attractor at the origin
corresponding to a point of zero energy. The basin of at-
traction of this fixed-point attractor is comprised by initial
conditions in or around KAM islands [8,9] and orbits ini-
tialized near the stable manifold of the chaotic saddle of
the conservative system. These are long-living trajectories
for which dissipation acts for sufficiently long time to bring
their energy to Ec. In comparison to the conservative case,
the attractor provides an additional way for an orbit to leave
the system. We consider the lifetime or settling time of such
orbits, for purposes of measuring P(t ), to be the time at which
E (t ) = Ec because for E (t ) < Ec escape becomes impossible
(see Appendix A 3 for further details).

The numerical results for P(t ) for various dissipation
strengths γ are shown in Fig. 4. Different decay regimes and
the effects of increasing γ are readily visible. After an initial
period, the P(t ) curve deviates from the simple exponential of
the Hamiltonian system (blue line), showing a slower decay
(increased trapping). We characterize the decay regimes by
introducing three characteristic times τ0, τ1, and τ2. The in-
terval [0, τ0] is the period during which the decay is highly
dependent on the choice of initial ensemble (see Sec. II).
Consequently, τ0 is effectively independent of γ . The time τ1

that marks the start of the enhanced trapping regime can be
thus defined as

τ1 := min{t � τ0|Pγ>0(t ) = αPγ=0(t )}, (11)

where α > 1 is an arbitrary constant that demarcates when
significant deviations from the nondissipative system are ob-
servable (we use α = 2 for our experiments). When P(t ) is
almost constant (no escape), there is a sudden and dramatic in-
crease in the decay that continues until there are no points left.
We denote by τ2 the time that marks the end of the enhanced
trapping regime, when P(t ) decays quickly (exponentially)
towards zero. The numerical results show that both τ1 and τ2

increase with decreasing γ , consistent with the expectation
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that P(t ) varies continuously with γ . Next we show how these
numerical observations can be theoretically explained.

B. Theoretical model

1. Probabilistic description

We now propose a probabilistic description to understand
dissipative scattering systems, which will be compared to
the numerical results reported above. Dissipation leads to a
trajectory-dependent decay of the energy E (t ) and the scatter-
ing process ends when the critical energy is met E (t ) = Ec.
The expected time at which this happens, which we associate
to the transition time τ2 introduced above, is obtained solving
Eq. (10) as

τ2 = 1

μγ
ln

(
E0

Ec

)
. (12)

The interesting dynamics happens at large times (t > τ1,
when effects of dissipation become relevant) smaller than τ2.
The key idea is to use the properties of the nondissipative sys-
tem to describe the scattering in this regime. We thus assume
the unperturbed system to be fully chaotic and to have a well-
defined (E -dependent) conditionally invariant measure μE

c in
a common scattering region � for a wide range of (large)
energies E (i.e.,

∫
�

dμE
c = 1 for any E � Ec). The challenge

here is that the c-measure is an attractor for surviving trajec-
tories and thus provides a precise description only in the limit
t �→ ∞, which is not applicable in our case since scattering
happens only for t < τ2 (i.e., for t > τ2 there is no scattering
or invariant set). Inspired by the idea of snapshot saddles and
pullback attractors [3], we focus on surviving trajectories that
at a given large time t have energy E = E (t ) and that started
at arbitrarily early times with arbitrarily large energies (i.e.,
in a limiting case, we take t0 �→ −∞ and E �→ +∞). We
posit that, for τ0 	 t < τ2, the probability of finding such
a surviving trajectory in a region of � is increasingly well
described (for t � τ2 → ∞ and γ → 0) by the c-measure of
the conservative system μE

c with E = E (t ). From Eq. (12), τ2

and thus the time the trajectory has to relax to μc can be made
arbitrarily large by reducing γ or increasing E0. This would
suggest that the description can be made arbitrarily precise
for any fixed γ or E0. However, for γ too large (γ � 1) the
dynamics of the dissipative system are no longer comparable
to the nondissipative system, and so we restrict to a small γ

regime.
We now consider the consequences of this to an ensemble

of trajectories, as investigated in our numerical experiments.
After some sufficient time t > τ0, the energy E (t ) of trajecto-
ries that have not yet escaped will be distributed within some
range 0 � E (t )min � E (t ) � E (t )max < ∞ with a probability
density ρ[E = E (t )] (which depends on the initial ensem-
ble). The probability of finding a surviving trajectory at time
t in any region A ⊂ � is given by the composition of the
subensembles of trajectories at a specific energy E = E (t ) as

μt (A) =
∫ E (t )max

E (t )min

μE
c (A)ρ(E )dE . (13)

The convergence of surviving trajectories towards Eq. (13)
depends on the time t available to relax towards μE

c , which

can be made arbitrarily large varying the initial energy E0

and escape rate γ as described in Eq. (12). While this de-
scription assumes the existence of μc, it is agnostic to the
specific dynamics of the system and the form of dissipation
considered. In simplified settings, such as the one considered
in Ref. [13], a parameter drift added to a Hamiltonian system
plays the role of the change of energy E . In this case, we can
consider that all trajectories at time t have the same energy
[E (t )min = E (t )max = E (t )] and so the density ρ reduces to a
Dirac delta function

ρ(E ) = δ[E − E (t )], (14)

and Eq. (13) yields

μt (A) =
∫ E (t )max

E (t )min

μE
c (A)δ[E − E (t )]dE = μE (t )

c (A). (15)

Given the connection between the c-measure and the escape
rate κ in Eq. (5), we see that our description recovers as
a particular case the finding made in Ref. [13] about the
instantaneous escape rate mirroring that of the Hamiltonian
system at the new parameters. We may also account, through
the energy density ρ[E (t )], for situations where the initial
energy is not the same for each orbit, a common scenario in
systems where particles are released from rest inside a poten-
tial. Generally speaking, the more information one has about
ρ, the better one can approximate the state of the dissipative
system.

2. Conditionally invariant measure

As a numerical test of our theory, we turn back to the
Hénon-Heiles system. Neglecting the variation in the energy
of trajectories, see Fig. 3, our expectation is that the dis-
tribution of long-living trajectories at time t will be well
approximated by the c-measure μE

c , with E = E (t ) given by
Eq. (10). To verify this, we initialize an ensemble of initial
conditions in the dissipative system at an energy E2 > E1 and,
at the time t� that Eq. (10) predicts E (t�) = E1, we plot the
position (x, y) of the next crossing with the Poincaré surface
(see Appendix A 2) and μE1

c (computed using the conservative
dynamics).

The results of one such numerical experiment are reported
in Fig. 5(a). Our choice of E1, E2, corresponds to the two c-
measures shown previously in Fig. 1(b) and γ ensures that the
time t� for the average energy to reach E1 was τ0 	 t� < τ2,
allowing enough time for the initially uniform ensemble to
relax. We find that the distribution of points in the dissipative
system indeed mostly coincides with the c-measure μE=E1

c ,
which provides a better description than the nondissipative
measure μE=E2

c [shown in Fig. 1(b)]. Still, the points of the
dissipative system show a more noisy distribution and often
do not overlap with (the support of) μE=E1

c . Under Eq. (13) the
explanation for this is that these points experience a different
average decay in energy, implying that their energy at t ≈ t�

is far enough from E1 that they are distributed according to
different measures [i.e., the disagreement is due to the ap-
proximation of neglecting fluctuations in E (t )]. To test this
expectation, in Fig. 5(b) we further restrict the distribution
to points whose energy is E (t ) ≈ E1, effectively reweighting
the density ρ towards E1. The reduction in the dispersion of
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FIG. 5. Comparison of the c-measure of the Hamiltonian system with E = 0.3 (black points) with the distribution of trajectories in the
dissipative system (E = 0.35, γ = 0.01) at t = t � ≈ 17 � τ0 (red points.) (a) All points that survived until t � (the first intersection for t � t �

with the surface of section is shown). (b) Only the surviving points whose energy at time of crossing t � t � was in the interval [0.295,0.305],
that is, within 1.67% of E1.N = 107 initial conditions were used and approximately 3 × 104 are plotted in each case.

points is clear: the remaining points almost exactly coincide
with the support of the measure μE=E1

c . The agreement is
expected to hold up to a finite spatial scale, which becomes
increasingly small as the time for the distributions to relax
increases (e.g., by increasing the initial energy E2 or reducing
the dissipation rate γ ). For sufficient relaxation time, we posit
that the subensemble with energy E converges exactly to the
c-measure μE

c .

3. Survival probability

Interpreting the macroscopic dynamics of the dissipative
system in terms of the conservative system also allows us
to propose a model for the survival probability of escaping
orbits. Our c-measure theory predicts that an instantaneous
escape rate κE given by Eq. (5) applies for the subensemble at
each given energy E (t ) = E at time t . To compute the leading
effect of the varying κE in time, we neglect the dispersion in
orbit energies in our system and assume that most trajectories
experience the same dynamics (with associated escape rate
κ0) at any given time t . The escape rate, as we have shown

in Fig. 2, depends intimately on the energy, which in turn
decays over time. By combining this information, we can
approximate the decay in survival probability P(t ) for the
entire dissipative ensemble.

The first step is to compute the time-dependent escape rate
of the dissipative system, κγ (t ), by introducing the exponen-
tial decay of the energy as a function of time in Eq. (10) into
our parametric model for κ0(E ) (see Fig. 2), so that

κγ (t ) = κ0[E (t )]. (16)
The expression for the approximate survival probability Pγ (t )
of escaping orbits is then given as

Pγ (t ) ∼ e−κγ t , (17)

which is similar to the exponential decay of hyperbolic
scattering in the Hamiltonian system, although now with a
time-dependent escape rate κγ (t ) as opposed to a fixed rate
κ0(E ). This description applies to escaping trajectories only,
and thus to times t < τ2. The behavior of P(t ) for t > τ2

is exponential, dominated by trajectories settling towards the
attractor, and thus our theoretical model for the survival prob-
ability P(t ) is

Pγ (t ) ≈
⎧⎨
⎩

irregular t ∈ [0, τ0]
fne + fe · exp[−κγ (t ) · (t − τ0)] t ∈ [τ0, τ2]
fne · exp [−g(t, γ ) · (t − τ2)] t > τ2

, (18)

where κγ = κ0[E (t )] is the escape rate at the (average) energy
at time t . The term fne refers to the fraction of trajectories
in the initial ensemble that remain trapped, which at fixed E0

increases with γ (decreases with increasing E0 at fixed γ ).
Likewise, fe refers to the fraction of orbits that escape at a time
t > τ0. We have that fne + fe = P(τ0). The function g(t, γ ) is
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(a) (b)

FIG. 6. Comparison between theoretical model and numerical simulations of the survival probability P(t ). (a) Comparison of Eq. (18)
(dashed lines) to the simulation data (solid lines) for several choices of (E , γ ) for t > τ0. N0 = 107 initial conditions were used for each curve.
(b) Comparison of the predicted occurrences (dashed lines) for the transition times τ1 and τ2 (see legend) with their observed occurrences
(symbols) in the simulations (for E0 = 0.3). For τ1, the observed occurrence is the first time Eq. (11) was satisfied in the simulation, while the
predicted occurrence comes from numerically solving Eq. (18) with the relevant parameters. For τ2, the observed occurrence is the first time
at which the energy of a nonescaping orbit dropped below Ec, and the predicted occurrence τ2 ∝ 1/γ comes from Eq. (12). For increasing γ ,
the volume of escaping orbits goes to 0 and τ1 cannot be determined.

introduced because the observed transition in P(t ) between
the escape-dominated and settling-dominated decay regimes
is smooth. We thus require g(t, γ ) to be such that g(t ) � 0
for t � 0, γ > 0 and to increase monotonically with t towards
a constant L that depends on the dissipation strength γ . In
practice, we found that a sigmoid function of the following
form provides a satisfying fit

g(t, γ ) = L

{1 + exp[−b(t − τ2)]}2
. (19)

Finally, we evaluate Eq. (18) using the parametric fits of κ0(E )
in Fig. 2 and E (t ) in Fig. 3.

Direct comparison of simulation data for select parameter
values with the predictions from Eq. (18) is shown in Fig. 6(a).
In general, our model shows a satisfying agreement with the
data, despite relying on the approximation of homogeneous
energy decay. Figure 6(b) shows the comparison between
the observed occurrences of the time points τ1 and τ2 with
their predicted occurrences under our model while varying
γ . An improved agreement would be obtained by avoiding
the approximation of homogeneous energy decay and better
taking into account properties of the energy density ρ[E (t )].
As an example, this could take the form of a mixture model
for P(t ) involving multiple subensembles, each with their own
energy decay exponent μ. These results confirm that the range
τ1 � t � τ2 of dissipative scattering in which our probabilistic
description applies becomes arbitrarily large with reducing γ .

IV. DISCUSSION AND CONCLUSION

We have presented a generally applicable model for the
study of dissipative chaotic scattering and illustrated its valid-
ity with numerical studies of the Hénon-Heiles system. This
model proposes that long-living trajectories in the dissipative
system can be described, for an intermediate but arbitrarily
large time interval t < τ2, by conditionally invariant measures
μc of the nondissipative system. Our description includes the

dependence of the measures and time interval on dissipation
rate γ , initial energy E0, and time t . The temporal evolution
of ensembles of trajectories in the dissipative system can then
be understood by considering weighted subensembles of the
conservative system, with each subensemble at a given energy
E (t ) described by the corresponding c-measure. This theoret-
ical model has shown to be effective at explaining transient
chaos phenomena like the survival probability P(t ), which
can be described using time-dependent escape rates, and the
distributions of trajectories in the phase space.

An interesting observation made in our experiments involv-
ing the survival probability is that the theoretically derived
curves apply also for times at which trajectories are in en-
ergy ranges Ec < E � EKAM in which the conservative system
shows the existence of KAM islands. This is a regime in
which there is no c-measure μE

c or escape rate κ and therefore
our description should not strictly apply. The reason for its
unexpected success is that the hyperbolic components of the
invariant sets generate an effective escape rate that drives the
numerical observations [11,19,21]. For smaller dissipations γ ,
trajectories have time to relax towards the nonhyperbolic com-
ponents of the saddle in these energy ranges and deviations
become relevant. In particular, we expect a concentration of
the combined c-measure in Eq. (13) towards nonhyperbolic
regions and that P(t ) will converge to a constant earlier in t
(i.e., when the energy reaches EKAM instead of Ec).

Our probabilistic description provides also clear predic-
tions for the fractal properties of scattering systems with
dissipation, a problem previously studied through different
approaches [12–15,25]. These studies employed a variety of
different theoretical and numerical approaches (e.g., based on
the uncertainty algorithm [27]) to evaluate the fractality of
basin geometry as a function of the dissipation. Our proposed
description is that the evolution of the dissipative system can
be viewed as a time-evolving mixture of snapshots of the
Hamiltonian system and that a well-defined fractal distribu-
tion exists (for arbitrarily small spatial scales) in these systems
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in suitable limits of E0, γ , and t that allow for a relaxation
towards μE

c . In more general numerical settings, a cutoff in
the scaling underlying fractal analysis (in time or space) is
expected due to the combination of μE

c s (each with a slightly
different fractal support). An interesting question for future
work is in which extent our probabilistic description retrieves
or reproduces these previous results.

Another area of future work is to extend the probabilistic
description for the dynamics of ensembles of initial conditions
using an operator-theoretic formalism. Our results showing
that the evolution depends mainly on the time-dependent
energy density ρ[E (t )] suggest that further insights can be
obtained through spectral approaches considering Perron-
Frobenius (or similar) operators acting on these densities
[19,28,29].

APPENDIX: NUMERICAL METHODS

1. Integrators

Integration of differential equations was performed using
the DIFFERENTIALEQUATIONS.JL [30] and DYNAMICALSYS-
TEMS.JL [31] software libraries for the JULIA programming
language. Visualisations were made using the PLOTS.JL [32]
library.

For integrating trajectories of the Hamiltonian system, we
used an eighth-order symplectic integrator [30,33] with time
step dt = 0.01. Conservation of the Hamiltonian was typi-
cally at the limits of double precision, even for very long
integrations. For the dissipative system, we used an efficient
ninth-order Runge-Kutta integrator with adaptive time step-
ping [34]. In both cases a maximum integration time of 5000
was used, which was more than sufficient to observe the
escape or settling of all orbits not bound inside KAM islands.

2. Initial conditions

For the purposes of testing our theory, and to facilitate
visualization, we chose to have all points initialized with the
same energy. We achieved this by sampling from a Poincaré

surface of section that allowed us to specify the initial po-
sitions (x0, y0) and energy E freely and then determine the
initial velocities (ẋ0, ẏ0) to match. Specifically, we chose the
section corresponding to zero radial velocity (ṙ = 0) and pos-
itive angular velocity (φ̇ > 0). The initial velocities (ẋ0, ẏ0) in
Cartesian coordinates under this section condition are given
by

ẋ0 = − y0√
x2

0 + y2
0

√
2[E − V (x0, y0)] (A1)

ẏ0 = x0√
x2

0 + y2
0

√
2[E − V (x0, y0)]. (A2)

3. Escape condition

In the Hamiltonian setting (γ = 0) we used a numerical
criterion to determine escape. If the orbit’s (x, y) position
exceeds a fixed radius resc > 1 then the orbit is deemed to have
escaped at this time. The distance from the origin to any of
the three saddle points is 1, so choosing an resc slightly larger
than 1 ensures that the orbit has actually crossed the threshold
determined by the Lyapunov orbit and thus left �. Various
specific values of resc were considered, all leading to the same
observations.

In the dissipative setting (γ > 0), the Lyapunov orbit cri-
terion cannot be relied upon, so we choose an expedient
method to determine the escape condition: we integrate an
initial condition until the energy of the orbit drops below the
critical energy Ec. An orbit with energy E < Ec cannot leave
or reenter �, and so its position at this time will determine its
eventual fate. An orbit on the exterior of � will be considered
to have escaped, and an orbit on the interior will be considered
trapped. Integrating further is unnecessary due to the mono-
tonicity of the energy decay. However, for an escaping orbit,
we consider the actual escape time to be the time when the
trajectory left � (r > resc), with the a priori knowledge that it
will not return. Trajectories that leave � quickly achieve high
velocity, and so rapidly fall below Ec on the outside.
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