
PHYSICAL REVIEW E 108, 054220 (2023)

Constructing low-dimensional ordinary differential equations from chaotic time series
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In our previous study [N. Tsutsumi, K. Nakai, and Y. Saiki, Chaos 32, 091101 (2022)] we proposed a
method of constructing a system of ordinary differential equations of chaotic behavior only from observable
deterministic time series, which we will call the radial-function-based regression (RfR) method. The RfR method
employs a regression using Gaussian radial basis functions together with polynomial terms to facilitate the robust
modeling of chaotic behavior. In this paper, we apply the RfR method to several example time series of high-
or infinite-dimensional deterministic systems, and we construct a system of relatively low-dimensional ordinary
differential equations with a large number of terms. The examples include time series generated from a partial
differential equation, a delay differential equation, a turbulence model, and intermittent dynamics. The case when
the observation includes noise is also tested. We have effectively constructed a system of differential equations for
each of these examples, which is assessed from the point of view of time series forecast, reconstruction of
invariant sets, and invariant densities. We find that in some of the models, an appropriate trajectory is realized on
the chaotic saddle and is identified by the stagger-and-step method.
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I. INTRODUCTION

Scientists have attempted to search for a governing law
when they observe an intriguing phenomenon. Kepler’s laws
of planetary motion are said to have been derived by Johannes
Kepler, whose analysis of the observations of Tycho Brahe
enabled him to establish the laws in the early 17th century.
Sir Isaac Newton is said to have established the law of uni-
versal gravitation based on experimental observations made
previously by Galileo Galilei. The laws are summarized as
differential equations. Since then, especially for microscopic
dynamics of various physical phenomena, the corresponding
differential equations have been discovered.

Models of dynamics are constructed primarily via a physi-
cal understanding of the phenomena. However, in the past few
decades, several approaches have been proposed concerning
modeling dynamics from given time series data with the aid of
machine-learning techniques [1–5]. Although the aim of these
approaches is mainly to infer short time series, some models
have also succeeded in mimicking dynamical system features
such as invariant sets and invariant densities [5].

Some studies [6–9] estimate a system of ordinary differen-
tial equations (ODEs) from time series data, which makes it
easy to analyze dynamical system features. The above meth-
ods require observation time series of all the variables of a
system of ODEs to model. For example, they require time
series of all three variables x, y, z to construct a data-driven
model of the Lorenz 1963 dynamics [10].

There are attempts [11–13] that derive a system of ODEs
from scalar time series. The observable variable and its time
derivatives are used for the model variables. In [14], the
problem with observational (Gaussian or white) noise is in-
vestigated. In the series of studies, prior knowledge of the
background dynamics is used to choose basis functions for the
regression, and the method is not appropriate for modeling for
practical purposes.

Recently, we proposed a simple method of constructing a
system of ODEs of chaotic behavior based on the regression
only from observable scalar time series data with the basis
functions unchanged [15]. Independent of the dynamics, we
employ spatially localized radial basis functions in addition
to polynomial basis functions for the regression. We assume
that the background dynamics show chaotic behavior with
fewer than ten unstable dimensions by considering the current
computational resources, and we also assume that training
data are long enough to observe the recurrency. Our method
can model a system of ODEs from scalar chaotic time series
data, which is applicable to various dynamics without using
prior knowledge of the background dynamics. Furthermore,
we should note that the capability of the forecasting is not
limited to a short time series but a density distribution created
using a long time series.

Unlike prior studies [6–8], our radial-function-based re-
gression (RfR) method proposed in [15] is applicable even
when the time derivative of each variable is not approximated
by the low-order polynomials of variables. We exemplified
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that our RfR method worked well for a time series of one
variable (x) of the typical and simple chaotic dynamics given
by the Lorenz system, and we evaluated the constructed data-
driven model in detail. Our model construction from chaotic
time series using the RfR method has several advantages
in that the method simultaneously achieves the following: a
model variable is physically understandable; a model can be
constructed even when the number of observable variables is
limited and even when no knowledge of the governing system
is given. The RfR method allows us to construct a model using
physically understandable variables.

In this research, we present the applicability of our
RfR method to complex dynamics described by infinite or
finite but high-dimensional systems, including the Kuramoto-
Sivashinsky equation [16], the Mackey-Glass equation [17],
the shell model of fluid turbulence [18], and intermittent
dynamics described by the coupled Rössler equation [19].
The Kuramoto-Sivashinsky equation is the partial differential
equation system that can reveal spatiotemporal chaos; the
Mackey-Glass equation is the delay differential equation that
is a model of feedback control of blood cells; the shell model
turbulence is a system of high-dimensional ODEs of complex
variables that mimic the spectral equation in Fourier space of
the Navier-Stokes system; the coupled Rössler equation is an
ordinary differential equation system that can show intermit-
tent behavior. Note that for the shell model turbulence, we use
time series data of a variable that does not appear in the orig-
inal system. It is common that observable data include noise.
So in the case of the Kuramoto-Sivashinsky equation, the ef-
fect of noise added to the observation data is also investigated.

We assume there exists an unknown system of N-
dimensional ODEs called an original system concerning an
unknown variable x:

dx
dt

= f (x), (1)

or an infinite-dimensional system such as a partial differential
equation and delay differential equation whose dynamics can
be approximated well by Eq. (1). In this paper, the above-
mentioned examples are chosen as Eq. (1). We can observe
some of the components of the variable x, or more generally

ωi = gi(x), i = 1, . . . , I. (2)

Note that ωi cannot necessarily be described as a function of
x, but it can be an integrated value of x. The case when ωi in-
cludes noise is also investigated. We are unable to reconstruct
the original system Eq. (1) itself from given time series data
unless all the components of the variable x in Eq. (1) and their
time series are known. We assume that there exists a system
of D-dimensional ODEs:

dX
dt

= F(X ), (3)

where the first I components of the variable X are Xi =
ωi (i = 1, . . . , I ) and the rest of Xi (i = I + 1, . . . , D) are
created from the delay-coordinates of some ωi [20,21].
The aim of our proposed method is to model Eq. (3),
which can describe the behavior of the observable variables
ωi (i = 1, . . . , I ) as components of the variable X , which is
made only by the observable variable ωi.

By using the RfR method, we have succeeded in the mod-
eling of dynamics even when the right-hand side of Eq. (3)
cannot be described by low-order polynomials. This is pri-
marily because of the introduction of the Gaussian radial
basis functions. Gaussian functions are distributed to cover
the chaotic invariant set.1 It allows us to ease the modeling of
a chaotic attractor for a variety of dynamics. However, even if
the obtained data-driven model does not have a chaotic attrac-
tor, we can generate a trajectory staying in the chaotic saddle
by employing the stagger-and-step method [22]. The stagger-
and-step method is applied to create a long chaotic trajectory
of the data-driven model for the shell model turbulence and
the Kuramoto-Sivashinsky equation with observation noise.
See Appendix A for the details.

The following are the limitations and remarks of our RfR
method:

(i) The observable time series ωi should be chaotic with a
“dense” trajectory in the model phase space to estimate time
derivatives at various points.

(ii) The unstable dimension of the constructed model in-
variant set should be less than approximately 10. We can
usually reduce the unstable dimensions by removing the high-
frequency dynamics from observable time series. Therefore,
our RfR method is useful for modeling the macroscopic be-
havior of relatively high-dimensional chaotic dynamics.

(iii) The number of observable variables I can be small to
apply our RfR method. In particular, the number can be 1.
To overcome the limitation of the number of observable
variables, we employ the delay-coordinate of the observable
variable(s) as a model variable, and it is also useful to test the
validity of a model trajectory.

(iv) The noise amplitude should not be large for applying
the RfR method. But noise can often be removed by some fil-
tering method in advance, even if the amplitudes are not small.

The rest of the paper is organized as follows. In Sec. II, we
introduce the proposed method for deriving a system of ODEs.
In Sec. III, we demonstrate the settings of the construction
of a data-driven model for each of the examples. In Sec. IV,
we assess the constructed data-driven models. Concluding
remarks are given in Sec. V.

II. METHOD: RADIAL FUNCTION-BASED REGRESSION

As shown in Fig. 1, our aim is to construct a system of
D-dimensional ODEs Eq. (3) based only on some observable
deterministic time series ωi (i = 1, . . . , I ) of length T with
time step �t and data size NT = T/�t . The steps of the
proposed radial-function-based regression method (RfR) are
outlined below:

(i) Choose the delay-coordinate variable: delay-time τ and
dimension D.

(ii) Estimate the time derivative at each sample point using
the Taylor approximation.

(iii) Choose the basis function2 used in step (iv).

1Due to the procedure, there is a limitation of the unstable dimen-
sion of the dynamics to model.

2We do not assume some particular vector space in advance as is
usual in the literature for machine learning.
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FIG. 1. Outline of the proposed radial-function-based regression (RfR) method for constructing a system of ODEs.

(iv) Perform linear regression at sample points with ridge
regularization.

(v) Assess the model quality according to the reproducibil-
ity of the delay structure in a generated model trajectory.

A. Choice of model variables

For practical reasons, the number of observable variables
is small when compared to the dimension of the back-
ground dynamical system. To describe dynamics, we generate
a higher-dimensional variable by introducing the delay co-
ordinates of limited observables such as (ω1(t ), ω1(t − τ ),
ω1(t − 2τ ), . . . , ω1(t − (D − 1)τ )).

B. Estimating the time derivative

We apply the Taylor approximation to estimate the time
derivative at each sample point X (t̃ ) based only on dis-
crete time points of a trajectory X (t ) (t = . . . , t̃ − �t, t̃ , t̃ +
�t, . . .). In our computations, we employ the sixth-order
approximation:

dX (t̃ )

dt
≈ 1

60l�t
{X (t̃ + 3l�t ) − 9X (t̃ + 2l�t )

+ 45X (t̃ + l�t ) − 45X (t̃ − l�t ) + 9X (t̃ − 2l�t )

− X (t̃ − 3l�t )},

where l (� 1) is a positive integer to determine the points to
estimate the time derivative at X (t̃ ), that is, points at every l�t
time step are used.

When the observable data include noise, we choose a large
value of l to estimate the time derivative, which allows us
to avoid high-frequency oscillations. In that case, we need
to employ the high (e.g., sixth)-order Taylor approximation.
Note that if the observable data do not include noise, we do
not need to use such a high-order formula. See Appendix C
for the estimation of the time derivative at each sample point
when noise is added to the time series.

C. Choice of basis function

We construct a model Eq. (3) through the linear regression
of the following form:

Fk (X ) ≈ β̃k
0 +

∑
d=1,...,D

β̃k
d Xd +

∑
j=1,...,J

β̃k
D+ j φ j (X ), (4)

where Fk (X ) is the kth component of F(X ) in Eq. (3), β̃
k =

(β̃k
0 , β̃k

1 , . . . , β̃k
D+J ) is a set of estimated parameters, and

φ j (X ) = exp

(−||X − c j ||2
σ 2

)

is the Gaussian radial basis function, where ‖ · ‖ denotes the
l2 norm, c j ∈ RD is the coordinate of the jth center point
( j = 1, . . . , J), and σ 2 is the parameter that determines the
deviation of φ j .

In this RfR method, c j is distributed as lattice points with
grid size δgrid. For a given integer m explained below, we con-
sider c j such that there exists a data point in the (m − 1)δgrid

neighborhood. An increase in δgrid results in a decrease in
the number of center points and a decrease in the required
computational resources.

For a given δgrid, σ 2 is determined as

σ 2 := [(m − 1)δgrid]2

− loge p
,

where m is the degree of the corresponding B-spline ba-
sis function, and p (> 0) is a small value. When we set
m = 3 and p = 0.1, then (m − 1)2/(− loge p) ≈ 1.7372. See
Kawano and Konishi [23] for more details.

D. Ridge regression

The coefficients β̃
k

in Eq. (4) are obtained as the minimizer
b of the following function:

L(b) = 1

2n
||y − Ab||2 + λ

2
||b||2,
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TABLE I. Sets of parameters. They are used for the modelings of
the Kuramoto-Sivashinsky equation (KS), the Mackey-Glass equa-
tion (MG), the shell model of fluid turbulence (SM), the coupled
Rössler equation (CR), and the Kuramoto-Sivashinsky equation with
noise (n-KS). The definition of each notation is given in Sec. II.

KS MG SM CR n-KS

D 5 7 6 6 5
τ 0.12 0.5 18 0.4 0.12
m 3
p 0.1
δgrid 0.50 0.25 0.25 0.25 0.50
J 19 322 241 402 693 749 91 393 35 179
l 1 1 1 1 9
λ 10−7 10−7 10−12 10−7 10−4

n 50 000
I 1 1 1 2 1
NT 106

�t 0.01 0.01 1.0 0.1 0.01

where n is the size of regression data, y represents the stan-
dardized time derivative [see the left-hand side of Eq. (3)],
λ is a positive parameter determining the strength of reg-
ularization, and A is an n × (D + J ) matrix whose ith row
is (X1(ti ), . . . XD(ti ), φ1(X (ti )), . . . , φJ (X (ti ))) [see (4)]. The
regularization is used to prevent overfitting primarily due to
the introduction of the Gaussian radial basis functions.

The ridge estimator attaining the minimum of L(b) is writ-
ten as follows:

(ATA + nλI )−1ATy,

where I is the identity matrix and AT is the transpose of A.
Due to the limited computational resources, it is hard to use
all data of size NT . We randomly choose samples of size n
among NT for regression.

E. Evaluation of the model

To assess the model quality, we confirm the delay structure
in the model trajectory. When the number of observable vari-
ables is 1, the model trajectory should satisfy the following:

X1(t ) ≈ X2(t + τ ) ≈ · · · ≈ XD[t + (D − 1)τ ]. (5)

The hyperparameters such as a regularization parameter and
grid size are selected adequately based on the level of the
reconstruction of the delay structure.

F. Choice of parameters

Table I in Sec. IV depicts parameter settings that will be
employed in the modeling in Secs. III and IV. The param-
eter δgrid should correspond to a scale of the variable ωi in
Eq. (2). Hence, ωi is standardized in our modeling to avoid
the adjustment. For the choice of parametersm we consider
the following:

(1) The dimension D of the model is selected to be bigger
than the expected attractor dimension. But small dimension D
is effective for the computations.

(2) The delay time τ is selected based on the decay of cor-
relation of a variable X1(t ). τ is chosen so that the correlation
between X1(t ) and X1(t − τ ) is around 0.5 (see Appendix B).

(3) The parameter l used for estimating the time derivative
at each sample point is chosen larger when the observable data
include noise with larger amplitude (see Sec. II B).

(4) The number of center points J is determined by the
settings of δgrid and m (see Sec. II C).

(5) The number of regression points n is not very sensitive
and fixed as 50 000 (see Sec. II D).

(6) The regularization parameter λ is chosen so that
the reproducibility of the delay structure is successful (see
Sec. II E), but is not very sensitive.

III. EXAMPLE DYNAMICS TO MODEL

A. PDE dynamics: Kuramoto-Sivashinsky equation

We model differential equations using a scalar time series
of the Kuramoto-Sivashinsky equation [16] under periodic
boundary conditions:

∂u

∂t
= −∂2u

∂x2
− ν

∂4u

∂x4
+

(
∂u

∂x

)2

,T × R+,

where T = [0, 2π ), and ν corresponds to the viscosity param-
eter and is set as ν = 0.021 50. For creating a training time
series, we use the Fourier spectral method with 32 modes,
and obtain the following form of ODEs by assuming some
symmetry [16]:

dak

dt
= (k2 − νk4)ak + k

2

( −1∑
m=k−32

a−mak−m

−
k−1∑
m=1

amak−m +
32∑

m=k+1

amam−k

)
, k = 1, . . . , 32.

We assume the number of observable variables in Eq. (2) is
I = 1, and the variable is ω1 = a1(t ). We set the model coor-
dinate X in Eq. (3) as X (t ) = (ω1(t ), ω1(t − τ ), . . . , ω1(t −
4τ )), where τ = 0.12. See Fig. 2 for a short time series and a
long trajectory projected onto (ω1(t ), ω1(t − τ ), ω1(t − 2τ )).

B. Time-delay dynamics: Mackey-Glass equation

We deal with a delay differential equation called the
Mackey-Glass equation [17]:

dx(t )

dt
= 2

x(t − 2)

1 + x(t − 2)9.65
− x(t ).

This is also an infinite-dimensional system, but it has a finite-
dimensional attractor. We assume the number of observable
variables in Eq. (2) is I = 1, and the variable is ω1 = x(t ),
where x(t ) is a variable of the original Mackey-Glass equa-
tion. We set the model coordinate as X in Eq. (3) as X (t ) =
(ω1(t ), ω1(t − τ ), . . . , ω1(t − 6τ )), where τ = 0.5.

C. Turbulence dynamics: Shell model of fluid turbulence

We model a system of differential equations using the
time series of the shell model of fluid turbulence [18,24].
The system is a complex-valued differential equation, but we
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FIG. 2. Time series of ω1 of the Kuramoto-Sivashinsky equa-
tion and that with observation noise. The lower panels show
corresponding longer trajectories projected onto (ω1(t ), ω1(t − τ ),
ω1(t − 2τ )) coordinate. The blue line represents the time series of
ω1 of the Kuramoto-Sivashinsky equation, and the orange points
represent noised observable data.

examine a real-valued scalar time series of an absolute value
of one complex variable of the following system of differential
equations:(

d

dt
+ νk2

j

)
u j

= i
(
c(1)

j u∗
j+2u∗

j+1 + c(2)
j u∗

j+1u∗
j−1 + c(3)

j u∗
j−1u∗

j−2

)
+ f δ j,1, j = 1, . . . , 9

where ∗ denotes the complex conjugate, f is a time-
independent force, ν is the kinematic viscosity, δ j,l is
Kronecker’s delta (l ∈ N), and t is time. The real con-
stants c(1)

j , c(2)
j , c(3)

j (1 � j � 9) are given as c(1)
j = k j, c(2)

j =
−δk j−1, c(3)

j = (δ − 1)k j−2 except for c(2)
1 = c(3)

1 = c(3)
2 =

c(1)
9−1 = c(1)

9 = c(2)
9 = 0.

By using a scalar time series of ω1(t ) = |u3(t )| for f =
0.005(1 + i) and ν = 0.002 51, we construct a data-driven
model by employing the six-dimensional variable X (t ) =
(ω1(t ), ω1(t − τ ), . . . , ω1(t − 5τ )), where τ = 18.

D. Intermittency dynamics: The coupled Rössler equation

We model a system of differential equations using intermit-
tent time series of the coupled Rössler equation [25]:

dx1

dt
= −y1 − z1 + ε(x2 − x1),

dy1

dt
= x1 + ay1,

dz1

dt
= f + x1z1 − cz1,

dx2

dt
= −y2 − z2 + ε(x1 − x2),

dy2

dt
= x2 + ay2,

dz2

dt
= f + x2z2 − cz2, (6)

where (a, c, f , ε) = (0.15, 10, 0.2, 0.06). This system is
known for the so-called on-off intermittency, i.e., nonregular
switchings between laminar and bursting states. Each of
the states is characterized by the difference between two
oscillators (x1, y1, z1) and (x2, y2, z2). To characterize
the switching, we focus on the difference between x1

and x2. Due to the nonuniformity of the value in the
difference, modeling using the difference variable is
difficult. Hence, we use two training variables x1 and x2

as ω1 and ω2, and see the difference. Then we use their
delayed variables (X1(t ), X2(t ), X3(t ), X4(t ), X5(t ), X6(t )) =
(x1(t ), x2(t ), x1(t − τ ), x2(t − τ ), x1(t − 2τ ), x2(t − 2τ )),
where τ = 0.4.

E. PDE dynamics with noise

We model using time series data of the Kuramoto-
Sivashinsky equation with the Gaussian noise whose standard
deviation is 0.5948 × 0.10, where 0.5948 is the standard
deviation of the ω1 variable of the Kuramoto-Sivashinsky
equation. See Fig. 2 for a short time series and a long trajec-
tory projected onto (ω1(t ), ω1(t − τ ), ω1(t − 2τ )). By adding
observation noise to the Kuramoto-Sivashinsky dynamics, the
local structures are blurred.

IV. RESULTS

In this section, we assess the constructed data-driven
models. The estimated systems of ODEs are described as
follows:

dX
dt

= β0 +
∑

d=1,...,D

βd Xd +
∑

j=1,...,J

βD+ jφ j (X ),

where the parameters for estimation are shown in Table I and
the sets of the estimated coefficient vectors βi (i = 0, . . . , D +
J ) of each model ODE are provided in the Supplemental
Material [26]. The number of the estimated coefficient vectors
is 1 + D + J , which is 19 328 for the Kuramoto-Sivashinsky
equation, 241 410 for the Mackey-Glass equation, 693 756 for
the shell model of fluid turbulence, 91 400 for the coupled
Rössler equation, and 35 185 for the Kuramoto-Sivashinsky
equation with noise.

In Sec. IV A, we assert that we have succeeded in pre-
dicting short time series and that the data-driven models can
reconstruct long trajectories and density distribution. We also
evaluate the validity of the model by confirming the delay
structure of the data-driven models. In Sec. IV B, we assess
the stability of each model chaotic invariant set: chaotic at-
tractor or chaotic saddle. We concentrate on the case when
the constructed data-driven model does not have a chaotic
attractor in Sec. IV C. In Sec. IV D, we assert that the data-
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FIG. 3. Basic properties of a data-driven model for each case [the Kuramoto-Sivashinsky equation (KS), the Mackey-Glass equation (MG),
the shell model of fluid turbulence (SM), the coupled Rössler equation (CR), and the Kuramoto-Sivashinsky equation with noise (n-KS)]. The
left panels show short trajectories of X1, the center panels show long trajectories, and the right panels show density distributions of X1. In each
panel, blue and red indicate the cases for the actual and the model, respectively. See Appendix D for the prediction of short time trajectories
from various initial conditions.

driven model for the coupled Rössler equation can reconstruct
intermittency.

A. Basic properties of the models

In this section, we evaluate the basic properties of each
data-driven model in comparison to those of the correspond-
ing actual dynamics. We find that a time series inference of
X1 can successfully be applied for a short time. Figures 3(a),
3(d) 3(g), 3(j), and 3(m) depict examples of predicted tra-
jectories, each of which approximates the actual one for a
certain amount of time. The growth of error in each model
is unavoidable because of the chaotic property of the actual
dynamics. We also confirm by calculating a long trajectory
that the chaotic invariant set of each data-driven model re-
sembles that of the actual one. Figures 3(b), 3(e), 3(h), 3(k),
and 3(n) depict projections of long trajectories. For three data-
driven models for the Kuramoto-Sivashinsky equation, the
Mackey-Glass equation, and the coupled Rössler equation, the
obtained chaotic invariant sets are attractors, and model trajec-
tories are created by forward-time integration of the models.
For the case of the shell model and the Kuramoto-Sivashinsky
equation with noise, we describe how to create an appropriate

model trajectory in Sec. IV C. Furthermore, we demonstrate
that data-driven models can reconstruct statistical quantities.
In Figs. 3(c), 3(f), 3(i), 3(l), and 3(o) we show a density
distribution computed from a model trajectory {X1(t )} which
coincides with that computed from the actual dynamics. We
can also see the validity of each model by confirming that
short time inference from various initial conditions is success-
ful. See Appendix D for a comparison of model time series
with actual ones for each of the four models.

Recall that in our modeling, we employ a delay-coordinate
variable X (t ). Hence, the relation (5) should hold for a model
to be suitable. By measuring the degree of the delay struc-
ture reconstruction, we can assess the constructed model.
Relations shown in Figs. 4(a), 4(c), 4(e), 4(g), and 4(i) repre-
sent successful reconstructions of delay structure among time
series X1(t ), X2(t + τ ), . . ., XD[t + (D − 1)τ ] [for the cou-
pled Rössler equation, X1(t ), X3(t + τ ), and X5(t + 2τ )].
Figures 4(b), 4(d), 4(f), 4(h), and 4(j) show density dis-
tributions of X1(t ) − X2(t + τ ) in each data-driven model
[for the coupled Rössler equation, X1(t ) − X3(t + τ )]. The
degree of the reconstruction for the Kuramoto-Sivashinsky
equation with noise is lower than that of the others, due to
observation noise.
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FIG. 4. Delay structures in each data-driven model [Kuramoto-Sivashinsky equation (KS), Mackey-Glass equation (MG), the shell model
of fluid turbulence (SM), the coupled Rössler equation (CR), and the Kuramoto-Sivashinsky equation with noise (n-KS)]. The left panels show
short trajectories of X1(t ), X2(t + τ ), X3(t + 2τ ), . . . , XD[t + (D − 1)τ ] [X1(t ), X3(t + τ ), X5(t + 2τ ) for CR] for the same time interval as that
in Fig. 3 (left). The right panels show density distributions of X1(t ) − X2(t + τ ) [X1(t ) − X3(t + τ ) for CR] in logarithmic scale in the vertical
axis, and the distributions are localized around zero in comparison with the amplitudes of the fluctuations. The results show the reproducibility
of delay structures expected to be satisfied for the models to be valid. Hence, the discrepancies in the time series in Fig. 3 (left) are considered
to be due to the sensitive dependence on initial conditions of chaotic dynamics.

B. Stability of a chaotic invariant set

Our data-driven model is constructed using trajectory
points on a chaotic attractor. Therefore, the model cannot
describe dynamics far from the attractor. However, we find
that the model can substantially describe dynamics outside
the model attractor on which the trajectory points are recon-
structed.

We focus on an invariant set outside the model attractor
whose corresponding set does not exist in the original system.
For many successful cases, we observe that outside the model
attractor, there exists a ghost hyperbolic invariant set, such as
a fixed point or a periodic orbit that is D − 1 dimensionally
stable, and its stable manifold forms a basin boundary of the

model attractor, that is, a point in the basin will be attracted
to the model attractor. In some cases, a model attractor has a
global basin, and in other cases there exist no model attractors.

For each case of the Kuramoto-Sivashinsky equation,
the Mackey-Glass equation, and the coupled Rössler equa-
tion, a model has a chaotic attractor, and the attractor of
a model for the coupled Rössler equation is a global at-
tractor. For the shell model of fluid turbulence and the
Kuramoto-Sivashinsky equation with noise, a model attractor
does not exist, even though we can create a long trajec-
tory that stays in the model chaotic saddle by using the
stagger-and-step method, which is described in the following
Sec. IV C.
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FIG. 5. Four time series of X1 − X2 (model) from different initial conditions of a single data-driven model are shown together with that
of the actual dynamics (actual) of the coupled Rössler equation. Each panel illustrates a time series showing intermittency between a laminar
state with weak fluctuations |X1 − X2| < C (C = 1) (colored in gray) and a bursting state with large fluctuations. Each panel shows a different
trajectory of a data-driven model together with the corresponding actual trajectory. Switchings between laminar and bursting states can be
predicted by the model.

C. Stagger-and-step method

As is commonly the case in the model of chaotic dynamics,
a long-term trajectory simply created from the model does not
absolutely replicate the original dynamics, even though the
short time trajectories from multiple initial conditions behave
adequately. In this section, we describe a situation and explain
how to generate an appropriate long trajectory by employing
the data-driven model of the shell model as an example.

Recall that the turbulence shell model has a chaotic attrac-
tor, and the data-driven model is constructed from a scalar
time series of a trajectory on the chaotic attractor. However,
the original chaotic attractor is not reconstructed as a model
chaotic attractor but as a model chaotic saddle.

FIG. 6. The distribution of laminar lasting time for the model is
shown together with that of the actual system in a semilog scale for
the coupled Rössler system. The laminar lasting time distribution of
X1 − X2 computed from the model trajectory is displayed together
with that from the actual system. The orange line has a slope of
−0.008. The distribution of a model is obtained from multiple nu-
merical computations of total time length T = 750 000 000 for the
actual data, and T = 4 330 000 for the model.

A trajectory on a chaotic saddle from almost every initial
condition does not stay in the neighborhood of the chaotic
saddle. However, there exists an arbitrary long trajectory
staying in the neighborhood, which we approximately create
as segments of appropriate short trajectories satisfying the
constraint of the delay structure explained in Sec. II E. The
numerical method we employ to generate such a long tra-
jectory is the stagger-and-step method [22]. We create a
trajectory of at least time length T = 1 000 000 on a model
chaotic saddle and confirm that the trajectory reconstructs
a statistical property as well as the actual short trajectory
(Figs. 3 and 4).

In the case of the Kuramoto-Sivashinsky equation with
noise, we have also succeeded in generating a model trajectory
on a chaotic saddle by employing the method.

See Appendix A for the details of the stagger-and-step
method.

FIG. 7. Numerical trajectories of a data-driven model of the shell
model dynamics computed from the simple calculation (upper panel)
and the stagger-and-step method (lower panel). The blue line in each
panel shows an actual trajectory. A trajectory generated using the
stagger-and-step method is shown to approximate the actual trajec-
tory more than 1000 times, whereas a trajectory generated by simple
integration of the model approximates the actual one for 400 times.
Note that a long trajectory created by the stagger-and-step method is
actually a patch of short trajectories, but it seems “smooth.”
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FIG. 8. Autocorrelation function of a main variable. The orange
lines correspond to multiples of delay time τ used for the delay
coordinates in Secs. III and IV.

D. Intermittency

One of the features of the coupled Rössler equation (6)
is that the two different oscillators can depict an intermittent
behavior between laminar and bursting states through mutual
interactions. We can observe the intermittency by seeing the
fluctuation of x1 − x2.

Figure 5 depicts short time trajectories of X1(t ) − X2(t )
with those of the actual trajectories. We obtain the distribu-
tion of the lasting time of the laminar state |x1 − x2| < C
for some C > 0 sufficiently small. The distribution obtained
by the model is depicted in Fig. 6 when C = 1. The tail of
the distribution obeys a power law, which is comparable to
that from the actual coupled Rössler equation. Note that it
is hard to model the intermittent dynamics because of the
nonuniformity when the observable variable is limited to the
difference between two variables x1 − x2.

V. CONCLUDING REMARKS

We have succeeded in constructing various differential
equations only from observable time series of the limited
number of variables by the RfR method proposed in our
previous paper [15]. Our attempts in this study include the
dynamics of a partial differential equation, a delay differential
equation, a shell model of fluid turbulence, and intermit-

tent dynamics of coupled differential equations. The case
when noise is added to the observation is also tested. Each
data-driven model is shown to have a trajectory and density
distribution, both of which approximate the actual ones. The
existence of the model attractor is investigated, and we create
a model trajectory by applying the stagger-and-step method
when an appropriate trajectory is realized not on the model
attractor but on the model chaotic saddle. This introduces the
stagger-and-step method in the context of data-driven model-
ing. We strongly believe that the method will be useful for
creating trajectories of various data-driven models that can
provide short time inference but do not create appropriate long
trajectories.

As a practical application, we can apply our method to
construct a system of ODEs from time series, especially that
of macroscopic variables of complex phenomena, e.g., model-
ing turbulent mean flow or climate dynamics using observable
macroscopic variables.
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APPENDIX A: STAGGER-AND-STEP METHOD USING
THE DELAY STRUCTURES

The stagger-and-step method [22] is to create a “long tra-
jectory” as the patch of segments of a short trajectory. The
method is employed to create a long trajectory on a chaotic
saddle by using the delay structures (5). As seen in Fig. 7, a
model trajectory created from the simple integration of the
model by using the Runge-Kutta method approximates the
actual one for 400 times, whereas a trajectory created from
the stagger-and-step method approximates the actual one for
more than 1000 times.

We describe the stagger-and-step method which we employ
in Sec. IV. The basic steps of the stagger-and-step method [22]
are as follows. See also Algorithm 1.

(1) Calculate short numerical trajectories from nearby 100
initial conditions.

(a) Add noise to the current point with Algorithm 1.
(b) Calculate a numerical trajectory of length T = 50.

(2) Choose the best trajectory among 100 trajectories. Tra-
jectories are evaluated by the maximum delay absolute error:

E := max
t�50−τ,i=1,...,D−1

|Xi(t ) − Xi+1(t + τ )|.

(3) Keep the former half ([0,25]) of the best trajectory as
an orbit segment.

(4) Back to 1.
To reduce the number of trials in step 1, if the maximum

delay absolute error E is less than a certain threshold �threshold
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in step 1-b, we move on to step 2 even though the number
of calculated numerical trajectories does not reach 100. Fur-
thermore, before step 1 we calculate a numerical trajectory of
length T = 50 without adding noises, and steps 1 and 2 are
skipped if E < �threshold.

In our computations, we slightly modify Algorithm 1 to
reduce computational costs. When the error becomes smaller
with some noise, we search for a better noise by making
additional noises around the original noise. Using this op-
timization, an appropriate noise can be gotten with lower
computational costs, and a long trajectory on a chaotic saddle
can be made in a plausible time.

APPENDIX B: RELATION BETWEEN THE
AUTOCORRELATION FUNCTION AND THE CHOICE

OF DELAY COORDINATE

We select the delay time τ by considering the decay of the
autocorrelation function of a main variable. Figure 8 depicts
autocorrelation functions of time s for the observable time
series data of five examples. The adequate choice of τ should
satisfy the correlation coefficient between w(t ) and w(t − τ )
to be away from both 0 and 1. In fact, for each of the five suc-
cessful examples, the correlation coefficient between w(t ) and
w(t − τ ) is KS:0.5012, MG:0.8011, SM:0.5357, CR: 0.9058,
n-KS:0.4265.

APPENDIX C: THE ESTIMATION OF TIME DERIVATIVES
FROM A TIME SERIES WITH NOISE

To estimate time derivatives from time series data, we em-
ploy the Taylor approximation. As mentioned in Sec. II B. it is

FIG. 9. The sixth-order Taylor approximation of a trajectory of
the main variable (ω1) at some sample points for the Kuramoto-
Sivashinsky equation with noise (upper) and their enlarged pictures
around two sample points (lower). The blue line represents the time
series of the Kuramoto-Sivashinsky equation, and the orange points
represent noised observable data. The red curve represents the Taylor
approximation at each sample point (•). The left panels employ
observation points at every l�t = 0.01 time step, whereas the right
panels at every l�t = 0.1 time step. For each of the two sample
points in the lower panel, the estimation of the time derivative for
the case of l�t = 0.1 (right) is better than that of l�t = 0.01 (left).
In order to avoid the noise effect, we need to choose a large value of
l to estimate a time derivative at a sample point.

FIG. 10. Standard deviations of the estimation errors in the time
derivative with respect to l used to estimate time derivatives for the
two cases using the second- and the sixth-order Taylor approxima-
tion. The two panels show the standard deviations of the estimation
error of the time derivative at 106 points on a trajectory. The upper
panel employs the second-order Taylor approximation, and the mini-
mum error value 0.866 is taken at l = 6. The lower panel employs the
sixth order; the minimum error 0.833 is taken at l = 9. The standard
deviation of error for the sixth-order Taylor approximation tends to
take a low value for a broader range of l .
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FIG. 11. Short time trajectories of X1 of a data-driven model
for the Kuramoto-Sivashinsky equation. Blue and red indicate the
cases for the actual and the model, respectively. Initial conditions are
selected randomly from actual dynamics.

FIG. 12. Short time trajectories of X1 of a data-driven model for
the Mackey-Glass equation. Blue and red indicate the cases for the
actual and the model, respectively. Initial conditions are selected
randomly from actual dynamics.

FIG. 13. Short time trajectories of X1 of a data-driven model for
the shell model. Blue and red indicate the cases for the actual and
the model, respectively. Initial conditions are selected randomly from
actual dynamics.

FIG. 14. Short time trajectories of X1 of a data-driven model for
the coupled Rössler equation. Blue and red indicate the cases for
the actual and the model, respectively. Initial conditions are selected
randomly from actual dynamics.
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FIG. 15. Short-time trajectories of X1 of a data-driven model for
the Kuramoto-Sivashinsky equation with noise. Blue and red indicate
the cases for the actual and the model, respectively, and yellow points
are observations with noise. Initial conditions are selected randomly
from actual dynamics.

important to take a time step l�t larger when the observations
include noise. Recall that l�t is a time step used to estimate
time derivatives, where l is a positive integer and �t is a time
step of observed time series data.

In Fig. 9 we show the Taylor approximations at some
points of the Kuramoto-Sivashinsky equation with noise.
These approximations are used to estimate time derivatives.
The estimates with a larger time step l�t for l > 1 tend to
obtain better approximations under the existence of observa-
tion noise.

In Fig. 10 we depict the standard deviations of estimation
errors in the time derivatives with respect to the value of l .
The minimum standard deviations of the second-order and the
sixth-order approximations are 0.866 and 0.833, respectively.
We can robustly obtain a better estimation of time deriva-
tives for a broader range of l when we apply the sixth-order
approximation.

APPENDIX D: SHORT TRAJECTORIES FROM SEVERAL
INITIAL CONDITIONS

In Sec. IV, we show a single short trajectory for each case
in Fig. 3. Here, we depict four additional short trajectories
from randomly selected initial conditions for each of the data-
driven models in Figs. 11–15. These figures show that each
model can predict short time trajectories appropriately inde-
pendent of the initial conditions, which implies the validity of
each model.
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