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Dynamical and self-trapping properties of two-dimensional (2D) binary mixtures of Bose-Einstein conden-
sates in cross-combined lattices, consisting of a one-dimensional (1D) linear optical lattice (LOL) in the x
direction for the first component and a 1D nonlinear optical lattice (NOL) in the y direction for the second
component, are analytically and numerically investigated. The existence and stability of 2D binary matter wave
solitons in these settings are demonstrated both by variational analysis and by direct numerical integration of
the coupled Gross-Pitaevskii equations. We find that in the absence of the NOL, binary solitons, stabilized by
the action of the 1D LOL and by the attractive intercomponent interaction, can freely move in the y direction.
In the presence of the NOL, we find, quite remarkably, the existence of threshold curves in the parameter space
separating regions where solitons can move from regions where the solitons become dynamically self-trapped.
The mechanism underlying the dynamical self-trapping phenomenon (DSTP) is qualitatively understood in terms
of a dynamical barrier induced by the NOL, similar to the Peirls-Nabarro barrier of solitons in discrete lattices.
DSTP is numerically demonstrated for binary solitons that are put in motion both by phase imprinting and by
the action of external potentials applied in the y direction. In the latter case, we show that the trapping action of
the NOL allows one to maintain a 2D binary soliton at rest in a nonequilibrium position of a parabolic trap or to
prevent it from falling under the action of gravity. Possible applications of the results are also briefly discussed.

DOI: 10.1103/PhysRevE.108.054218

I. INTRODUCTION

Bose-Einstein condensates (BECs) of ultracold atoms
trapped in optical lattices (OLs) are considered as ideal sys-
tems for realizing and understanding various phenomena of
condensed matter and nonlinear physics. Experimental flex-
ibility of controlling the system parameters over a wide
range has made it possible to observe phenomena such as
Bloch oscillations, dynamic localization, Landau-Zener tun-
neling, and superfluid-Mott transition occurring in linear
optical lattices (LOLs) [1–9]. In a mean-field description of
the condensate, the nonlinearity that arises from the inter-
atomic interactions if suitably balanced by dispersion allows
the formation of matter wave solitons [10–12]. This is par-
ticularly true for one-dimensional settings where solitons
are very stable and quite generic in the whole parameter
space.

In higher dimensions and in the presence of attractive
interactions, the occurrence of delocalization transitions [13]
and the appearance of collapse phenomena induce criticality
on the existence of stable solitons [14–16]. The possibility
of their stabilization by means of periodic potentials was
demonstrated in Refs. [17,18]. In particular, in Ref. [18], it
was shown that periodic potentials of codimension 1 (i.e.,
potentials whose dimension is that of the full space minus one)
can support stable solitons both in two-dimensional (2D) and
in 3D attractive BECs.

In addition to LOLs, the efficiency in controlling nonlin-
ear interactions in time and space by means of magnetic or
optically induced Feshbach resonances has allowed the intro-
duction of the so-called nonlinear optical lattice (NOL), i.e.,
a lattice induced by space-dependent interatomic interactions.
The effective potential produced by a NOL can be periodic
or localized, depending on whether the density of matter is
periodic or localized.

In one-dimensional settings, NOLs have been shown to be
very useful to eliminate destructive dynamical instabilities,
such as those arising in Bloch oscillations of gap solitons
moving in an accelerated LOL [19]. In the multidimensional
case, it is proven that 2D localized BEC can be stable in 1D
cross-combined linear and nonlinear optical lattices [20], but
neither a 1D NOL nor a 2D NOL are sufficient to hold stable
2D BECs [21]. In nonlinear optics contexts, it was recently
shown that NOLs of the form of arrays of Kerr-nonlinear
cylinders embedded into linear [22] or saturable host media
can support stable 2D solitons [23]. We also remark that the
existence of 2D Bose-Einstein condensates has been realized
experimentally in a combination of harmonic and lattice po-
tentials [24–26] and all the studies reported above refer to the
case of ordinary, i.e., single-component, BECs.

Multidimensional solitons of binary BEC mixtures are
more involved and much less investigated [27]. In particular,
we mention the results in Ref. [28] showing that either a 2D
LOL or a 2D NOL applied only to one component is sufficient
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to stabilize binary 2D BEC solitons against collapse or decay.
In the case of a LOL, the binary solitons were shown to be
stable on almost the entire range of their existence, while in
the NOL case, there were restrictions on the number of atoms
in the component affected by the lattice. In all these cases, the
applied OLs (either linear or nonlinear) were two dimensional
and the resulting excitation was intrinsically localized.

On the other hand, it is interesting to investigate 2D soli-
tons of binary BEC mixtures trapped in lower-dimensional
OLs of a different nature. In this respect, we remark that in
contrast with 1D LOLs, a 1D NOL is unable to sustain stable
2D solitons and therefore, in a cross-combined setting (i.e., a
1D LOL and a 1D NOL acting in different directions), binary
solitons can exist only if the attractive intercomponent inter-
action is sufficiently strong. Moreover, the different nature of
the two lattices could lead to novel dynamical phenomena.

The aim of the paper is to investigate the properties of 2D
solitons of binary BEC mixtures trapped in cross-combined
OLs consisting of a 1D LOL acting on one component
along the x direction and a 1D NOL acting on the other
component along the y direction. For this, we use the vari-
ational analysis (VA), direct numerical integrations of the
coupled Gross-Pitaevskii equations (GPE), and the Vakhitov-
Kolokolov (VK) criterion [29] to investigate the existence and
the stability of 2D binary solitons in such cross-combined
OLs. We show that in the absence of the NOL, binary 2D
solitons, stabilized by the action of the 1D LOL and by the
attractive intercomponent interaction, can be put into action
by phase imprinting and move freely in the y direction. In the
presence of the NOL, quite remarkably, we find the existence
of threshold curves in the parameter space separating regions
where solitons can move from regions where they becomes
dynamically self-trapped by the NOL.

The mechanism underlying the dynamical self-trapping
phenomenon (DSTP) is qualitatively explained in terms of
a dynamical barrier induced by the the NOL that resembles
the Peirls-Nabarro barrier [30] of solitons in discrete lattices.
The DSTP is demonstrated for binary solitons that are put in
motion both by phase imprinting and by the action of external
potentials applied in the y direction, such as a parabolic trap
or a linear ramp potential. In these cases, we show that the
DSTP allows one to hold a 2D binary soliton at rest in a
nonequilibrium position of a parabolic trap and to prevent the
soliton from falling under the action of the gravity.

The paper is organized as follows. In Sec. II, we introduce
the model equations, and in Sec. III, we use the variational
analysis and numerical GPE integrations to investigate the
existence and stability of 2D binary isotropic and anisotropic
solitons. In Sec. IV, we use the phase-imprinting method to
put stationary solitons in motion and to show the occurrence
of the DSTP. In Sec. V, the occurrence of the DSTP in external
parabolic traps and linear ramp potentials is demonstrated. In
Sec. VI, the possible relevance of the DSTP for application is
briefly discussed and the main results are summarized.

II. MODEL EQUATIONS

At absolute zero temperature, the ground-state wave func-
tions of a 2D binary BEC mixture can be described in the

mean-field approximation by the following coupled Gross-
Pitaevskii (GP) equations:

i
∂ψ

∂t
= −(∇2 − VL − γ1|ψ |2 − γ12|φ|2)ψ, (1)

i
∂φ

∂t
= −(∇2−VNL|φ|2−γ2|φ|2−γ12|ψ |2)φ, (2)

where ∇2 denotes the 2D Laplacian and VL, VNL are periodic
real functions modeling a LOL in the x direction and a NOL
in the y direction, respectively, of the form

VL = V1 cos(2x), VNL = V2 cos(2y). (3)

In Eqs. (1) and (2), ψ and φ represent the component wave
functions, while the nonlinear coefficients γi, i = 1, 2, 12
stand for 3D coupling constants corresponding to the s-wave
scattering lengths a(i)

s , i.e., γi = 4π h̄2a(i)
s /m, with m, lz =√

h̄/(mωz ), ωz, denoting the atom mass, the transverse oscil-
lator length, and the transverse frequency, respectively. The
above GPEs are written in dimensionless units obtained by
replacing t by (h̄/Er ) t , and r ≡ (x, y) by r/k, with Er =
h̄2k2/(2m) the recoil energy of the lattices, and Vj , γ j mea-
sured in the units of Er and Er/k2, respectively.

It is also worthwhile to note from Eqs. (1) and (2) that
while the first component is trapped by the potential VL acting
in the x direction, the second component is subjected to a
nonlinear optical lattice VNL acting in the y direction. For
this, we assume the BEC components are associated to two
hyperfine levels that are far detuned so that the laser used for
the trapping of one component can be considered negligible
for the other component, and vice versa. The spatial mod-
ulation of the interatomic scattering length can be produced
by the optically induced Feshbach resonance technique, with
the background scattering length assumed to be detuned to
zero with appropriate experimental conditions. Moreover, the
harmonic trap used to create the condensate is assumed to be
weak enough to affect matter waves localized in the central
part of the trap [9].

III. 2D BINARY SOLITONS: VA AND NUMERICAL
RESULTS

In this section, we investigate the existence and stability
properties of 2D binary solitons by means of the VA [31]
based on the Gross-Pitaevskii energy density,

E [ψ, φ] = |∇ψ |2 + |∇φ|2 + V1 cos(2x)|ψ |2 + 1
2γ1|ψ |4

+ 1
2V2 cos(2y)|φ|4 + 1

2γ2|φ|4 + γ12|φ|2|ψ |2.
(4)

Results are then compared with direct numerical integration
of the GPE system. With respect to perturbation theory, the
VA represents a simple effective method to get properties of
the ground-state wave function. The efficiency and accuracy
of the method depend in large part on the choice of the trial
function that should reflect, from one side, the properties of
the system (symmetries, norms, etc.), and, from the other side,
should be simple enough to allow an analytical evaluation of
the energy. The trapping potentials, the type of solutions that
are searched (localized, extended), and the parameter region
in which they are searched also play an important role for
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the choice. Thus, for example, looking for localized binary
matter waves in the limit of negligible trapping potentials,
one could take the trial function as a product of 1D solitons
(sech-sech trial functions), while in the limit of negligible
nonlinearities, the Gaussian ansatz may be more appropriate.
We tried both Ansätze for our setting and we found that the
Gaussian Ansatz allows an analytical expression of the energy
for generic values of the parameters (see below), while with
the sech-sech Ansatz, this is possible only when the NOL is
absent [32]. In the following, therefore, we assume a Gaussian
Ansatz for the component wave functions,

ψ (x, y) = A1 exp
[ − x2/

(
2a2

1

) − y2/
(
2b2

1

)]
, (5)

φ(x, y) = A2 exp
[ − x2/

(
2a2

2

) − y2/
(
2b2

2

)]
, (6)

with corresponding norms given by

N1 =
∫

|ψ |2dxdy = πa1b1A2
1,

N2 =
∫

|φ|2dxdy = πa2b2A2
2. (7)

Here, a j , b j , j = 1, 2, denote the widths of the two component
profiles in the x and y directions, respectively, and Aj the
corresponding profile amplitudes. Similar trial solutions were
used in Refs. [17,18,20,21] to describe solitons (a j/π � 1)
in single-component two-dimensional BECs in OLs. The in-
tegration of the energy density (4) on the whole x − y plane
leads to the following effective energy:

〈E〉 =
2∑

j=1

[
N j

2

(
1

a2
j

+ 1

b2
j

)
+ γ jN 2

j

4πa jb j

]
+ V1N1e−a2

1

+ V2N 2
2

4πa2b2
e− b2

2
2 + γ12N1N2

π
[(

a2
1 + a2

2

)(
b2

1 + b2
2

)] 1
2

. (8)

Notice that in writing this equation, we used Eqs. (7) to elim-
inate Aj in favor of [N j/(πa jb j )]

1
2 . The stationary conditions

∂〈E〉
∂ai

= 0,
∂〈E〉
∂bi

= 0, i = 1, 2, of the energy function in Eq. (8)
provide a system of four equations, namely,

1

a3
1

+ γ1N1

4πa2
1b1

+ a1

π
γ12N2F1 + 2V1a1e−a2

1 = 0, (9)

1

b3
1

+ γ1N1

4a1b1
2π

+ b1

π
γ12N2F2 = 0, (10)

1

a3
2

+ a2

π
γ12N1F1 + N2

γ2 + e− b2
2
2 V2

4πa2
2b2

= 0, (11)

1

b3
2

+ N2
γ2 + (

1 + b2
2
)
e− b2

2

2 V2

4πa2b2
2 + b2

π
γ12N1F2 = 0, (12)

with F1 = (a2
1 + a2

2)−3/2(b2
1 + b2

2)−1/2 and F2 obtained from
F1 by interchanging the b’s with a’s. To obtain parameters
for the existence of binary BEC solitons, in general, one must
solve Eqs. (9)–(12) numerically. For some specific choice of
the system parameters, the energy of the system displays a
minimum that is, in general, negative. Binary solitons follow
from Eqs. (5) and (6) with parameters Ai, ai, bi, i = 1, 2, de-
termined in correspondence with the energy minimum.

The stability of the soliton can be analytically investigated
within a VA approach by means of the VK criterion [29,33]
according to which a binary soliton is stable if the change of
a corresponding conserved (numbers of atoms, N j) quantity
with respect to its conjugated variable (chemical potential μ j)
is negative.

In this respect, it is worthwhile to note that for stationary
solutions,

φ ≡ φ(x, y) exp(−iμ1t ), ψ ≡ ψ (x, y) exp(−iμ2t ),

the GPEs in (1) and (2) can be rewritten as

μ1 = 1

N1

∫
(|∇ψ |2 + VL|ψ |2 + γ1|ψ |4 + γ12|φ|2|ψ |2)dτ,

(13)

μ2 = 1

N2

∫
(|∇φ|2 + VNL|φ|4 + γ2|φ|4 + γ12|ψ |2|φ|2)dτ,

(14)

with dτ = dxdy. Substituting Eqs. (3), (5), and (6) into
Eqs. (13) and (14), we get

μ1 = 1

2

(
1

a2
1

+ 1

b2
1

)
+ γ1N1

2πa1b1
+ V1e−a2

1

+ γ12N2

π

√(
a2

1 + a2
2

)(
b2

1 + b2
2

) (15)

and

μ2 = 1

2

(
1

a2
2

+ 1

b2
2

)
+ V2N2

2πa2b2
e−b2

2/2

+ γ12N1

π

√(
a2

1 + a2
2

)(
b2

1 + b2
2

) + γ2N2

2πa2b2
. (16)

From the above equations, one can calculate the derivatives
dN j/dμ j and then, from the VK criterion, determine the
stability of the soliton. This is shown in Fig. 2 for a specific
choice of the parameters (see below).

In the following two sections, we consider in more detail
the cases of isotropic and anisotropic 2D binary solitons and
compare the VA analytical predictions with numerical direct
GPE time integrations.

A. Isotropic 2D binary solitons

To understand the behavior of the BEC profile embedded
in a LOL and NOL, we first consider the symmetric case
bi = ai, i = 1, 2, but with a1 �= a2, giving rise to isotropic
component profiles in the x and y directions. For simplicity, in
the following, we fix γ2 = 0, i.e., we assume the intraspecies
scattering length of the second component detuned to zero by
a Feshbach resonance.

One can then show that the minimization of the effective
energy, 〈Ẽ〉 ≡ 〈E〉|bi→ai , with respect to the a1 variable, i.e.,
∂〈Ẽ〉
∂a1

= 0, gives

a2 =
[√

−γ12N2

π
(
1 + a4

1V1ea2
1
) + γ1N1/4

− 1

] 1
2

a1, (17)
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FIG. 1. Left panel: Effective energy potential 〈E〉 vs a2 for uncoupled symmetric (ai = bi) components (blue dashed and red dash-dotted
curves), and for the coupled γ12 = −2 case (solid black curve). Other parameters are fixed as γ1 = −2, γ2 = 0, V1 = −1.5, V2 = −1.5,
N1 = 3.5, and N2 = 2.5. Middle panel: Same as in the left panel, but for γ12 = −2, V2 = −1.5 and different values of V1 indicated in the
figure. Other parameters are fixed as in the left panel. Values of a1 and a2 are calculated at the minima of the depicted bonding curves. Right
panel: Same as in the middle panel, but for V1 = −2 and different values of V2 indicated in the figure. Other parameters are fixed as in the
middle panel.

while the minimization with respect to a2, i.e., ∂〈Ẽ〉
∂a2

= 0, al-
lows one to express a1 in terms of a2 as

a1 =
[√

−γ12N1

π + (
1 + a2

2/2
)
e−a2

2/2V2N2/4
− 1

] 1
2

a2. (18)

Note that both Eqs. (17) and (18) allow energy to be expressed
in terms of a single variable. Due to the different nature of
linear and nonlinear OLs, however, the two minimizations
cannot be performed together and one must choose one or the
other. In fact, it can be shown that the compatibility condition
of (18) and (17) is, in general, not satisfied for generic values
of the parameters [34]. Since a2 is the variable of the com-
ponent exposed to the action of the NOL, whose stability is
more critical, it is natural to choose to minimize with respect
to a2, i.e., Eq. (18). This choice is corroborated by the fact that
by inserting the expression of a1 into the energy and plotting
it as a function of a2, one obtains bounding potential curves
(see Fig. 1), while the other option would lead to metastable
or antibounding curves.

In the limit γ12 → 0, Eqs. (1) and (2) become uncoupled
and the problem further simplifies to two independent (single-
component) BECs, i.e., one loaded in a LOL and the other in
a NOL, with the corresponding energy vs a2 curves denoted
as 〈EL〉 and 〈ENL〉, respectively. In the left panel of Fig. 1,
we show the dependence of these energies on the parameter
a2, both for the coupled and uncoupled cases. Notice the
resemblance of these curves with the energy-potential curves
of a diatomic molecule, with a2 playing the role of interatomic
distance. From these curves, it is clear that while the single-
component 2D BEC in the 1D LOL is energetically stable, i.e.,
the BEC mixture is in a bonding state (blue dashed curve),
as expected from the results in Ref. [24], no 2D soliton can
be formed in a single-component BEC with a NOL since the
system is in an antibonding state (red dash-dotted curve) when
γ12 = 0. When γ12 �= 0, however, the energy-potential curve
develops a deeper minimum (with respect to 〈EL〉) that allows
both components to hold together in a bound state (black
solid curve). This makes the components of the 2D solitons
intrinsically interdependent since the presence of the inter-
component attraction and the stability of the first component
are essential for the localization of the second component and

for the bound state formation. In the middle and right panels
of Fig. 1, we show the dependence of the 〈E〉 vs a2 curves
for different values of V1, keeping V2 fixed, and vice versa,
respectively.

In particular, from the middle panel of Fig. 1, it is clear
that for V1 = 0 (absence of the LOL), there is no possibil-
ity to form any stable bound state, but as V1 is decreased
away from zero, the potential develops a local minimum
that becomes deeper and deeper as V1 is further decreased.
This indicates that for fixed parameters and sufficiently
strong LOL, symmetric binary BEC solitons can exist in the
cross-combined OLs system. The minima of the effective
energy (〈E〉min) for the V1 = −1.5,−2,−3 occur at a2 ≈
0.69, 0.63, and 0.55, respectively. Clearly, 〈E〉min is positive
for V1 = 0. It indicates that the system becomes unstable for a
weak LOL.

From the right panel of Fig. 1, it is also clear that by
increasing the strength, V2, of the NOL, and keeping all other
parameters fixed, the local minimum of the effective potential
disappears at a critical value V2cr (for the specific choice
of parameters, V2cr ≈ −2.53). We find that the minimum of
〈E〉 occurs for V2 = 0,−1,−2 at a2 ≈ 0.97, 0.75, 0.49, re-
spectively. The thin black curve gives the lower boundary
of the potential curve below which the system is collapsed
(a1 = a2 = 0 for V1 = −2.0 and V2 = −2.52).

We have seen that the interplay between the LOL and NOL
acting in two different directions plays a role in holding 2D
BEC solitons stable. The effective energy of the system shows
minima and can diverge depending on the relative values of
the LOL and NOL. This indicates some possibilities for the
observation of stable, unstable, and collapse phenomena. It is,
therefore, constructive to check the profiles of the binary con-
densates from the direct numerical simulation of the GPEs. In
particular, in the following, we use the split-step Fourier (SSF)
method [21] to study the spatiotemporal behavior of BECs.
The SSF is a pseudospectral method and very efficient in
solving a nonlinear partial differential equation [35–37] with a
very small time step. With a view to calculate the evolution of
the condensate in 2D, we consider a time step 	 t = 0.001 and
calculate the density of the BEC components. In each step,
we propagate the solution by half a time step (	t/2) using a
nonlinear operator and then a full time step (	t ) with a linear
operator; then the propagation is completed by the second half
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FIG. 2. Left panel: Minimum energy (Emin) as a function of γ12 for V2 = −1 (solid black), −1.5 (dashed blue), and −2 (dash-dotted red).
Other parameters of the system are fixed as γ1 = −2, V1 = −2, N1 = 3.5, and N2 = 2.5. Middle and right panels: Chemical potentials μi vs
number of atoms, Ni, of first (middle) and second (right) component, for strengths (V2) of the NOL indicated in the figure. Other parameters
are fixed as γ1 = −2, γ12 = −2.0, V1 = −2.0.

step (	t ) with a nonlinear operation. More explicitly,

ψ (x, y, t + 	t ) = e−iLψ	t/2F−1
[
e−i(k2

x +k2
y )	tF

× {e−iLψ	t/2ψ (x, y, t )}] (19)

and

φ(x, y, t + 	t ) = e−iLφ	t/2F−1
[
e−i(k2

x +k2
y )	tF

× {e−iLφ	t/2φ(x, y, t )}], (20)

with Lψ = V1 cos(2x) + γ1|ψ |2 + γ12|φ|2 and Lφ =
V2 cos(2y)|φ|2 + γ2|φ|2 + γ12|ψ |2. Here, F and F−1 stand
for Fourier and inverse Fourier transforms, respectively.

Clearly, Eqs. (19) and (20) give the time evolution of
the condensate profiles for the first and second components,
respectively. In particular, the dynamical stability of the sta-
tionary solution is obtained from time evolution of the initial
states [38]. In Figs. 3 and 4, we plot the component densities
of the 2D binary BEC at time t = 100, as obtained from
numerical GPE time integration in the absence and in the pres-
ence of the NOL, respectively. We see that in both cases, the
density profiles remain stable without changing their norms
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FIG. 3. 2D density plot at time t = 100 (left) and correspond-
ing 1D sections at y = 0 (middle) and at x = 0 (right) of the
first (top panels) and second (bottom panels) components of the
2D BEC soliton. Parameters values are fixed as V1 = −2.0,V2 =
0, γ1 = −2.0, γ2 = 0, γ12 = −2.0, N1 = 3.5, N2 = 2.5. The ini-
tial numerical profiles (red lines) overlap the ones at time t = 100.
Blue lines refer to the initial profiles predicted by the VA, plotted for
comparison.

on a long timescale. Also notice that the VA profiles (see
blue lines) are in reasonably good agreement with the ones
obtained numerically by imaginary time evolution.

B. Anisotropic 2D binary solitons

We have seen that the consideration of an isotropic conden-
sate can provide a simplified system and allow us to realize the
system’s properties in terms of the potential model. However,
a more general study needs to remove the restriction on the
condensate size in different directions. Therefore, it will also
be constructive to consider bi �= ai, (i = 1, 2) and a1 �= a2.

In order to see the effect of intercomponent interaction to
the energy of the system, we solve Eqs. (9)–(12) numerically
and calculate the minimum energy (Emin) for different values
of intercomponent interaction. The variation of Emin with γ12

is displayed in the left panel of Fig. 2. It is seen that the
minimum energy is negative for some nonzero values of in-
terspecies interaction. This clearly indicates the existence of
stable BECs. Looking closely at the figure, we see that Emin

depends sensitively on the interplay between optical lattices
and interspecies interaction. More specifically, Emin decreases
rapidly for larger values of −γ12. This change in Emin, how-
ever, becomes less noticeable at smaller values of γ12.

The slopes of the μ j versus N j displayed in the middle and
right panels of Fig. 2 show that dμ j/dN j is negative and thus
consistent with the VK criterion for linear stability.
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FIG. 4. Same as in Fig. 3, but for V2 = −1.
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With a view to study the dynamical stability, we calculate
the density profile by numerically solving Eqs. (1) and (2) at
three different times using Eqs. (19) and (20). We take the
linearly stable stationary solution as the initial profile and
display the final profiles in Fig. 4. It is clear from the time
evolution that the coupled BECs in 2D are dynamically stable
due to the interplay between nonlinearity (steepening) and
dispersive effects.

Note that in the presence of the NOL, the agreement
between the VA soliton profiles and the ones from GPE
numerical calculations becomes less accurate and more qual-
itative. This is probably due to the fact that the Gaussian trial
functions do not allow one to catch the full symmetry of the
cross-combined lattice. The VA stability predictions obtained
with the VK criterion, however, were always confirmed by the
numerical GPE integrations, at least for the parameters values
that we have investigated.

We finally remark that as expected for multidimensional
settings with attractive interactions, the above 2D binary soli-
tons can undergo the collapse phenomenon. Indeed, we find
that the stability depends on the norms, strength of the at-
tractive interactions, and strength of the OLs, and for each
of these parameters there exist critical values above which
the collapse occurs. The study of the collapse phenomenon
in our setting, however, requires more detailed analytical and
numerical investigations that are beyond the aim of this paper.

IV. SELF-TRAPPING ACTION OF THE NOL

To understand the trapping action exerted by the NOL on
a binary 2D BEC soliton, it is convenient to first consider the
case in which there is only the LOL in the x direction. In this
case, a binary 2D matter wave, stabilized by the action of the
1D LOL and by the attractive intercomponent interaction, can
freely move in the y direction. This is shown in the top panels
of Fig. 5 where an initial velocity v0 in the y direction has
been given to the stationary components ψ, φ (obtained from
imaginary-time evolution) by means of the phase imprinting,

ψ → ψeiv0(y−y0 ), φ → φeiv0(y−y0 ).

This state is then used as the initial condition for the real-
time integration of the coupled GPE system. The results are
reported in Fig. 5 for a fixed imprinted velocity and different
values of the strength of the NOL. We see that in the absence
of the NOL, the 2D binary matter wave moves like a soliton,
retaining its shape and initial velocity, while in the presence
of the NOL and for a fixed imprinted velocity, the soliton can
either move or become dynamically self-trapped (i.e., oscil-
lates around some positions), depending on the strength of the
NOL being below or above a certain threshold, respectively.
Notice that the amplitude of the period of the oscillations in
the self-trapped regime decreases by increasing the strength
of the NOL, with the binary soliton becoming fully at rest
for sufficiently high values of V2 (in Fig. 5, this occurs for
V2 = −2.0, as one can see from the bottom panel).

The origin of the self-trapping can be qualitatively under-
stood by taking into account the effective potential, VNOL,
induced by the NOL on the moving second component. For
simplicity, we assume for this a solitary wave localized in a
minimum of the LOL (i.e., stationary with respect to the LOL)

FIG. 5. Density plots of the dynamics of a 2D binary soliton
with phase-imprinted velocity along the y direction. Panels, from
top to bottom, refer to the different strengths of the NOL, i.e., V2 =
0.0, −0.05, −0.15, −1.5, −2.0, respectively, while left and right
panels refer to the first and second component, respectively. The
velocity v0 is imprinted by multiplying the stationary BEC com-
ponents by the phase factor exp[−iv0(y − y0)] with v0 = 0.1 and
y0 = 3π . Other parameters are fixed as V1 = −2.0, γ1 = −2.0, γ2 =
0.0, γ12 = −2.0, N1 = 3.5, N2 = 2.5.

moving with constant velocity v0 in the y direction. In this
case, the effective NOL potential has the form

VNOL = V2 cos(2y)|φ(x, ζ (t )|2, (21)

with ζ (t ) = y − v0t denoting the traveling wave coordinate.
Notice that the potential in Eq. (21) is periodic in y (with
period equal to π ) and that while the density profile depends
on time, the sinusoidal factor is independent of t , being related
to the stationary wave that spatially modulates the intraspecies
interaction of the second component via an optically induced
Feshbach resonance.
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FIG. 6. Schematic representation of the NOL effective poten-
tial in Eq. (21) (continuous red lines) and of the density profiles
(dashed blue lines) as functions of y and at t . For simplicity, we
assumed, for the density y section, a solitary wave profile of the
form 1√

2
sech(y − v0t ) and fixed parameters as v0 = 0.5,V2 = −2.5.

Vertical dotted lines show the edges of the periodicity y interval.

As the BEC density moves, the shape of the poten-
tial changes in the periodicity interval y ∈ [−π/2, π/2], as
schematically shown in Fig. 6. We see that at t = 0 (y = 0),
the soliton density is located at the minimum of VNOL (which
has the form of a potential well) and at t = ±π/2v0 (i.e.,
y = ±π/2) it is located at the maximum of VNOL (which has
the form of a potential barrier). In order to move then, the
soliton must have at least the energy necessary to overcome
the potential barriers faced at the edges of the periodicity
interval of VNOL. On the contrary, the localized matter wave
remains trapped inside the NOL effective potential and os-
cillates around its minimum. This bears resemblance to the
Peirls-Nabarro barrier that discrete solitons must overcome in
order to move [30]. In our case, however, the barrier depends
on the dynamics and is self-created by the wave through its
density; for this, we refer to it as dynamical self-trapping
barrier.

As is well known, the effect of the usual Peirls-Nabarro
barrier on discrete solitons is the slowing down of their mo-
tion and eventually their stopping (pinning) at some lattice
site. These behaviors are similar to what we observe in our
numerical experiments (see below). In the presence of attrac-
tive intercomponent interaction, necessary for the binary 2D
soliton to exist, the stopping of the second component implies
the stopping of the first component as well, and therefore
the dynamical self-trapping of the 2D binary soliton. This
qualitatively explains the physical mechanism by which the
DSTP arises in the presence of the NOL [39].

V. DSTP IN EXTERNAL POTENTIALS

Dynamical behaviors similar to the ones of the previous
section are expected for binary BEC solitons put in action
by external potentials. In the absence of the NOL (i.e., with
only the LOL in the x direction), we find (see below) that the
addition of a parabolic trap in the y direction makes the soliton
oscillating around the minimum of the potential, while the
addition of a ramp potential produces a uniform acceleration

FIG. 7. The dynamics of the COM coordinates of a binary soliton
in a parabolic trap β(y − y0 )2, in the absence of the NOL (V2 = 0) for
different initial trap displacements, i.e., y0 = 0.1π, 0.25π, 0.5π , cor-
responding to curves with amplitudes ordered from smaller to larger,
respectively. Other parameters are fixed as β = 0.1, γ1 = −2.0, γ2 =
0, γ12 = −2.0,V1 = −2.0, N1 = 3.5, N2 = 2.5. Note that the COM
curves of the two components are perfectly overlapping.

along the y direction, just as one would expect for ordinary
solitons.

The presence of the NOL in the y direction, however, intro-
duces the possibility of dynamical self-trapping phenomena
intuitively expected when the soliton energy is not enough for
the overcoming of the effective NOL barrier discussed before.
This automatically implies the existence of thresholds in the
parameter space, as demonstrated in the following sections for
the specific cases of parabolic traps and linear ramp potentials.

To show this, we recourse to numerical integration of the
coupled GPE system taking binary solitons obtained from
imaginary-time evolution as initial conditions. The potentials
are applied in all cases along the y direction and the center of
mass of the initial conditions are located at the (x = 0, y = 0)
position in the cross-combined potential. With this setup, the
motion of the binary soliton along the x axis is strongly
confined by the LOL to the x = 0 channel and the dynamics
mainly occurs in the y direction (this is particularly true for
a deep LOL and strong intercomponent interactions). The
dynamics is then investigated in terms of the center of mass
(COM) of the two BEC components defined by

ζ j (t ) =
∫∫ ∞

−∞ y |ψ j |2dxdy∫∫ ∞
−∞ |ψ j |2dxdy

, j = 1, 2. (22)

A. Parabolic trap

A parabolic trap of the form β(y − y0)2, with β and y0

real parameters controlling the strength and the position of
the trap minimum, respectively, is applied to both components
of the binary matter wave. The initial condition is taken as a
stationary binary soliton at the position x = 0, y = 0 obtained
from imaginary time with the trap minimum fixed at y0 = 0.
In order to put the soliton in motion, we shift the trap min-
imum from y0 = 0 to a nonzero value at t = 0 along the y
axis and compute the resulting dynamics from numerical time
integration of the GPE system.

In Fig. 7, we show the dynamics of the COM of the two
BEC components for different values of the initial shift y0 in
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FIG. 8. Same as in Fig. 7, but for V2 = −0.5 and initial displace-
ments y0 = 0.2π, 0.35π, 0.5π .

the absence of the NOL (i.e., with only the LOL acting in the
x direction). We see that in this case the motion of the two
components is perfectly harmonic with the oscillation period
independent of the amplitude. In the presence of the NOL,
however, the situation drastically changes.

As it is seen from Fig. 8, when the strength of the NOL is
small, the binary BEC executes oscillations around the mini-
mum of the harmonic trap, as expected, but the frequency of
the oscillation depends on the amplitude, i.e., the presence of
the NOL introduces anharmonicity. By increasing the strength
of the NOL while keeping all other parameters fixed, a critical
value of V2 appears (i.e., V2cr ≈ −1.075 in Fig. 9) above
which the self-trapping phenomenon occurs. From Fig. 9 we
see that just before the self-trapping transition, the dynamics
strongly deviates from harmonic motion, with the trajectory of
the center of mass of the binary soliton acquiring zigzaglike
profiles.

Note that the oscillations below and above the critical
point have different natures; the first occurs around the

-2.0 -1.6 -1.2 -0.8 -0.4 0.0

V
2

0

10
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30

T

FIG. 10. Period T of the binary soliton vs V2 for 0 < |V2| < |V2cr |
(green stars) and for |V2| > |V2cr | (red circles). Parameters are fixed
as in Fig. 9 for which V2cr ≈ −1.075.

minimum of the parabolic trap (fixed to π/2 in the figure)
and the second occurs around the minimum of the effec-
tive NOL potential at the self-trapping position. In both
cases, however, the two components oscillate together on a
long timescale with their centers of mass practically over-
lapped. As the strength of the NOL is further increased
beyond the transition point, the soliton becomes dynam-
ically self-trapped inside the NOL effective potential. In
Fig. 10, we show the dependence on V2 of the period, T,
of the binary soliton when the oscillation occurs inside the
parabolic trap and inside the effective NOL potential, i.e., for
0 < |V2| < |V2cr | and for |V2| > |V2cr |, respectively. The
above dynamical behaviors can be qualitatively understood in
terms of the NOL potential barrier discussed in the previous
section. When the NOL strength is small compared to the
critical value, the soliton motion can easily overcome the bar-
rier and the resulting oscillation is harmonic but with smaller

FIG. 9. The center-of-mass coordinate of the first (red solid) and the second (blue dashed) components of binary BEC in a parabolic trap
β(y − y0 )2 for different V1,V2 values, indicated in the panels. Other parameters are fixed as γ12 = −2, γ1 = −2.0, γ2 = 0, N1 = 3.5, N2 = 2.5,
β = 0.1, y0 = 0.5π .
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FIG. 11. Density sections at x = 0 of the two components |ψ (0, y)| (solid red lines) and |φ(0, y)| (dashed blue lines) at different instant of
times, t = 0, 15, 20, 23, starting from the left, respectively. The parameter α = 0.155 is just slightly above the critical value αcr = 0.15. Other
parameters are fixed as γ12 = −2.0, γ1 = −2.0, γ2 = 0, V1 = −2.0, V2 = −1, N1 = 3.5, N2 = 2.5.

frequency with respect to the case V2 = 0. The larger oscilla-
tion period observed for |V2| � |V2cr | � 0 can be ascribed to
the slowing down of the soliton during the overcoming of the
barrier. This slowing-down effect increases as V2 approaches
the critical value at which the binary soliton becomes self-
trapped. The oscillations in the self-trapped regime |V2| >

|V2cr | obviously depend on the NOL effective potential at the
position where the self-trapping occurs. As V2 is increased
above the critical value, the amplitudes and periods of these
oscillations decrease, as expected for states localized in strong
trapping potentials. For very large NOL amplitudes, the binary
soliton becomes fully at rest at a position that in the absence
of the NOL, would be of nonequilibrium for a parabolic trap.

B. Linear ramp potential

In this section, we consider a linear ramp potential of
the form α (y − y0), with α, y0 real parameters, mimicking a

FIG. 12. Time evolution of the COM coordinates of the first (red
solid) and the second (blue dashed) components of a binary BEC
in the linear ramp potential α(y − y0 ) with α = αcr = 0.15. Other
parameters are fixed as γ12 = −2.0, γ1 = −2.0, γ2 = 0, V1 = −2.0,
V2 = −1, N1 = 3.5, N2 = 2.5, y0 = 3π . Notice that this parameter
setting is the same as for the point αcr = 0.15 in Fig. 14.

gravitational field acting on both components in the y direc-
tion. The initial conditions are taken as stationary solutions of
the α = 0 case located at the position x0 = 0, y0 = 3π . The
linear ramp potential is switched on at t = 0, and the time
evolution is obtained from direct numerical integrations of the
GPE. Numerical results are displayed in Figs. 11–14.

From Fig. 11, we see that for sufficiently small values
of the strength of the NOL and for V2 = 0 (not shown for
brevity), the binary matter wave is accelerated just as expected
for solitons falling in a gravitational field, with only some
small deformations of the profiles and some tiny emission of
radiation due to the sudden acceleration and switching-on of
the potential. By increasing the strength of the NOL and keep-
ing all other parameter fixed, however, we find that there exists
a critical value of V2 above which the binary soliton instead
of falling under the action of the gravity remains suspended,

FIG. 13. Critical curve in the parameter plane V2, α separating
the falling regime (region above the curve) from the dynamical self-
trapping regime (region below the curve). Other parameters are fixed
as γ1 = −2.0, γ2 = 0, γ12 = −2, V1 = −2.0, N1 = 3.5, N2 = 2.5.
The dependence of αcr to the intercomponent interaction coefficient
γ12. For numerical purposes, we fixed values of different parameters
at γ1 = −2.0, γ2 = 0, V1 = −2.0, V2 = −1, N1 = 3.5, N2 = 2.5.
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FIG. 14. Critical curve in the parameter plane γ12, α separating
the falling regime (region above the curve) from the dynamical
self-trapping regime (region below the curve). Other parameters
are fixed as γ1 = −2.0, γ2 = 0, V1 = −2.0, V2 = −1.0, N1 = 3.5,
N2 = 2.5.

executing oscillations around a fixed position. This is the same
DSTP discussed before for the parabolic case.

The critical thresholds for the falling or the DSTP of the
binary soliton depend on all system parameters and partic-
ularly on the slope of the ramp, the strength of the NOL,
and the intercomponent interaction. In Figs. 13 and 14, we
show curves in the parameter planes (V2, α) and (γ12, α) that
separate the falling regime (region above the curves) from the
dynamical self-trapping regime (region below the curves), for
a specific set of the rest of the parameters, respectively.

From these figures, we see that a stronger gravitational field
(larger slope of the ramp) requires a stronger NOL amplitude
V2 or a larger intercomponent interaction γ12 for the dynami-
cal self- trapping phenomenon to occur. These behaviors can
be easily understood in terms of the dynamical self-trapping
barrier. Indeed, an increase of the ramp’s slope implies a large
energy acquired by the soliton, which, in turn, requires a larger
potential barrier to stop it.

From Eq. (21), it is clear that the effective NOL potential
can be increased either by increasing |V2| (this explains the
curve in Fig. 13) or by increasing the density of the soliton,
which can be achieved by increasing the attractive intercom-
ponent interaction so that the binary soliton becomes more
focused (this explains the curve in Fig. 14).

In closing this section, we remark that in principle, one
could apply the external potentials in the x direction instead
of the y direction. We discard this possibility, however, for
the following two reasons. First, in this setting, there would
be no dynamics in the y direction and therefore no DSTP
would occur. Second, in the ramp potential case, the combined
action with the LOL would lead, in analogy to what happens
in the 1D single-component case (see Ref. [19]), to dynamical
instabilities that would destroy the binary soliton.

VI. DISCUSSION AND CONCLUSIONS

Before closing this paper, we feel compelled to discuss
advantages of 2D cross-combined LOL and NOL settings
and possible practical implications of our results. In general,
for the development of soliton applications, the following is
important: (i) their stability and (ii) their management, i.e.,
the possibility to manipulate their motion.

In a multidimensional setting, the first point is already non-
trivial due to the presence of collapse, delocalization, etc. It is
possible to avoid these adverse phenomena, at least in a region
of nonzero measure in the parameter space, by exposing the
condensate to the action of a 1D LOL (a 2D LOL would also
stabilize the solitons against collapse, but it would limit their
mobility). This is true both for the single-component case, as
demonstrated in Ref. [17], and for binary solitons, as one can
see from the V2 = 0 cases of Figs. 5 and 8. The presence of
a NOL in the y direction, although not strictly necessary for
existence and stability, allows one to satisfy requirement (ii).
Indeed, the control of the DSTP can be used as a tool for
moving or stopping solitons in given positions, as shown in the
examples discussed above. It is remarkable that in our setting,
the management can be done without any physical modifi-
cation of the system, simply by acting on the external laser
fields that control the interactions via the usual (two-body)
or the optically induced (NOL) Feshbach resonances. The
management of the soliton motion is certainly a fundamental
step for experimental and applicative developments.

In conclusion, we have demonstrated, both by variational
analysis and by direct numerical integration of the GPE cou-
pled equations, the existence and stability of 2D binary BEC
mixtures trapped in a cross-combined lattice consisting of a
one-dimensional linear optical lattice in the x direction, for the
first component, and a 1D nonlinear OL in the y direction for
the second component. Dynamical properties of such binary
2D soliton have been investigated both by phase imprint-
ing and by applying additional external potentials along the
constraint direction of the cross-combined OLs. In particular,
we have shown the occurrence of the DSTP that allows one
to hold a soliton at rest in a nonequilibrium position of a
parabolic potential or to prevent a soliton from falling under
the action of gravity. The existence of thresholds in the pa-
rameter space for the occurrence of these phenomena has also
been demonstrated.
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