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The properties of mixed eigenstates in a generic quantum system with a classical counterpart that has
mixed-type phase space, although important to understand several fundamental questions that arise in both
theoretical and experimental studies, are still not clear. Here, following a recent work [Č. Lozej, D. Lukman,
and M. Robnik, Phys. Rev. E 106, 054203 (2022)], we perform an analysis of the features of mixed eigenstates
in a time-dependent Hamiltonian system, the celebrated kicked top model. As a paradigmatic model for studying
quantum chaos, the kicked top model is known to exhibit both classical and quantum chaos. The types of
eigenstates are identified by means of the phase-space overlap index, which is defined as the overlap of the
Husimi function with regular and chaotic regions in classical phase space. We show that the mixed eigenstates
appear due to various tunneling precesses between different phase-space structures, while the regular and chaotic
eigenstates are, respectively, associated with invariant tori and chaotic components in phase space. We examine
how the probability distribution of the phase-space overlap index evolves with increasing system size for different
kicking strengths. In particular, we find that the relative fraction of mixed states exhibits a power-law decay
as the system size increases, indicating that only purely regular and chaotic eigenstates are left in the strict
semiclassical limit. We thus provide further verification of the principle of uniform semiclassical condensation
of Husimi functions and confirm the correctness of the Berry-Robnik picture.

DOI: 10.1103/PhysRevE.108.054217

I. INTRODUCTION

The pivotal role played by the quantum chaos in studying
various important questions in numerous branches of physics
has triggered a great deal of efforts to explore different as-
pects of quantum chaos [1–10]. However, a full understanding
of the properties of the quantum systems associated with
classical mixed-type systems is still lacking. Classically, the
mixed-type systems exhibit both regular and chaotic motion
and result in an intricate hierarchical structure in their phase
space, with regular islands embedded in the chaotic sea [11].
This led Percival to conjecture that the eigenstates in the cor-
responding quantum systems should be of either the regular or
the chaotic type [12]. With further elaboration made by Berry
[13,14], this conjecture finally develops into the so-called
principle of uniform semiclassical condensation (PUSC) of
Wigner functions (or Husimi functions) [15]. For details, see
recent review papers [16,17] and references therein.

According to the PUSC, the eigenstates in a generic quan-
tum system are either condensed on the invariant tori in the
regular islands, referred to as the regular states, or supported
on the chaotic sea, known as the chaotic states, in the ulti-
mate semiclassical limit where the classical action is much
larger than the Planck constant. Consequently, the spectral
statistics for the regular and chaotic states are separately

described by the Poissonian statistics [18] and random matrix
theory [19–21], while the whole spectrum is well captured by
the Berry-Robnik (BR) picture [22]. The validity of the BR
distribution to characterize the spectral statistics in generic
quantum systems has been numerically verified by numerous
works [23–32]. However, in the near semiclassical limit, it is
natural to expect that there should be an intermediate regime
in which many eigenstates will behave as mixed states due
to various tunneling processes between different phase-space
structures. Although the mixed eigenstates exhibit several
important and interesting phenomena, such as chaos-assisted
tunneling [33], which has potential applications in quantum
simulation [34] and can be used to create highly entangled
states [35], much of their properties remain unknown.

Very recently, using the Husimi function [36], the proper-
ties of the mixed states in the lemon billiards [37–41] have
been explored [42]. It was found that the fraction of the mixed
eigenstates shows a power-law decay as the semiclassical
limit is approached. Although the PUSC and the BR distribu-
tion are valid for any systems that have mixed-type classical
phase space, the answer to the question of how the fraction
of the mixed eigenstates varies with approaching the semi-
classical limit in time-periodic systems remains unknown. In
the present work, we continue and extend previous study to
provide a detailed investigation of the signatures of the mixed
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states in a time-periodic system, i.e., the kicked top model
[43], a paradigmatic model in the study of quantum chaos
[3], which has been realized in a variety of experimental
platforms, such as cold atoms [44], superconducting circuits
[45], and nuclear magnetic resonance simulators [46]. As the
kicked top model exhibits a transition from the regular regime
to the chaotic one with increasing kicking strength [3,43],
it therefore provides us with a model system to analyze the
features of the mixed states in time-periodic systems.

Following the method used in Ref. [42], the mixed states
are identified by the phase-space overlap index defined
through the Husimi functions of the eigenstates. We show that
the probability distribution of the phase-space overlap index
has a double-peak shape and bears a remarkable change as the
semiclassical limit is approached (namely, by increasing the
system size). More insights about the properties of the mixed
states are gained from the dependence of their proportion on
the system size. We demonstrate that the proportion of mixed
states which belong to a certain interval of the phase-space
overlap index follows a power-law decay with increasing
system size. This confirms the disappearance of the relative
fraction of the mixed states in the semiclassical limit, as un-
veiled in lemon billiards and in consistence with the PUSC. It
further verifies the correctness of the Berry-Robnik picture for
describing the spectral statistics in generic quantum systems.

The structure of the article is the following. In Sec. II, we
introduce the kicked top model and analyze the integrability-
chaos transition for classical and quantum cases by means
of the largest Lyapunov exponent and Kolmogorov-Sinai
entropy, as well as the spectral statistics, respectively. In ad-
dition, the definition and calculation of the Husimi function
for an individual eigenstate are also discussed in this section.
Then, in Sec. III, we perform an explicit analysis of the prob-
ability distribution of the phase-space overlap index, showing
how it evolves with increasing system size. In this section, we
further examine the dependence of the proportion of mixed
states on the system size. We finally conclude in Sec. IV with
several remarks.

II. KICKED TOP MODEL

The model we study is the kicked top model, which is a
time-dependent system with the Hamiltonian given by (setting
h̄ = 1) [43]

H = αJx + γ

2 j
J2

z

+∞∑
n=−∞

δ(t − n), (1)

where Jν , with ν = x, y, and z, are the angular momentum
operators of the total spin j system. α denotes the angle of
the precession around the x axis, and γ is the strength of
the kicking with a period that we have set to unity. It is
worth pointing out that the dependence of both quantum and
classical dynamics of the model on the value of α has been
investigated in our previous work [47]. Here, we have numer-
ically verified that our main results, namely, the statistics of
the phase-space overlap index and the power-law decay of the
fraction of the mixed eigenstates as a function of the system
size, are independent of the specific value of α. We thus set
α = 11π/19 throughout this work.

The dynamical evolution under the above Hamiltonian is
governed by the Floquet operator

F = e−i γ

2 j J2
z e−iαJx . (2)

One can easily find that the Hamiltonian (1) conserves the
total spin j. Hence, the Hilbert space of the system has the
dimension DH = 2 j + 1. In our numerical calculation, the
basis for the Hilbert space is the Dicke states, {| j, m〉}m=+ j

m=− j ,
satisfying Jz| j, m〉 = m| j, m〉 and J2| j, m〉 = j( j + 1)| j, m〉,
with J2 = J2

x + J2
y + J2

z . Then, the elements of the Floquet
operator are

〈 j, m|F | j, m′〉 = exp

(
−i

γ

2 j
m2

)
Wmm′ , (3)

where Wmm′ is the Winger D function [48] and can be calcu-
lated as

Wmm′ = 〈 j, m|e−iαJx | j, m′〉

=
kx=+ j∑
kx=− j

e−iαkx 〈 j, m| j, kx〉〈 j, kx| j, m′〉, (4)

with | j, kx〉 representing the eigenstates of Jx, so that
Jx| j, kx〉 = kx| j, kx〉.

The time evolution of the angular momentum is given
by the map Jν (n + 1) = F †Jν (n)F , which can be explicitly
written as [43,49,50]

Jx(n + 1) = 1

2
{Jx(n) + i�n(α)} exp

[
i
γ

2 j
�n(α)

]
+ H.c.,

Jy(n + 1) = 1

2i
{Jx(n) + i�n(α)} exp

[
i
γ

2 j
�n(α)

]
+ H.c.,

Jz(n + 1) = Jy(n) sin α + Jz(n) cos α, (5)

where �n(α) = Jy(n) cos α − Jz(n) sin α and �n(α) =
2[Jy(n) sin α + Jz(n) cos α] + 1. A detailed derivation of
the above equations can also be found in Appendix of
Ref. [51].

A. Classical kicked top model

The classical counterpart of the kicked top model is ob-
tained by taking the classical limit j → ∞, which means that
one can define an effective Planck constant as h̄eff = 1/ j. To
obtain the classical equations of motion of the kicked top
model, we first introduce the normalized vector X = 〈J〉/ j,
which becomes a classical vector when j → ∞. Then, as
the expectation value of the products of the evolved angular
momentum operators in Eq. (5) can be factorized as 〈JμJν〉 =
〈Jμ〉〈Jν〉 in the classical limit, it is straightforward to show
that the classical map for the classical vector X takes the form
[50,52]⎡⎣Xn+1

Yn+1

Zn+1

⎤⎦=
⎡⎣cos 	n − cos α sin 	n sin α sin 	n

sin 	n cos α cos 	n − sin α cos 	n

0 sin α cos α

⎤⎦⎡⎣Xn

Yn

Zn

⎤⎦,

(6)

where 	n = γ (Yn sin α + Zn cos α). The normalization of X al-
lows us to parametrize it as X = (cos φ sin θ,sin φ sin θ,cos θ ),
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FIG. 1. (a) Classical phase-space portraits with 225 random initial conditions for (from left to right) γ = 0.2, 2, 4, and 6. Each initial
condition has been evolved for 400 kicks. (b) The largest Lyapunov exponent λm of the classical kicked top model for the same values of γ

as in panel (a). The largest Lyapunov exponent has been calculated on a grid of 300 × 300 initial conditions; each has a duration of 1 × 104

kicks. Other parameter: α = 11π/19.

with θ and φ being the azimuthal and polar angles, respec-
tively. Hence, the classical phase space can be described by
the variables φ = arctan(Y/X ) and θ = arccos(Z ).

It is known that the classical map in Eq. (6) undergoes
a transition from integrability to chaos with increasing the
kicking strength γ . This is demonstrated in Fig. 1(a), where
we plot the Poincaré section of the classical top model for dif-
ferent γ values. It can be clearly seen that the classical phase
space is dominated by regular orbits for small γ and turns
into the mixed dynamics with regular islands embedded in the
chaotic sea as γ is increased. The regular islands disappear
for even larger γ and the phase space is fully covered by the
chaotic sea, as shown in the right-most column of Fig. 1(a).

To quantitatively capture the chaotic transition illustrated
in Fig. 1(a), we consider the largest Lyapunov exponent,
which describes the rate of the deviation between two initially
nearby close orbits and can be calculated as [11,52]

λm = lim
t→∞

1

t

t∑
n=1

ln dn, (7)

where dn = [(δXn)2 + (δYn)2 + (δZn)2]1/2 is the phase-space
distance between two initially nearby points after n kicks.
Here, δX is determined by the tangent map [52], and δXn+1 =
[∂Xn+1/∂Xn]δXn, with the initial condition δX0. Moreover,
we renormalize dn at each step n in our calculation. As the
largest Lyapunov exponent quantifies how two infinitesimal
orbits separate with time, it therefore acts as a measure of the
level of chaos. For the regular regions in the phase space, we
have λm = 0, while λm > 0 for the chaotic component.

Figure 1(b) plots the largest Lyapunov exponent for the
same values of γ as in Fig. 1(a). A remarkable resemblance
between Figs. 1(a) and 1(b) can be obviously observed.
Specifically, the very tiny λm at small γ is in agreement with

the regular dynamics, as seen in the first column of Fig. 1. For
the mixed phase space, one can see that the λm = 0 regions
are clearly corresponding to the regular regions in the phase
space, while the chaotic regions are marked by λm > 0, as
demonstrated in the second and third columns of Fig. 1. The
globally chaotic dynamics at γ = 6 results in the larger values
and an almost uniform distribution of the largest Lyapunov
exponent in the phase space (see the last column of Fig. 1). In
particular, the largest Lyapunov exponent can help us identify
the invisible regular islands in the Poincaré section.

Further characterizations of the integrability-chaos transi-
tion in the classical kicked top model are revealed by the
Kolmogorov-Sinai (KS) entropy, which is, generally speak-
ing, related to the rate of change of the coarse-grained Gibbs
entropy with time [53] and for the kicked top model is calcu-
lated as [11,54]

SKS = 1

4π

∫
λmdA, (8)

where dA = sin θdθdφ is the phase-space area element [55].
Figure 2(a) shows how the KS entropy SKS varies with in-
creasing γ . The value of SKS remains 0 for γ � 2 and begins
to grow at γ > 2. This means that the model undergoes a
chaotic transition around γ = 2 and the degree of chaoticity
is enhanced with increasing γ , in accord with the phase-space
features shown in Fig. 1(a). Here, we would like to point out
that the plateau in the behavior of SKS around γ ≈ 6 is due
to the existence of tiny regular regions in the classical phase
space [see the last panel in Fig. 1(b)].

B. Quantum chaos in kicked top model

The onset of chaos in the classical kicked top model gets
reflected in its quantum counterpart, resulting in the quantum
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FIG. 2. (a) Kolmogorov-Sinai (KS) entropy, SKS, as a function
of kicking strength γ . SKS is obtained by averaging over 90 000
initial points in the phase space, each evolved for 1 × 104 kicks.
(b) Variation of the rescaled average level spacing ratio with γ for
j = 2500. The upper and lower red dashed lines denote 〈̃r〉 = 1 and
0, respectively. Other parameter: α = 11π/19.

chaos. There are many different ways to diagnose the presence
of quantum chaos [56–62]. Among them, the statistics of
the spacings s between consecutive energy levels is the most
commonly used probe. The distribution of s in the chaotic
systems is well described by the Wigner surmise [19,20],
whereas the regular systems are generically characterized by
the Poisson distribution [18,63]. Here, instead of analyzing
the level spacing distribution, we focus on the spacing ratio
for three successive levels, first introduced in Ref. [64]. The
big advantage to consider the level spacing ratios rather than
the level spacings themselves is that it avoids the intricate
unfolding procedure. As a consequence, it becomes the most
popular chaos indicator in various studies [9,51,65–73], in
particular. for many-body quantum systems.

For the time-dependent Hamiltonian, such as our studied
model, the level spacing ratios are defined as

rn = min

(
sn

sn−1
,

sn−1

sn

)
, (9)

where sn = νn − νn−1, with νn being the nth quasienergy
(eigenphase) of the Floquet operator in Eq. (2). Clearly, r is
defined in the range 0 � r � 1. The distribution P(r) of r
for both integrable and chaotic systems has been analytically
derived [65,74], from which one can find that the mean level
spacing ratio, 〈r〉 = ∫ 1

0 rP(r)dr, behaves as an efficient detec-
tor of quantum chaos. For integrable systems, one has 〈r〉RG =
2 ln 2 − 1 ≈ 0.386 [65], while 〈r〉COE ≈ 0.527 [66,67] for the
fully chaotic systems belonging to the circular orthogonal
ensemble (COE), which describes the systems with antisym-
metry. It is known that the Floquet operator of the kicked top
model satisfies [43,75]

T FT −1 = F, (10)

where T = e−αJx eiπJyT0, with T0 being the conventional time-
reversal operator, so that T0JT −1

0 = −J. One can therefore
expect that the statistics of the eigenphases of F must be given
by COE [43,66]. As a result, the mean level spacing ratio of
the kicked top model should equal to 〈r〉COE for γ � 5.

A more convenient quantity that is used to detect the
crossover from integrability to quantum chaos is the rescaled
mean level spacing ratio [51,76], defined as

〈̃r〉 = |〈r〉 − 〈r〉RG|
〈r〉COE − 〈r〉RG

. (11)

It varies in the interval 〈̃r〉 ∈ [0, 1]. When 〈̃r〉 = 0, it indicates
the regular dynamics in the system. On the contrary, the fully
chaotic dynamics in the system leads to 〈̃r〉 = 1. In Fig. 2(b),
we display how 〈̃r〉 evolves as a function of γ . We can see that
the transition of 〈̃r〉 from a value close to 0 to a value around
1 confirms the onset of chaos as γ is increased. Moreover,
the agreement between the onset of chaos in SKS and 〈̃r〉 at
γ ≈ 2 further corroborates a good quantum-classical corre-
spondence.

C. Husimi function

Our aim is to explore the properties of the eigenstates in
a quantum system with mixed phase space in the classical
limit. It is therefore required to identify the various types
of the eigenstates. As in previous works [17,77–80], we use
the Husimi function [36] to characterize the signatures of the
eigenstates in classical phase space.

The Husimi function can unveil various aspects of the
eigenstates exhibited in the phase space, in particular, their
localization properties [42,51,81–85]. To define the Husimi
function for the kicked top model, we first introduce the gener-
alized SU(2) spin-coherent states, defined as a rotation of the
Dicke state | j, j〉, which can be explicitly written as [86–88]

|φ, θ〉 = eiθ (Jx sin φ−Jy cos φ)| j, j〉

=
+ j∑

m=− j

ξ j−m

(1 + |ξ |2) j

√
(2 j)!

( j + m)!( j − m)!
| j, m〉, (12)

where ξ = tan(θ/2)eiφ with φ ∈ [−π, π ) and θ ∈ [0, π ]. The
overcompleteness of the coherent states results in the follow-
ing closure relation:

I = 2 j + 1

4π

∫
|φ, θ〉〈φ, θ | sin θdθdφ. (13)

Then the Husimi function for the nth eignestate, |νn〉, of F in
Eq. (2) is given by

Qn(φ, θ ) = |〈θ, φ|νn〉|2, (14)

with the normalization condition
2 j + 1

4π

∫
Qn(φ, θ ) sin θdθdφ = 1. (15)

The principle of uniform semiclassical condensation of the
Wigner and Husimi functions predicts that the Husimi func-
tions will condense either on the classically invariant torus or
the chaotic regions in the semiclassical limit. However, before
the semiclassical limit is reached in practice, one expects that
there should exist mixed eigenstates with associated Husimi
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functions occupying both regular and chaotic regions. In the
following section, we identify these mixed states by means of
the phase-space overlap index and discuss how their relative
fraction varies as the semiclassical limit is approached. We
demonstrate that it decays as a power law.

III. PHASE-SPACE OVERLAP INDEX

Armed with the Husimi function, let us discuss how to
identify the types of the eigenstates using the approach that
has been performed in Refs. [42,77,79]. We divide the clas-
sical phase space (φ, θ ) into a grid with cells of equal area.
Each cell is marked by its center point with the index (i, j).
We then define a discrete quantity Ci j , which takes the value
+1 if the grid point (i, j) resides in the chaotic regions
and −1 otherwise. Accordingly, the Husimi function of the
nth eigenstate is discretized on the grid and normalized as
[(2 j + 1)π/(2N )]

∑
i, j sin θ jQn(φi, θ j ) = 1, with N being the

number of grid points. In our calculation, we construct and
generate the chaotic region through a single sufficiently long
and dense chaotic orbit. To this end, we randomly choose an
initial condition in the chaotic region and evolve it for 106

kicks. Consequently, all regular regions and possibly smaller
chaotic regions are included in the complement. As these
smaller chaotic regions are so tiny, they can be neglected and
considered as a part of regular region.

To elucidate whether the nth eigenstate is the regular or the
chaotic eigenstate, we define an overlap index:

Mn = (2 j + 1)π

2N

∑
i, j

sin θ jQn(φi, θ j )Ci j . (16)

In the ultimate semiclassical limit, one can expect that M
should take the value either −1 or +1, corresponding to the
regular or chaotic eigenstates, respectively. However, since the
semiclassical limit is not yet reached in practice, M actually
varies between −1 and +1. Hence, it is natural to ask what is
the distribution of M and how it changes as the semiclassical
limit is approached.

Previously, the joint distribution of M and the phase-space
localization measures have been analyzed in the billiard sys-
tems and it was found that the distribution of M turns into
a double-peak distribution when approaching the semiclas-
sical limit [42]. In addition, approaching the semiclassical
limit also led to a power-law decay of the proportion of the
mixed states with intermediate values of M. In the following
of this section, we address the abovementioned questions in
the kicked top model and provide further evidence of the
power-law decay exhibited by the fraction of the mixed states
in the semiclassical limit. In this work, the grid that we used
has 200 × 400 points, so that N = 8 × 104. Surely, at the
given j we must have a sufficiently large number of grid
points to warrant a correct resolution of the mixed states. We
have checked that our main conclusions still hold for further
increasing N . Obviously, the larger the system size j is, the
larger the total number of grid points that is required.

Let us first consider the probability distribution of M,
which is defined as

P(M ∈ �n) = 1

DH

∑
Mk∈�n

δM,Mk , (17)

where �n = [Mn, Mn + dM] and DH = 2 j + 1 is the Hilbert
space dimension. P(M ) quantifies the probability of finding
M in an infinitesimal interval M ∈ �n.

In Fig. 3(a), we show the histogram of P(M ) for the kicked
top model with j ∈ [150, 154], γ = 2.6, and α = 11π/19.
Clearly, P(M ) behaves as a continuous distribution over the
range M ∈ [−1, 1] and has two expected sharp clusters around
M = −1 and M = +1, corresponding to regular and chaotic
eigenstates, respectively. The existence of the intermediate
values of M indicates that apart from the regular and chaotic
eigenstates, there also exist many mixed eigenstates. To see
this, we plot the Husimi function for several eigenstates with
different M values in Figs. 3(c) and 3(d). Comparing to the
classical Poincaré section in Fig. 3(b), one can see that the
regular eigenstate with M = −1 is entirely localized in the
regular island [Fig. 3(c)], while the chaotic eigenstate with
M = +1 exhibits a quite uniform distribution over the chaotic
sea, as illustrated in Fig. 3(f). For the eigenstates with inter-
mediate values of M, we see the tunneling between different
regular island chains [cf. Fig. 3(d)], as well as between the
regular region and chaotic component, as demonstrated in
Fig. 3(e).

Further properties of P(M ) are revealed in Fig. 4, where
we plot P(M ) for several system size ensembles with different
kicking strengths. Based on these results we make the follow-
ing observations.

(i) As the semiclassical limit is approached with increas-
ing j, the larger the value of j is, the more the eigenstates
move towards the regular or chaotic clusters, regardless of the
γ value.

(ii) The fluctuations among the intermediate values of M
are suppressed as the system size j is increased.

(iii) Increasing γ leads to an enhancement in the level of
chaos, resulting in P(M ) exhibiting a high peak around M = 1
and tiny fluctuations for −1 < M < 1.

The evolution of P(M ) observed in Fig. 4 allows us to
conclude that the relative fraction of the mixed eigenstates
decreases with increasing system size. To verify this statement
and to quantitatively characterize the behaviors observed in
Fig. 4, we investigate how the proportion of the mixed states
varies as a function of the system size j. To this end, we
choose an interval �M in the range −1 < M < 1 and consider
the relative fraction of the mixed states belonging to �M,
defined as

fmix = N�M
mix

DH
, (18)

where N�M
mix is the total number of the mixed states in �M and

DH = 2 j + 1 denotes the Hilbert space dimension.
In Fig. 5, we plot how fmix evolves as a function of the

ensemble-averaged system size 〈 j〉 for different γ and �M
values. Overall, we see that irrespective of the values of γ and
�M, the decay of fmix with increasing 〈 j〉 is well described by
the power law of the form fmix ∼ 〈 j〉−ζ . However, the decay
rate ζ depends on both γ and �M. Besides, when we compare
the y-axis scale in Fig. 5(a) with Fig. 5(b), we observe that
fmix undergoes a drastic decrease as γ is increased, consistent
with the results in Fig. 4. Clearly, with γ increasing the chaos
increases and thus the number of mixed states decreases as
well. Furthermore, due to the larger fluctuations in P(M ) for
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FIG. 3. (a) Histogram of the probability distribution P(M ) for the kicked top model with γ = 2.6. The histogram is obtained for the
eigenstates of the system with sizes j ∈ [150, 154], increasing in steps of 1. (b) Poincaré section of the kicked top model for γ = 2.6. (c)–(f)
Husimi functions for the eigenstates n = 5, Mn = −1 (c); n = 36, Mn = −0.5161 (d); n = 10, Mn = 0.3075 (e); and n = 264, Mn = 0.9744
(f), with j = 150 and γ = 2.6. Other parameter: α = 11π/19.

small �M, the degree of agreement between the numerical
data and the power-law decay decreases with decreasing �M.
But, as the fluctuations in P(M ) reduce with increasing system
size, one can expect a substantial improvement in the quality
of the power-law fitting for larger system sizes. Moreover,
a careful numerical check has confirmed that the power-law

decay of fmix with respect to the system size is independent of
the size of �M and the position of the interval. However, we
can expect that different choices of intervals and �M should
affect the decay exponent ζ .

Let us discuss the dependence of the decay exponent
ζ on the different choices of intervals with �M = 0.4.

FIG. 4. (a)–(c) Histograms of P(M ) for different ensembles of the system size: (a) j ∈ [200, 204], (b) j ∈ [300, 304], and (c)
j ∈ [400, 404]. The kicking strength is γ = 2.3. (d)–(f) Histograms of P(M ) for the same system size ensembles as in panels (a)–(c) with
γ = 2.6. Other parameter: α = 11π/19. The system size j in each ensemble is increased in steps of 1.
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FIG. 5. (a) Proportion of mixed states fmix as a function of
ensemble-averaged system size 〈 j〉 for the eigenstates with M ∈
[−0.8, 0.6] (squares) and M ∈ [−0.5, 0.6] (triangles). The pink and
cyan dot-dashed lines denote the fitting curves of the power law
fmix ∝ 〈 j〉−ζ , with ζ = 0.3184 and ζ = 0.3253, respectively. The
kicking strength for this case is γ = 2.3. (b) fmix as a function of
〈 j〉 for M ∈ [−0.8, 0.7] (circles) and M ∈ [−0.2, 0.2] (diamonds)
with γ = 2.6. The blue and red dashed lines are the power-law
fitting curves, fmix ∝ 〈 j〉−ζ , with ζ = 0.2986 and ζ = 0.2561. Other
parameter: α = 11π/19. The system size ensemble for each 〈 j〉 is
given by j ∈ [〈 j〉 − 5, 〈 j〉 + 5], increasing in steps of 1.

The results for two different kicking strengths are plotted
in Fig. 6. A prominent feature observed in the behavior
of ζ is its larger fluctuations, regardless of the kicking
strength. This stems from the fact that fluctuations in P(M )
vary with the choice of intervals, as seen in Fig. 4. However,
the enhancement of the degree of chaoticity with increasing γ

gives rise to a remarkable decrease of the fluctuations in the
behavior of ζ . Moreover, as P(M ) becomes more smooth as

FIG. 6. Power-law decay exponent ζ for M ∈ [M + �M], with
�M = 0.4. The curves correspond to different kicking strengths.
Other parameter: α = 11π/19.

the system size increases, one can expect that the fluctuations
in ζ will be suppressed for larger system sizes. Note that
the behavior of ζ studied here is distinguished from the one
revealed in billiard systems, where ζ exhibits a rather smooth
dependence on the value of M for fixed �M [42].

The power-law decay of the proportion of mixed states
has also been observed in billiards, but the decay exponent
is different from our considered model [42]. A general under-
standing of the underlying mechanism of such a difference
suggests the need for further exploration. Nevertheless, the
similar decay behavior exhibited by the two different systems
leads us to conjecture that the power-law decay is a universal
property of the relative fraction of the mixed states, inde-
pendent of any specific system. A theoretical investigation
of the decay behavior of the relative fraction of mixed states
would be a very interesting topic for our future work. Here,
we would like to point out that a detailed analysis of the tun-
neling [89–92] and flooding [93,94] effects in mixed quantum
systems is necessary to obtain a better understanding of the
properties of the mixed eigenstates in the semiclassical limit.

IV. CONCLUSIONS

In summary, we have performed a detailed analysis of the
properties of the mixed states in the kicked top model. Being
a prototype model for studying quantum chaos, the kicked
top model is known for exhibiting a transition to chaos for
both classical and quantum cases [3] which is unveiled by
various chaos indicators and shows a good quantum-classical
correspondence between them. For chosen values of kicking
strength, the classical phase space of the kicked top model
exhibits a complex structure with several regular islands co-
existing with a dominating uniform chaotic component. This
indicates that the eigenstates of the analogous quantum coun-
terpart should also have different types of behavior.

To identify the types of the eigenstates, we employ the
Husimi function to define the phase-space overlap index M,
which measures the degree of overlap of the Husimi function
with chaotic and regular regions in the classical phase space.
The definition of M implies that it will ideally take the value
+1 for fully chaotic eigenstates, while for purely regular
eigenstates it equals −1. However, we have shown that it
varies between −1 and +1 in the near semiclassical limit with
−1 < M < 1 corresponding to the mixed states characterized
by various tunneling processes among different phase-space
structures.

Further features of the mixed states are revealed by
the probability distribution of M. We have demonstrated
that the distribution of M has two peaks at M = ±1,
which become more sharp with increasing system size (i.e.,
approaching the semiclassical limit), agreeing with the pre-
diction of the principle of uniform semiclassical condensation
(PUSC) of Wigner functions (or Husimi functions) [16,17]. A
quantitative description of the signatures exhibited by the
probability distribution of M is provided by the proportion
of the mixed states with associated M belonging to a given
interval. We have shown that the dependence of the proportion
of the mixed states on the system size is well captured by the
power-law decay whose exponent varies for different choices
of the interval and kicking strengths. Therefore, one can
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expect that the relative fraction of the mixed states will dis-
appear in the far semiclassical limit, confirming the statement
of the PUSC.

The same power-law decay of the proportion of mixed
states observed in billiards [42] allows us to conjecture that
the proportion of mixed states in other mixed-type systems
should also decay as a power law in the semiclassical limit.
A natural extension of the present work is to systematically
study the properties of mixed states in quantum systems
with a well-defined classical limit, such as the Dicke model
[81,83,95–99], the coupled top model [100,101], and the
three-site Bose-Hubbard model [102–104]. Another open
topic that deserves investigation is to establish a general theo-
retical understanding of the power-law decay demonstrated by

mixed states. Finally, it is worth pointing out that confirmation
of the PUSC in the kicked top model provides further evidence
of the correctness of the Berry-Robnik picture in the analysis
of spectral statistics of generic quantum systems.
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