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Supratransmission phenomenon in a Fermi-Pasta-Ulam diatomic lattice

Christian Simadji Ngamou,* Frank Thomas Ndjomatchoua ,† Michael Mekontchou Foudjio ,‡

Carlos Lawrence Gninzanlong ,§ and Clément Tchawoua‖
Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon

(Received 19 December 2022; revised 15 May 2023; accepted 23 October 2023; published 17 November 2023)

The nonlinear supratransmission phenomenon in a Fermi-Pasta-Ulam (FPU) diatomic lattice with two
forbidden bands is investigated. Using a decoupling ansatz for the motion of the two different sublattices
combined with the continuum (quasidiscrete) approximation, we derived analytically the threshold amplitudes
of supratransmission occurrence when a sinusoidal driving with frequency in the upper forbidden band (lower
forbidden band gap between acoustic and optical modes) is applied at one end. The resulting estimate of the
threshold of a lattice with a first heavy particle is different to the one obtained from a lattice with a first light
particle, showing the influence of the driven particle and giving also the possibility to have two thresholds
on each forbidden gap of a diatomic lattice by switching the order of light (m) and heavy (M) masses. In
the lower forbidden band, the dependence of the supratransmission threshold on the mass ratio (μ = m/M)
has been evidenced and it appears that for large (small) values of μ, that is μ > 60%, the coupling between
the two modes must (must not) be considered. Numerical explorations were subsequently performed with an
emphasis on the dependence of the threshold on the driving frequency and also on the mass of the driven particle
(light or heavy). A good agreement is found between the numerical and analytical thresholds. For the limit
case where all the masses are identical, the results of the monoatomic FPU previously found in the literature
are recovered.
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I. INTRODUCTION

The study of spatially periodic structures is an emerging
discipline that lies at the crossroads of vibration and acous-
tics engineering and condensed matter physics [1–3]. Such
structures exhibit rich dynamic characteristics, contributing to
their diverse applications in a wide range of physical systems,
including phononic crystals and acoustic metamaterials [1], as
well as photonic lattice materials [4]. Although most systems
encountered in nature are monoatomic [1,4,5], a complex
setup with more than one elementary constituent in the unit
cell can also form lattice structures. Granular crystals [6,7],
chains of coupled pendulums [8] and electrical transmission
lines [9–11] are illustrative cases for diatomic lattices.

Since the celebrated Fermi-Pasta-Ulam (FPU) first numer-
ical experiment in 1954 [12], anharmonic oscillator chains
have become powerful tools in dealing with both fundamental
aspects of statistical physics and nonlinear wave phenomena
[13], at the same time serving as the simplest prototypes
for extremely complex condensed matter systems [13]. The
diatomic version of the FPU model will be used as the core
model of this study.
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For motions with small amplitudes (linear operating
range), the dynamic response of periodic structures is very
well understood [14]. The wave-filtering properties of one-
dimensional periodic structures are of paramount relevance
in engineering applications: for an exactly periodic structure
with no damping, the structure behaves as a frequency filter.
Waves with frequency components within particular intervals
(known as pass bands) travel through the structure unattenu-
ated, whereas all other frequency components in the forbidden
band gap are spatially attenuated as they propagate through
the structure. For a diatomic lattice, the phonon spectrum
of the system consists of two branches (acoustic and optical
ones), induced by the mass or force-constant difference of two
kinds of particles [14]. Due to nonlinearity, gap modes may
appear as localized excitations with the vibrating frequency
falling within the prohibited frequency range of the linear
spectrum [6,15–17].

More interestingly, it was demonstrated that nonlinear
chains sinusoidally driven at their boundaries can prop-
agate energy in the forbidden frequency band gap [18].
In this case, energy transmission occurs above a precise
(frequency-dependent) threshold amplitude and occurs in the
form of nonlinear localized modes (gap solitons) [18]. The
phenomenon occurs in diverse physical systems such as me-
chanical [18], electrical [19], and optical lattices [20] (just to
mention a few).

Supratransmission has been observed in a variety of com-
plex spatially discrete structures, including disordered [21],
structures with on-site potential [22,23], two-dimensional
[24], and transversally coupled [25–27] lattices. Surprisingly,
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supratransmission in diatomic anharmonic one-dimensional
systems is rarely studied (but see Refs. [28,29]), despite the
fact that realistic diatomic models have a wide range of ap-
plications [6–11]. In the present study, we aim to extend the
monoatomic studies of supratransmission on the FPU lattice
[30,31] and consider a diatomic version that exhibits two
modes (acoustic and optical) and two forbidden frequency
band gaps.

Due to the complexity of the system, methods based on an
asymptotic solution obtained by decoupling ansatz [32–36],
and quasidiscrete approximation [37] which provides an accu-
rate nonlinear supratransmission threshold (NST) prediction
are used here. These methods are restricted to neither the spe-
cific case of second harmonic generation nor to the quadratic
nature of the nonlinearity [32–36]. Moreover, they can be
applied to a wide class of nonintegrable discrete nonlinear sys-
tems since they do not require known analytical expressions
for their solutions. These methods thus furnishe a practical
tool highly interesting for further applications in any mul-
tiatomic system.

To achieve the objectives of this study, the Sec. II is de-
voted to description of the dynamics of particles under the
nonlinear potential and the derivation of analytical threshold
of supratransmission. Section III explores numerically the
phenomenon and the case of a lattice with the lighter particle
at the first range; the results are discussed in Sec. IV, and a
conclusion is presented in Sec. V.

II. THE MODEL

The model under consideration is a Fermi-Pasta-Ulam
(FPU) diatomic chain, where the light and heavy particles
have, respectively, the mass m and M (m < M). The Hamil-
tonian function of the system is given by

H =
∑

j

[
1

2
M j

(
du j

dt

)2

+ φ(u j+1 − u j )

]
, (1)

where φ(r) = 1
2 K2r2 + 1

4 K4r4, K2, and K4 are positive con-
stants representing harmonic and quartic potentials, respec-
tively, u j is the displacement from the equilibrium position of
the jth particle with the mass M j = Mδ j,2l + mδ j,2l+1 (δ j,s

is the Kronecker’s δ which has the values 0 for j �= s and 1
otherwise; l is an integer) and uj = Vjδ j,2l + Wjδ j,2l+1. The
derived equations of motion of the light and heavy particles
are given by

V̈n = J2(Wn + Wn−1 − 2Vn)

+ J4[(Wn − Vn)3 − (Vn − Wn−1)3], (2)

Ẅn = I2(Vn+1 + Vn − 2Wn)

+ I4[(Vn+1 − Wn)3 − (Wn − Vn)3], (3)

where I2 = K2/m, J2 = K2/M, I4 = K4/m, and J4 = K4/M.
Taking the linear form of Eqs. (2) and (3) and seeking plane

wave solutions under the form Vn(t ) = V0 exp[i(2knD − ωt )]
and Wn(t ) = W0 exp[i(2knD − ωt )], where i2 = −1, k being
the wave vector and ω the phonon frequency; the estimated
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FIG. 1. Linear dispersion relation. Blue and red curves represent
acoustic and optical modes respectively; K2 = 1, K4 = 1, m = 0.1,
M = 0.18.

linear dispersion law is

ω±(k) =
√

I2(1 + μ) ± I2

√
2μ cos(2kD) + 1 + μ2, (4)

where μ = m/M.
The minus (plus) sign corresponds to the acoustic (opti-

cal) modes [14] and D is the lattice spacing. Equation (4)
is represented in Fig. 1. The two forbidden bands gaps,
between acoustic and optical modes (dark gray band: ω ∈
]ω−max, ω+min[), and above the optical mode (light gray band:
ω ∈]ω+max,+∞[), are displayed in Fig. 1. Here, ω−max =√

2J2, ω+min = √
2I2, and ω+max = √

2I2(1 + μ). When the
driving frequency lies inside the forbidden bands, the wave
is expected to decay [14], whereas, in a nonlinear lattice,
when the driving amplitude is greater than a certain value,
the wave can persist [18–21,24–26,28,29]. Our purpose is
to prove the existence of this values through analytical and
numerical means for the diatomic β-FPU lattice.

A. Supratransmission threshold in upper forbidden band

The upper forbidden band is bounded on the top at k = 0,
and thus the long wave-length limit can be considered. In this
consideration, and with the slowly varying envelope hypothe-
sis (in space and time), the approximations x = 2nD, un(t ) =
u(x, t ), un±1(t ) = u(x ± 2D, t ) are assumed. However, due
to the different nature of particles of the two sublattices
which impose a discontinuity to the overall movement, the
continuum limit is applied only to each type of particles sep-
arately. In this configuration, the Taylor series expansion of
u(x ± 2D, t ) is given by

u(x ± 2D, t ) =
4∑

l=1

(±2D)l

l!
∂ l

xu(x, t ) + O
(
D5

)
. (5)

By using the decoupling ansatz method [33,36] we can
approximate W as

W = λ j

[
V +

4∑
l=1

bl, j
Dl

l!
∂ l

xV

]
+ O(D5), (6)

054216-2



SUPRATRANSMISSION PHENOMENON IN A … PHYSICAL REVIEW E 108, 054216 (2023)

where ∂xV = ∂V/∂x = Vx; λ j , bl, j are constants which are
determined by replacing Eq. (5) in Eqs. (2) and (3) and there-
after inserting into the resulting equations the expression of W
given by Eq. (6).

The two resulting equations should be identical and being
so, we obtain two possible values for λ j namely: λ1 = 1
and λ2 = −1/μ, corresponding to acoustic and optical mode
respectively, and as in Refs. [33,36] the value of the coeffi-
cients b j for each mode. For the optical mode (λ = −1/μ)
which is of interest in this subsection, terms up to O(D3) are
considered, and the coefficients are given by

b1 = 1, b2 = 2μ

1 + μ
, b3 = b4 = 0. (7)

In the forbidden bands, there are two different behaviors of
vibrating particles, depending on the proximity of the driving
frequency with the acoustic or the optical mode: when the
driving frequency is taken within the upper forbidden gap, the
particles behavior is that of optical mode and when the driving
frequency is taken within the lower forbidden band gap, the
particles behavior is ordered by the band width.

Inserting in Eqs. (2) and (3) the Taylor expansion Eq. (5)
and the decoupling ansatz procedure Eq. (6) with the previous
values of its coefficient, we obtain when keeping only terms
up to O(ε3) the following equation:

Vtt + cVxx + dV + qV 3 = 0, (8)

where

c = 2J2D2

1 + μ
, d = 2I2(1 + μ), q = 2J4(1 + μ)3

μ3
.

Taking the linear form of Eq. (8) and looking for plane wave
solutions on the form V = V0 exp[i(kx − 	t )], the linear dis-
persion relation 	2 = d − ck2 can be derived. Since the pulse
soliton solution is needed, the case d > 0 is considered. By
taking the variable V on the form [33,36]

V (x, t ) = 
(x, t ) exp [i(kx − ωt )] + c.c., (9)

(c.c. being the complex conjugate of the first term and i2 =
−1) and using the new variables η = x − vgt and τ = εt , we
derive the nonlinear Schrödinger equation

−i
τ + P
ηη + Q|
|2
 = 0, (10)

where

P = −ν

2
, Q = 3q

2ω
, and ν = d2ω

dk2
= −v2

g + c

ω
.

We obtain when seeking solutions of Eq. (10) as static
breather solutions on the form 
(η, τ ) = A(η) exp(−iωsτ ),
where ωs = ω − ω+max for the upper forbidden band:


(η, τ ) =
√

2ωs

Q
sech

(
±

√
ωs

P
(η − η0)

)
exp(−iωsτ ). (11)

Following the analytical procedure in Refs. [19,23], the supra-
transmission threshold is given by

Ath =
√

8(ω − ω+max)

Q
,

and it takes the final form

Athup =
√

8ωμ3(ω − ω+max)

3J4(1 + μ)3 . (12)

B. Supratransmission threshold in the lower forbidden band

The lower forbidden band, as we can see on Fig. 1, is
bounded at k = π

2D , and for this value of wave number, the
long wave-length limit and then the decoupling ansatz given
in Eq. (6) are no longer valid.

A more general form of the decoupling ansatz method for
arbitrary wave-length is described in Ref. [34]. To perform
this, we seek solutions of Eqs. (2) and (3) on the form

Vn = Anei(2knD−ωt ) + c.c.,

Wn = Bnei(2knD−ωt ) + c.c.,
(13)

and assumed the continuum approximation 2nD → x so that
An(t ) → A(x, t ) and Bn(t ) → B(x, t ). After the Taylor expan-
sion of An+1 and Bn−1 around the continuum variables A(x, t )
and B(x, t ) respectively, we can apply the decoupling ansatz:

B(x, t ) = σeikD

(
A + b1DAx + b2

2
DAxx + b3DAxt + b0|A|2A

)
,

(14)

which gives for k = π
2D two possible values of σ namely

σ = 0 and σ = −∞. The last value of σ which is obtained
for optical mode renders a divergence and only the former
(σ = 0) obtained for acoustic mode can be used to derive the
coefficients b1, b2, b3 and b0 given in Ref. [34] and thereafter
Vn and Wn as

Vn = (−1)nAe−iωt + c.c.,

Wn = 0.
(15)

Following the procedure described in Ref. [34], we obtain
the nonlinear Schrödinger equation which is given for σ = 0
and k = π

2D by

−iAτ + PaAηη + Qa|A|2A = 0, (16)

where

Pa =
√

2J2D2

1 − μ
and Qa = 3J4

ω−max
.

Equation (16) is similar to that obtained in Sec. II A and its
static solution (with ωs = ω − ω−max) can be written as

A(η, τ ) =
√

2ωs

Qa
sech

(
±

√
ωs

Pa
(η − η0)

)
exp(−iωsτ ). (17)

Thus,

V (η, τ ) =
√

2ωs

Qa
sech

(
±

√
ωs

Pa
(η − η0)

)
e(−iωsτ )eiθ + c.c.,

(18)
and the supratransmission threshold is given by

Athlow1
=

√
8ω−max(ω − ω−max)

3J4
. (19)
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FIG. 2. Spatial evolution of plane wave within the chain for driv-
ing amplitude A = 0.227 (a) and A = 0.228 (b); ω = 6.0, m = 0.1,
M = 0.18; red line stands for the driving amplitude value.

III. NUMERICAL SIMULATIONS

In this part, we deal to find numerically the supra-
transmission thresholds in the two forbidden bands and
thereafter to compare with their analytical analogs found in
Sec. II.

For the numerical simulations, a lattice of 100 particles is
considered where the masses of light and heavy particles are
initially fixed at m = 0.1 and M = 0.18, respectively. With
these values of m and M, the lower and the upper band gap are
located in ]3.333, 4.472[ and ]5.578,+∞[, respectively. The
first particle (of mass M) is subjected to a periodic excitation
V0(t ) = A cos(ωt ) which frequency ω lied within the upper
or lower forbidden band gap frequency while the remain-
ing particles of the chain being initially at rest. Throughout
the section, we shall use the parameter D = 1. To avoid
initial shocks formation, the external driver is modified as
V0(t ) = A[1 − exp(−t/τ )] cos(ωt ), with τ = 5. To avoid the
reflections at the boundary of the lattice, the 10 last particles
are submitted to a dissipation with a damping coefficient value
γ = 5. The brute-force method combined with the bisection
search is applied to determine the supratransmission threshold
numerically [23]. To do this, the interval of driving amplitude
leading to the wave propagation although the external driving
frequency lied in the forbidden band is identified using a
brute-force procedure. Once this interval is found, it is sub-
sequently refined through a bisection search algorithm and
stopped when the precision of 10−6 is reached. The system
is numerically integrated by using the fifth-order Runge-Kutta
formula with a fixed time step �t = 10−3. The supratransmis-
sion is assumed to occur (stopping criterion of the algorithm)
as soon as max[u50(t )] is above the driving amplitude A. To
detect the onset of the supratransmission, the spatial evolution
of un(t ) and the behavior of particles n = 50 and n = 51
are monitored. The onset of supratransmission can also be
detected by evaluating the energy flux density as indicated in
Refs. [30,38,39].

A. Upper forbidden band gap frequencies

We consider the given periodic excitation with driving
frequency ω = 6.0 and for two different values of driving
amplitude (A = 0.227 and A = 0.228).

A sudden propagation of the wave in the system for the
case A = 0.228 can be observed (Fig. 2). Thus, A = 0.228
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FIG. 3. Behavior of the particles V25 and W25 for the insulating
regime A = 0.227 (blue curves) and propagating regime A = 0.228
(gray curves), ω = 6.0, K2 = 1, K4 = 1, m = 0.1, M = 0.18.

corresponds to the threshold amplitude of the supratransmis-
sion phenomenon occurrence. This observation is confirmed
by the behavior of particles V25 and W25 for the two values
of driving amplitude displayed on Fig. 3. We can observe a
significant amplification of the driving amplitude when pass
from A = 0.227 < Ath to A = 0.228 = Ath. It can be noticed
that a slight increase of 0.1% is enough to trigger the propa-
gation of the incident wave along the lattice although ω is in
the forbidden band gap.

The numerical and analytical thresholds as a function
of driving frequency for three values of the parameter
couples (m, M) [(0.1, 0.18), (0.3, 0.5), (1, 1.5)] which corre-
spond to mass ratio of 55%, 60%, and 66%, respectively, are
monitored.

Figure 4 shows a good agreement between analytical
supratransmission threshold and its numerical analog. The
increase of mass ratio m/M induces a net increases of the
threshold, while the threshold always increases with the val-
ues of forbidden band gap frequencies.
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2 2.5 3 3.5
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FIG. 4. Threshold amplitude versus the driving frequency. Nu-
merical (blue circles) and analytical (red solid lines) for (m, M)
taking the values (0.1, 0.18) (a); (0.3, 0.5) (b); and (1, 1.5) (c);
K2 = 1, K4 = 1, D = 1.
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FIG. 5. Spatial evolution of plane wave for (a) A = 0.502 and (b)
A = 0.503; ω = 3.5, K2 = 1, K4 = 1, m = 0.1, M = 0.18; red lines
stand for the driving amplitude values.

B. Lower forbidden band gap frequencies

Submitting the lattice to the same periodic excitation as in
upper forbidden band, with a driving frequency ω = 3.5, the
supratransmission phenomenon is noticed as a sudden trans-
mission when slightly varying the driving amplitude from A =
0.502 to A = 0.503 [Fig. 5]. The behavior of particles V25 and
W25 shown in Fig. 6 confirms the value of the supratranmission
threshold.

For three couples of parameters (m, M): (0.1, 0.18), (0.3,
0.5), and (1, 1.5), the numerical threshold amplitude as a func-
tion of driving frequency is plotted along with its analytical
analog Eq. (19). The increase of the mass ratio m/M induces
a net decrease of the threshold, while the threshold always
increases with the values of forbidden band gap frequencies.
On Fig. 7, a good agreement is observed between the numer-
ical and the analytical threshold Eq. (19) as the frequencies
increase in the lower forbidden band. From Fig. 7, we can
also deduct that the analytical thresholds are more accurate for
lower values of the mass ratio m/M. A growing disagreement
can be noticed when the mass ratio increases beyond 60%; the
analytical procedure has to be reviewed for these values.

C. Effect of the coupled modes
on the supratransmission threshold

The study of threshold with respect to driving frequency
in lower forbidden band revealed a disagreement between nu-
merical and analytical results as the mass threshold ratio m/M
increases. We can also notice that when this ratio increases,
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FIG. 6. Behavior of the particles V25 and W25 for the insulating
regime A = 0.502 (red curves) and propagating regime A = 0.503
(gray curves); ω = 3.5, K2 = 1, K4 = 1, m = 0.1, M = 0.18.
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FIG. 7. Threshold amplitude versus driving frequency. Numeri-
cal results (gray solid line) and analytical threshold (blue circles) for
(m, M) taking the values (0.1, 0.18) (a), (0.3, 0.5) (b), and (1, 1.5)
(c); K2 = 1, K4 = 1, D = 1.

the width of lower forbidden band decreases. A narrow band
gap frequencies, which suppose a great proximity between
the upper and the lower cutoff frequency of the acoustic
and optical mode respectively results in a coupling between
these two modes [37]. The seeking of Coupled modes static
breathers shall be necessary to investigate the supratransmis-
sion phenomenon in lower forbidden band for narrow band
gap frequencies.

We consider the following asymptotic expansion for Vn and
Wn [37]:

Vn = εV (1)
n,n + ε2V (2)

n,n + ε3V (3)
n,n + ...,

Wn = εW (1)
n,n + ε2W (2)

n,n + ε3W (3)
n,n + ....

(20)

The quasidiscrete approximation has early been study by
Hu et al. [37], for a diatomic FPU lattice. Following this
procedure, we consider the slow variables:

η = ε
(
nD − vgt

)
,

τ = ε2t,
(21)

and the fast variable


n(t ) = 2knD − ωt . (22)

When inserting Eq. (20) into Eqs. (2) and (3), and taking into
account Eqs. (21) and (22), we derive V (1)

n,n and W (1)
n,n from the

leading order (ε1), at the limit k = π
2D of the first Brillouin

zone as

V (1)
n,n = (−1)nA11(η, τ ) exp(−iω−maxt ) + c.c.,

W (1)
n,n = (−1)nB11(η, τ ) exp(−iω+mint ) + c.c.

(23)

At the second order (ε2), the solvability conditions yield
vg = 0; and at the third order (ε3) we derived when taking
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into account Eq. (23) and the solvability conditions obtained
from the second order, the following coupled equations:

i
∂

∂τ
A11 − K2

2 D2

2Mmω−max
(
ω2

+min − ω2−max

) ∂2

∂η2
A11

− 3K4

Mω−max
(|A11|2 + 2|B11|2)A11 = 0, (24)

i
∂

∂τ
B11 − K2

2 D2

2Mmω+min
(
ω2−max − ω2

+min

) ∂2

∂η2
B11

− 3K4

mω+min
(|B11|2 + 2|A11|2)B11 = 0. (25)

When using the new variables 
 = εA11 and � = εB11

into Eqs. (24) and (25), we obtain simpler forms depending
to the initial variables xn and t

i
∂

∂t

 − P1

∂2

∂x2
n


 − Q1(|
|2 + 2|�|2)
 = 0,

i
∂

∂t
� − P2

∂2

∂x2
n

� − Q2(|�|2 + 2|
|2)� = 0,

(26)

where

P1 = K2J2D2

4ω−max(1 − μ)
, P2 = − K2J2D2

4ω+min(1 − μ)
,

Q1 = 3ω−maxJ4

2J2
, Q2 = 3ω+minJ4

2J2
.

1. Band with negligible coupling

Since we are at the limit k = π
2D we can do the approxima-

tion � = 0 for the acoustic mode and 
 = 0 for the optical
mode (see Sec. II); we thus obtain for each case a nonlinear
Schrödinger equation

i
∂

∂t

 − P1

∂2

∂x2
n


 − Q1|
|2
 = 0, (27)

i
∂

∂t
� − P2

∂2

∂x2
n

� − Q2|�|2� = 0. (28)

Based on the PQ product, only Eq. (27) allows static
breather solutions. The solutions of Eq. (28) shall not be
discussed in this work.

When seeking solution of Eq. (27) on the for 
 =
a(η)e−iωst and following the same procedure as in Sec. II, we
obtain a static breather solution of acoustic mode


(xn, t ) =
√

2ωs

Q1
sech

(
±

√
ωs

P1
(xn − x0)

)
exp(−iωst ),

(29)
where ωs = ω − ω−max.

Thereafter, we derived the supratransmission threshold

Athlow3
=

√
8ω−max(ω − ω−max)

3J4
. (30)

We can note that the threshold Eq. (30) obtained for acous-
tic mode excitation is identical to the threshold Eq. (19) early
obtained in Sec. II.
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FIG. 8. Threshold amplitude versus the driving frequency. Nu-
merical (black solid lines) and analytical thresholds Athlow3 (blue
circles) and Athlow4 (red diamonds) for (m, M) taking the values
(0.1,0.18) (a); (0.3,0.5) (b); and (1,1.5) (c); K2 = 1, K4 = 1.

2. Band with coupling effects

When the width of the band gap is so small that the
coupling effects become nonnegligible, we shall seek static
breather-breather solutions of Eq. (26) on the form


(x, t ) = A sech(γ x)e−iωs1 t ,

�(x, t ) = B sech(γ x)e−iωs2 t ,
(31)

where ωs1 = ω − ω−max. ωs2 , γ , A, and B shall be defined by
the solvability conditions.

When inserting Eq. (31) into Eq. (26), the solvability con-
ditions yield

γ 2 = ωs1

P1
, (32)

ωs2 = −ω−maxωs1

ω+min
, (33)

A = ±i

√
4ωs2

3Q2
+ 2ωs1

3Q1
, (34)

B = ±
√

4ωs1

3Q1
− 2ωs2

3Q2
, (35)

and thereafter, the supratransmission threshold is given by

Athlow4
= Athlow3

√√√√1 − 2

3

(
ω2

+min − ω2−max

ω2
+min

)
. (36)

The plotting of Eqs. (30) and (36) with respect to the
driving frequency is displayed on Fig. 8, where we can see
a good agreement with the numerical results of Eq. (30) for
small mass ratio (acoustic mode behavior) and Eq. (36) for
large mass ratio m/M (coupled mode behavior).
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D. Effects of the mass of the driven particle
on the supratransmission threshold

In this section, the order of the particles array [M − m −
M − m − M − · · · ] previously considered is switched into the
diatomic lattice version [m − M − m − M − · · · ], so that the
driven particle (the first unit) has now the mass m.

1. Analytical analysis

The diatomic lattice consists on two sublattices having the
masses m and M; the displacement of the nth particle of each
sublattice are given by Wn and Vn, respectively. Since the first
particle have the mass m, the seeking of threshold ampli-
tude of supratransmission occurrence shall be done through
the solution W of the envelope equation, on contrary to the
lattice with a particle of mass M as first particle, for which the
solution V is needed.

(1) In the upper forbidden band the decoupling ansatz
procedure gives

W = λ j

[
V +

4∑
l=1

bl, j
Dl

l!
∂ l

xV

]
+ O

(
D5

)
, (37)

which can be approximates at the first order as

W = λV, (38)

where λ = −1/μ. The supratransmission threshold which
is the maximal amplitude of the static solution is then
given by

Bthup = |λ|Athup . (39)

(2) In the lower forbidden band, for a wide band gap, the
decoupling ansatz procedure approximate at the first order
gives

B = σeikDA, (40)

where σ = −β±√
�

2 cos(kD) , � = β2 + 4 M
m cos2(kD), β = M

m − 1.
Around the limit k = π/2D of the first Brillouin zone, we

can do the approximation

kD = π

2
(1 + ε), (41)

with ε << 1. Taking into account Eq. (41), we can write

cos(kD) ≈ −πε

2
,

eikD ≈ −πε

2
+ i,

and for the acoustic mode

σ = πε

2(1 − μ)
. (42)

and thereafter, we derived the supratransmission threshold as

Bthlow1 =
πε

√
1 + ε2π2

2

2(1 − μ)
Athlow1 . (43)

2. Numerical study

The lattice is driven at that end by the same wave given
in Sec. II. We plotted for the three couples (m, M) the supra-
transmission threshold as a function of driving frequency for

the upper (lower) forbidden band together with their analytical
analogs Eq. (39) [Eq. (43)].

We can notice from Fig. 9 that the supratransmission
threshold drastically changes when passing from a line with
heavy-driven particle to a line with light-driven particle in
both the two forbidden bands.

In lower forbidden band, a light-driven particle results in
a decrease of the threshold in comparison with the case of
heavy-driven particle, whereas in upper forbidden band we
observe the opposite situation. Figure 9 also displays a good
agreement, in both the two forbidden bands, between analyt-
ical thresholds for lattice with light-driven particle and their
numerical analogs.

Our tentative attempt to identify an analytical threshold
for the light-driven particle in the lower forbidden band with
coupling effects yields findings that differ dramatically from
the numerical simulations and are thus not provided in this
study.

E. Bridging diatomic and monoatomic cases

At the limit m = M, the dispersion diagram of the diatomic
lattice displays only one forbidden band which boundary, as
well as that of the monoatomic lattice is known to be ωmax =√

4/m [30]. The location of the forbidden band, which is the
same in the two cases, corresponds to the upper forbidden
band of the diatomic lattice so that the valid threshold in
the limit m = M of the diatomic lattice shall be obtained by
replacing M by m in Eq. (12). We can thus write this threshold
on the form

Athup =
√

mω(ω − ωmax)

3K4
. (44)

The comparison between the analytical threshold Eq. (44)
and those obtained for the monoatomic case for the small and
large amplitudes [14,30]

Athmono1 =
√

mω2 − 4K2

6K4
, (45)

Athmono2 =
√

16(mω2 − 3K2)

81K4
, (46)

respectively, is displayed in Fig. 10(a). The thresholds es-
timated numerically are plotted as well. The simulations
are performed for m = M = 0.18 and reveal for numeri-
cal estimations [Fig. 10(b)], a good agreement between the
monoatomic case and the limit m = M of the diatomic case.

For frequencies close to ωmax (far from ωmax), a good
agreement is observed between the limit m = M [Eq. (44)]
and the small amplitude [Eq. (45)] (and the large amplitude
[Eq. (46)]) thresholds.

IV. DISCUSSION

Previously, in various diatomic lattices, the existence
and stability of nonlinear static localized modes with
frequencies in the forbidden frequency band gap were
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FIG. 9. Threshold amplitude versus the driving frequency for three couples (m, M): (0.1, 0.18) (a) and (d); (0.3, 0.5) (b) and (e); (1, 1.5)
(c) and (f). (a), (b), (c) for lower forbidden band; (d), (e), (f) for upper forbidden band. Black solid lines (red dashed lines) represent the
numerical cases of heavy-driven particle (light-driven particle); and blue circles (black diamonds) their analytical analogs. K2 = 1, K4 = 1,
ε = 0.08.

investigated [6,9,15–17]. The present study demonstrates that
these modes can propagate (or be supra-transmitted) along the
lattice.

The nonlinear supratransmission phenomenon, previously
observed in numerous monoatomic systems [18–21,24–26]
has also been evidenced here in one-dimensional diatomic β-
FPU lattice. In contrast to the monoatomic case [30,31], there
are several forbidden frequency band gaps, thus making the
investigation more difficult. As highlighted by Mekontchou
et al. [23], only a few monoatomic models exhibit the supra-
transmission at all the forbidden frequency bands [23]. This
study advocates further investigations of other diatomic case
models.

Similarly to what was found in previous studies
[18–21,23–26,30,31], the phenomenon occurs when the am-
plitude of the sinusoidal excitation is greater than a certain
value known as the threshold. In contrast to existing studies
on di- and triatomic models [28,29], the supratransmis-
sion threshold has been derived analytically with acceptable
accuracy by leveraging existing mathematical techniques
for soliton investigation in nonlinear diatomic systems
[32–36].

The nonlinear supratransmission in structures with more
than one elements inside the unit cells (induced respectively
by force-constant difference and two masses of two kinds of
particles) where studied by Zhang et al. [28] as well as Wu and
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FIG. 10. Threshold amplitude versus driving frequency, for
monoatomic case and for the limit m = M of diatomic case. (a) for
analytical thresholds and (b) for numerical simulations, K2 = 1,
K4 = 1.

Wang [29]. In contrast to the present study, Zhang et al. [28]
based their conclusion solely on numerical simulations. The
authors Wu and Wang [29] somehow overlooked the effect
of the mass ratio which is proven to be detrimental for the
onset of supratransmission in the present study; noticed via
the increases of the threshold value.

Due to the coupling of motion of odd-even (of masses
m-M) positioned particles of the diatomic β-FPU, it is found
that the rotating wave approximation used in monoatomic
FPU [30] is not efficient enough to derive the threshold of
supratransmission occurrence. Our attempt to use the same
method did not provide analytical results closer to the nu-
merical exact threshold. Nevertheless, the decoupling ansatz
method [32,33,33–36], is proven to be a useful tool for the
derivation of envelope equation which provide, in the upper
forbidden band a threshold which is in good agreement with
the numerical one in the same gap. Although the threshold
derived in the upper forbidden band explicitly depends on the
mass ratio μ, its validity and its accurateness is preserved for
all value of μ.

The threshold obtained for the lower forbidden band
through the continuum form of the decoupling ansatz method
[33] was not in agreement with the numerical simulations.
This is due to the fact that at the boundary of the lower
forbidden band on the dispersion law, located at k = π/2D,
the long wavelength limit, valid for k = 0 (boundary of the
upper forbidden band) becomes less accurate. Fortunately, a
more general form, valid for arbitrary wavelength exists for
the decoupling ansatz [34]. This form provides an analytical
threshold, which is in good agreement with the numerical
results. It is also easy to check that for k = 0, we obtain,
through that general form the results of Sec. II A. Moreover, it
can be noticed that this threshold is not an explicit function of
mass ratio μ and is in good agreement with numerical results
for small values of this ratio (μ � 60%). This accordance
confirms the hypothesis of acoustic mode vibration in lower
forbidden band and the decoupling between the optical and the
acoustic modes. However, for values of the driving frequency
sufficiently close to ω+min, the coupling effects become very
significative and result in a decreasing of the threshold with
the increase of the driving frequency as we can observe in
Figs. 7(a) and 7(b), 8(a) and 8(b), and 9(a) and 9(b). In other
words, the anomalous observed through the decreasing of the
threshold are due to the coupling effects between the optical
and acoustic mode; this observation is confirmed by the case

of narrow band gap where the thresholds obtained when the
coupling is taking into account are globally lower than those
obtained without coupling effects.

For large values of mass ratio (μ > 60%), the coupling
between acoustic and optical modes in the lower forbidden
band, which has been previously investigated by Hu et al. [37]
has been considered to derive the supratransmission threshold,
since the threshold Eq. (19) is no longer in accordance with
numerical results. The threshold Eq. (36), derived when taking
into account the coupling between the two modes, displays
an explicit dependence on the frequency of these two modes,
and a good agreement with the numerical results proves the
actual presence of a coupling which strength increases with
the increasing of the mass ratio. Moreover, we observe that
using this coupling mode procedure, we can also derive, as
one of the results, the same threshold Eq. (30) obtained when
neglecting the coupling between the two modes.

A surprising and very interesting aspect of this work is the
changing of the supratransmission threshold when switching
the order of particles. In fact, this switch does not affect the
physical properties of the lattice (apart of the mass of the
driven particle) but is found relevant for the study of the supra-
transmission phenomenon in diatomic lattices. The choice of
the driven particle (light or heavy) is thus crucial for the
study of supratransmission and more generally for the study
of dynamic of diatomic lattices under external excitation. The
consequences of such a behavior on real physical systems
modeled by diatomic lattice could be very interesting.

The comparison of our results with the existing theory has
been done by studying the limit case m = M of the diatomic
lattice. Overall, the analytical and numerical results are con-
sistent with monoatomic FPU [30]. The two thresholds found
in Ref. [30] (for low and large amplitude) are in agreement,
the first with the low amplitude and the second with the large
amplitude part of the limit (m = M) case of the diatomic
threshold obtained in the upper forbidden band.

The convergence and the accurateness (in comparison with
the numerical analogs) of analytical procedures used in this
paper to derive supratransmission thresholds in each forbid-
den band are displayed in Table I.

V. CONCLUSION

In this study, it is demonstrated that the supratransmission
in diatomic chain can occur in the upper and lower forbid-
den bands, and the threshold amplitudes above which the
phenomenon occurs have been derived for both forbidden
bands numerically and analytically. The accurateness of the
numerical and analytical methods is established by estimating
the threshold as a function of driving amplitude for several
values of the ratio m/M and also with the study of the limit
case m = M which shows a good agreement with the existing
theory. Furthermore, we found in the two forbidden bands
a different supratransmission threshold when switching the
order of particles from a chain with a heavy first particle
to a chain with a light first particle. This peculiar behavior
as well as the dependence in the lower forbidden band of
the supratransmission on band width show the asymmetric
character of diatomic lattices and the necessity to consider
several analytical approaches when dealing with such lattices.
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TABLE I. Comparison and accurateness of analytical procedures. The parameters μ and k are the mass-ratio (m/M) and wave vector,
respectively.

√
: applicable technic with accurate results, ✗: applicable technic but does not track closely the numerical results, N.A.: not

applicable.

Upper Upper Forbidden Forbidden
forbidden forbidden band between band between

Analytical technics band for band for acoustic and acoustic and
μ � 60% μ > 60% optical modes for optical modes for

μ � 60% μ > 60%

Decoupling ansatz with k → 0
√ √

N.A. N.A.

Decoupling ansatz with k arbitrary N.A. N.A.
√

✗

Coupled modes N.A. N.A.
√ √
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