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equation with nonlocal derivatives

Alexander Hrabski and Yulin Pan *

Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 15 September 2022; revised 25 April 2023; accepted 20 October 2023; published 14 November 2023)

We consider the nonlinear Schrödinger equation with nonlocal derivatives in a two-dimensional periodic
domain. For certain orders of derivatives, we find a type of quasi-breather solution dominating the field
evolution at low nonlinearity levels. With the increase of nonlinearity, the structures break down, giving way to
Rayleigh-Jeans (or wave turbulence) spectra. Phase-space trajectories associated with the quasibreather solutions
are found to be close to that of the linear system and almost periodic. We employ two methods to search for
nearby periodic solutions (e.g., exact breathers), yet none are found. Given these distinguishing behaviors, we
interpret this structure in the context of Kolmogorov-Arnold-Moser (KAM) theory.
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I. INTRODUCTION

Breathers are a class of features that arise in nonlin-
ear dynamical systems that describe solutions with strong
spatial localization and periodic oscillations in time. To-
gether with solitons, breathers are considered as prototypes
for rogue waves that can occur across many fields, such
as water waves [1,2], optics [3], and plasma physics [4].
In mathematics, breathers are often defined as fundamental
(integrable) solutions to both continuous field equations and
discrete lattice problems. Breather solutions to continuous
systems have been found primarily in one-dimensional (1D)
nonlinear partial differential equations (PDEs), including the
sine-Gordon equation [5], the nonlinear Schrödinger equa-
tion (NLS) [1–4,6], and forms of the Korteweg–De Vries
(KdV) equation [7,8]. Discrete breathers [9] have been con-
structed as solutions to a wide variety of discrete systems,
including Josephson junctions [10,11] and the Fermi-Pasta-
Ulam-Tsingou (FPUT) problem [12].

Another important category of studies concerns the spon-
taneous emergence of coherent structures (and in particular,
breathers) under the free evolution of a system. These co-
herent structures include discrete breathers in the FPUT
problem [13] and the discrete nonlinear Schrödinger equa-
tion [14,15]. In more physical contexts (such as spontaneous
emergence), coherent structures are frequently observed that
exhibit breatherlike behavior, yet somehow do not adhere
to the strict mathematical conditions on localization and
periodicity that are required of breathers [16,17]. Such struc-
tures are often referred to under the looser terminology of
“quasibreather.” For example, quasibreathers exist in the 1D
Majda-McLaughlin-Tabak (MMT) model [18], and they are
among many of the coherent structures created by the sys-
tem [19–22]. As in the case of constructing exact breather
solutions to PDEs, studies on spontaneous emergence are pre-
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dominantly performed in 1D situations. The only exception, to
our knowledge, is Ref. [23], which identifies a (quasi)breather
solution to the NLS with a potential on a two-dimensional
(2D) domain, but the mechanism associated with the structure
remains unexplained. To date, very little is known about 2D
breathers and quasibreathers in continuous systems.

In this work, we demonstrate the existence of quasibreather
solutions to a family of (nonlocal) derivative NLS without
a potential, realized in a 2D domain with periodic boundary
conditions. In addition to being a novel 2D quasibreather in a
continuous field, other remarkable and distinguishing features
of the structure include (i) the quasibreather spontaneously
emerges from a stochastic wave field after long-time evolu-
tion; and (ii) the quasibreather appears equivalently for both
the focusing and defocusing cases, but it exists only in the
weak nonlinearity regime. As the nonlinearity of the system
increases, we find a breakdown of the quasibreather state with
the field relaxing to the Rayleigh-Jeans spectrum. Phase-space
analysis reveals almost-periodicity, motivating a numerical
search for exact breather solutions that underlie the quasi-
breather. We employ adaptations of an existing fixed-point
method as well as a recent variational method, however we
find no nearby breather solutions. Given these findings, we
then suggest that the state trajectory of the quasibreather is
associated with a Kolmogorov-Arnold-Moser (KAM) torus,
which is a distorted trajectory of the linear (integrable)
system that survives when the nonlinearity is sufficiently
small [24].

II. SETUP OF NUMERICAL EXPERIMENTS

The Majda-McLaughlin-Tabak (MMT) model is a fam-
ily of nonlinear dispersive wave equations that have been
widely used to study wave turbulence [19,25,26] and coherent
structures [18–22], due to its effectiveness in representing
nonlinear waves in different physical contexts. In the present
work, we consider the MMT model in two spatial dimensions,
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FIG. 1. The time series of H (dashed) and H2 (solid) for (a) ε = 0.000 71 and (b) ε = 0.20, as well as the corresponding H4 for (c) ε =
0.000 71 and (d) ε = 0.20. Note that a low sampling frequency is used to plot the figure to improve its readability, leading to aliasing. Therefore,
only a small portion of all O(1600) peaks are visible.

constructed as

i
∂ψ

∂t
= |∂x|2ψ + λ|∂x|β/4(||∂x|β/4ψ |2|∂x|β/4ψ ), (1)

where ψ ≡ ψ (x, t ) is a complex scalar, x is the spatial coordi-
nates, and t is the time. The nonlocal derivative operator |∂x|α
denotes a multiplication by kα on each spectral component in
the wave-number domain, with k = |k|. The free parameter
β controls the order of derivatives, and λ = ±1 generates a
defocusing or focusing nonlinearity, respectively. Equation (1)
is equivalent to a nonlocal derivative NLS, which can be
shown more explicitly after a transformation φ = |∂x|β/4ψ ,
leading to

i
∂φ

∂t
= |∂x|2φ + λ|∂x|β/2(|φ|2φ). (2)

The MMT model (1) can be derived from a Hamiltonian
H = H2 + H4, with

H2 =
∫

||∂x|ψ |2dx,

H4 = 1

2
λ

∫
||∂x|β/4ψ |4dx. (3)

The nonlinearity level of the system can be quantified via a
parameter ε ≡ H4/H2.

We solve (1) on a 2D domain with periodic boundary
conditions, starting from an initial field ψ0 ≡ ψ (x, t = 0), via
a pseudospectral method [26–28] with 128×128 modes. Our
numerical method treats the linear term via an integrating
factor, and the nonlinear term via an explicit fourth-order
Runge-Kutta scheme. The initial field ψ0 is set as an exponen-
tial form in Fourier space as ψ̂0(k) = A exp[−0.1|k − kp| +
iθk], where kp = 4, and θk is a random phase that is decorre-
lated for all k. Such an initial condition represents a “typical”
setup for the study of out-of-equilibrium dynamics in the
MMT system, where the spread of energy from kp is generally
of interest. In Appendix A, we demonstrate the existence of
the breather for a higher-resolution field with different kp,
with completely different random phase realizations. In this
sense, the emergence of the quasibreather does not rely on
initial conditions with a specific phase coherence, but rather
emerges from a random field. To investigate dynamics at dif-

ferent nonlinearity levels, we choose a range of A leading to
approximately ε ∈ [0.0005, 0.1] for each β value of interest.

III. RESULTS

We start by describing a typical simulation leading to a
quasibreather state, with parameters β = 3 and A = 35 (cor-
responding to ε = 0.000 71). Figures 1(a) and 1(c) show the
long-time evolution of H2 and H4 from t = 0 to 2000Tf ,
with Tf = 2π the period of the fundamental wave mode. The
total Hamiltonian H , as shown in Fig. 1(a), is well conserved
over 2000Tf . After an initial evolution of about 400Tf with
smooth profiles of H2 and H4, we observe that H4 undergoes
strong periodic jumps with corresponding dips in H2. These
jumps are associated with coherent structures, which are only
present at low nonlinearity. In contrast, as demonstrated in
Figs. 1(b) and 1(d), the field evolution at a higher nonlinearity
(ε = 0.20) exhibits smooth profiles of H2 and H4 over the
same time interval.

The oscillations in H4 correspond to oscillations of a quasi-
breather. To better visualize this state, we plot in Fig. 2 the real
part of ψ at different phases of its oscillations (i.e., different
stages of the oscillation pattern in H4). Figure 2(a) shows the
field right before the first jump of H4, where a concentric wave
appears and later converges into a peak seen in Fig. 2(b).
This peak then collapses, with a second one emerging after
about Tf /2 [according to Fig. 2(e)] at the maximally distant
location in the periodic domain, shown in Fig. 2(c). The cy-
cle then repeats itself with a peak emerging in Fig. 2(d) [at
the same location as in Fig. 2(a)], forming a quasibreather
solution coexisting with a stochastic wave background. The
smaller peaks of H4 seen in Fig. 2(e) correspond to groups of
secondary peaks in ψ , as shown in Figs. 3(a)–3(d). To better
resolve the smaller amplitudes of these secondary structures,
we choose to plot |ψ | rather than Re[ψ]. We encourage the
reader to also watch the animation of the full quasibreather
cycle in the Supplemental Material [29]. From Fig. 2 we see
that the quasibreather oscillates with a fundamental period
very close to Tf . Therefore, the simulation in Figs. 1(a) and
1(c) covers O(1600) cycles of the breather, demonstrating a
very long (perhaps infinite) time of existence.

We next investigate the existence and intensity of the
quasibreathers for varying values of β and ε. To measure
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FIG. 2. Contour plots of Re[ψ] at β = 3 for ε = 0.000 71 at var-
ious stages of the cycle of the quasibreather (a)–(d), corresponding
chronologically to the times marked by the blue circles in (e) the
time series of H4. Note that this plot of H4 has sufficient sampling to
resolve all features.

the relative intensity of the peak, we define the peak-to-
background ratio as

ρ = avgmax[|ψ |]
4σ|ψ |

, (4)

where the avgmax operator returns the average of the max-
imum height of primary peaks [as in Figs. 2(b)–2(d)] over
many cycles of the quasibreather, and σ|ψ | is the total standard
deviation of the field |ψ | over space and time. By definition
(4), ρ = 2 corresponds to the typical rogue wave criterion
used in many fields [3].

Figure 4(a) shows the value of ρ obtained for β = 0, 1,

2, 3, 4 and ε across three orders of magnitude. In general, we
see that the quasibreather state is present for smaller ε (i.e.,
weak nonlinearity) and becomes stronger when β is closer
to 3. The case with β = 0 (corresponding to NLS) leads to
no quasibreathers, indicating the derivative is necessary for
their emergence. We note that when the breathers are not
present, the value of ρ is evaluated by taking the average of
the maximum of the field |ψ | every Tf /2 as the numerator in
(4). The physical role of β in determining the existence and

FIG. 3. Contour plots of |ψ | at β = 3 for ε = 0.000 71 detailing
secondary structures in the quasibreather (a)–(d) cycle, correspond-
ing chronologically to the times marked by the blue circles in (e) the
time series of H4.

intensity of this structure clearly needs further study, which
will not be covered in this paper.

Furthermore, we examine in Fig. 4(b) the slope γ of the
stationary wave action spectrum n(k) ≡ 〈ψ̂ (k)ψ̂∗(k)〉 across
all values of β and ε. The inset of Fig. 4(b) shows a typical ex-
ample of fully developed, angle-averaged n(k) for β = 2 and
several values of ε. We see that the Rayleigh-Jeans spectrum
with γ = −2 is only achieved at higher nonlinearity when
the breather is not present. This trend is generally true for all
values of β as shown in Fig. 4(b).

A few additional remarks are in order. First, we note that
the quasibreather also emerges for the focusing equation (1)
with λ = −1 under the same conditions. Second, the qua-
sibreather can also be observed under a forced/dissipated
system [28], but with relaxation to wave turbulence spectra
at high nonlinearity. Last but not least, we have performed
extensive numerical analysis to verify that the breather we
observe is not a numerical artifact. This includes verification
of the robustness of our results under symplectic integration,
higher resolution, and different dealiasing schemes. Details
of all of the above points can be found in Appendixes A–C,
respectively.
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FIG. 4. The quantities (a) ρ and (b) γ as functions of ε for β = 0
(orange +), β = 1 (green •), β = 2 (magenta ×), β = 3 (blue �),
and β = 4 (red �). The inset of (b) shows fully developed, angle-
averaged wave action spectra at a few nonlinearity levels (for β = 3),
with the Rayleigh-Jeans spectral slope of γ = −2 indicated (dashed).

IV. SEARCH FOR PERIODIC SOLUTIONS

The quasibreather solution in our simulation is close to
(but not exactly) periodic, which is evident from the slightly
varying field at each moment of the peak (not shown here). In
fact, the almost-periodicity of the quasibreather distinguishes
it from an exact breather. Because the quasibreather is close
to periodic, we are interested in whether there exists a nearby
trajectory that corresponds to an exactly periodic breather that
supports the quasibreather dynamics. For this purpose, we
have employed both a traditional spectral method [30] based
in fixed-point iteration and a very recent variational method
[31] for seeking nearby, exactly periodic breather solutions.
We begin with the fixed-point method.

A. Spectral fixed-point method

The spectral method by Flach uses fixed-point iteration
to obtain breathers in a Hamiltonian lattice. Our problem
is in some sense similar, as we can interpret our problem
on a lattice of Fourier modes in the wave-number domain.
After assuming a periodic solution in time, we may now
express the field in terms of Akn, where n indicates the nth
temporal harmonic of ψ̂k with frequency �n = n, assuming
a periodic solution with T = 2π . We then write a system of
equations derived from (1) in terms of Akn,

(k2 − �n)Akn + γ Fkn = 0, (5)

where Fkn is the fully spectral form of the nonlinear term in
(1), and γ is a parameter we introduce to vary the size of

FIG. 5. The residual of (5) against iteration number for various
choices of γ .

the nonlinearity. Solutions to this equation represent periodic
solutions to (1). Using an adaptation of Flach’s fixed-point
method, we attempt to find solutions to this equation. De-
tails on our adaption of Flach’s procedure can be found in
Appendix C. Iteration begins with an initial condition of a
full period of the quasibreather solution at nonlinearity level
ε = 0.0008 and β = 3.

The L2 norm of the residual
√

J ≡ ||R||2 of (5) is provided
at each iteration up to Niter = 20 for a wide variety of γ in
Fig. 5. It is clear that, even for the smallest γ , the residual does
not drop to zero. In fact, the residue always diverges under
a finite number of iterations. Thus, our adaption of Flach’s
fixed-point iteration method [30] does not furnish the desired
breather solution.

B. Variational method

Next, we implement the variational method by Azimi et al.
[31]. The goal of their method is to numerically obtain pe-
riodic solutions to high-degree-of-freedom systems. This is
done by finding a new dynamical system whose attractors
are (potentially) periodic solutions to the equation of interest.
This new dynamical system is defined in the space of all
periodic orbits that obey the periodic boundary conditions (the
“loop space”). Thus, evolution of this new dynamical system
is not with respect to the physical time (which is a dimension
of the loop space), but rather to a parameter τ referred to
as “fictitious time.” As this system is propagated in τ , the
initial loop (a guess of a periodic solution) relaxes towards
true periodic solutions to the equation of interest. If a residual
of zero is obtained, a periodic solution has been identified.

Before directly applying their method for obtaining such
a system, however, we first must modify it to accommodate
the MMT equation. These changes are significant enough to
warrant a detailed discussion, provided in Appendix C. For
now, it will suffice to state that their method returns the period
T , the proposed periodic solution ψ̂k, and

√
J as the L2-norm

residual of the MMT equation for the proposed periodic solu-
tion.

We choose as an initial condition one full cycle of the qua-
sibreather at very low nonlinearity (ε = 0.0004), for which
the system is very close to periodic. To reduce the stiffness
of the system, we choose the β = 1 case. A snapshot of the
initial condition is contained in Fig. 6(a). The system is then
evolved in fictitious time. As expected, the residual norm J
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FIG. 6. (a) A snapshot of the initial condition I0 in the variational method; (b) a snapshot of the solution at τ = 50, i.e., after 5000 time
steps.

decreases monotonically, as depicted in Fig. 7(a). We do not
simulate long enough to reach a steady value of J , as after just
τ = 50 (∼5000 time steps) we already can see that the loop
has strongly diverged from the expected breather pattern. The
corresponding snapshot of the initial breather peak after τ =
50 is contained in Fig. 6(b). The position, shape, and mag-
nitude of the resolved peak are all drastically different from
the exactly periodic breather we seek. This is also depicted
in a growth of T [Fig. 7(b)] beyond the expected T ≈ 2π .
From the above observations, it is clear that the variational
method does not find a nearby breather solution. We also
note that there may be certain modifications we can make to
this method, e.g., to preserve the Hamiltonian of the solution
through a Lagrangian multiplier term, which may provide a
different solution. These challenges will not be tackled in the
current work.

V. DISCUSSION

Although our search for an underlying periodic breather is
in some sense insightful, neither of these techniques returns
a periodic solution that resembles the breather we have ob-
served. While this certainly may be due to limitations of the
methods we employ, it strongly suggests a lack of periodic
structures close to our near-periodic breather solution. If this
is the case, the quasibreather solution may be quasiperiodic
by nature and will require a new physical interpretation.

We start by stating that there exists an exact periodic so-
lution to the linear system of (1), i.e., H4 = 0, that closely
resembles the quasibreather we observe. What we mean pre-
cisely is that, starting from an initial condition with a breather
peak [say, Fig. 2(b)], the field propagated by the linear equa-
tion returns to the same state after exactly Tf , which is
consistent with the pattern of a breather. This is because the
linear system only contains integer frequencies due to the NLS
dispersion relation ω = k2, so that Tf is the period of the linear
system. This fact suggests that the quasibreather solution to
the nonlinear system arises from a deformed trajectory of the
linear system.

Since visualizing the high-dimensional trajectory is very
difficult, we define a projection of the trajectory to some
physically meaningful reference field [23]:

In =
∣∣∣∣

∫
ψ∗

R (x, tn)ψ (x, t )dx∫
ψ∗

R (x, tn)ψR(x, tn)dx

∣∣∣∣, (6)

where ψ∗
R (x, tn) is the reference field where a quasibreather

peak is present, e.g., taken from t1 in Fig. 2(e), and ψ (x, t )
is the solution of either the linear or nonlinear system prop-
agated from ψ∗

R (x, tn). Figure 8 shows the evolution of I1

from both linear and nonlinear systems for a range of four
nonlinearity levels. It is clear that the linear system evolu-
tion exhibits a period of Tf in all subfigures as expected.
When the nonlinearity level is low, the trajectory identified
by I1 shows a small deformation from the linear trajectory,
as seen in Fig. 8(a). Such deformation is consistent with a

FIG. 7. The change of (a) residue norm
√

J and (b) period T as functions of τ in the variational method.
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FIG. 8. I1 evaluated for the nonlinear system β = 3 (blue) and
the linear system (red) for (a) ε = 0.000 71, (b) ε = 0.0084, (c)
ε = 0.013, and (d) ε = 0.20.

high-dimensional quasiperiodic trajectory that is evident from
not only the gradual time shift of the I1 peak, but also the devi-
ation of the I1 peak from 1. As the nonlinearity level increases,
we observe an increased deformation of the trajectory, until
the linear trajectory is entirely destroyed at high nonlinearity
in Fig. 8(d). This trajectory deformation can also be observed
in the (I1, I2) plane in Fig. 9, as well as in animations included
the Supplemental Material [29].

The trajectory deformation visualized above can be con-
nected to Kolmogorov-Arnold-Moser (KAM) theory. Specif-
ically, if we consider the linear system as the base integrable
system, then the nonlinear term can be considered as the
perturbation added to the system to form a nearly integrable
system. Generally speaking, if the perturbation is sufficiently
small, some quasiperiodic trajectories of the integrable system
can be preserved with small deformation to a KAM torus
[24]. In our case, these preserved trajectories (i.e., KAM tori)
would correspond to those associated with the quasibreather
solution observed in Fig. 2. We also note that the linear system
of Eqs. (1) (or more generally the NLS) is resonant, which
makes it difficult to directly apply the KAM theory. Most
mathematical work of KAM on NLS relies on some way to
introduce irrational frequencies, e.g., by including a potential
term as in [32], and only a handful of results are available
for application of KAM to NLS itself (see [33,34]). Our re-
sults, therefore, suggest that quasibreather solutions can be
supported by KAM tori when a nonlocal derivative is included
in the NLS. These quasibreather solutions break down at high
nonlinearity due to the sufficiently strong perturbation to the
KAM tori. The necessity of weak nonlinearity in observ-
ing these quasibreathers is also consistent with mathematical
descriptions of quasiperiodic (quasi)breathers via KAM and

FIG. 9. The trajectory of ψ projected onto I1 and I2 for sev-
eral fundamental periods of ψ computed via the nonlinear system
β = 3 (blue) and the linear system (red) for (a) ε = 0.000 71, (b)
ε = 0.0084, (c) ε = 0.013, and (d) ε = 0.20.

related theorems in Hamiltonian lattices, which rely explicitly
on weak lattice coupling [35–37].

Finally, the current analysis clearly does not resolve all
the questions regarding the 2D quasibreather solution. One
issue is that finite-time numerical simulations cannot be used
as rigorous proof for the existence of KAM tori (which must
exist for infinite time). Therefore, our interpretation may need
to be understood in terms of the Nekhoroshev theorem, which
proves the existence of nearly integrable trajectories for finite
but very long times [24]. Another critical question is the
stochastic emergence of these stable quasibreather solutions.
One possible interpretation is that they lie on some type of
statistical “attractor” [38], such that a variety of initial con-
ditions lead to the quasibreather state. In addition, while the
quasibreather we find here is for a derivative NLS not spe-
cific to a physical system, we remark that such equations are
generally involved in the fields of nonlinear water waves,
optics, and others. For example, the (quasi)breather recently
found both experimentally and numerically in a Bose-Einstein
condensate [23] may bear a similar physical interpretation
to the one we provide here. Lastly, the dependence of the
breather’s existence and intensity on β is an interesting and
open question. We suggest that further mathematical inquiry
in the context of the KAM theorem may shed light on this
issue. Specifically, we hope that a rigorous description of this
structure might explain why β = 0 precludes it.

VI. CONCLUSION

In this paper, we present results regarding a quasibreather
that spontaneously emerges from a 2D nonlocal deriva-
tive NLS. We show that the quasibreather emerges at low
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FIG. 10. 5Tf of the time series of H (dashed) and H2 (solid) for a fully developed quasibreather solution to (a) the focusing MMT
equation with β = 3, and (b) the forced-dissipated MMT equation with β = 2. The corresponding H4 for (c) the focusing system and (d) the
forced-dissipated system is also provided. The focusing system has ε = 0.000 28 and the forced-dissipated system has ε = 0.0016.

nonlinearity with parameter β close to 3. A phase-space
analysis reveals that the trajectory associated with the qua-
sibreather solution is close to that of the linear system, but
with almost-periodicity introduced by the nonlinearity. This
almost-periodicity motivates a numerical search for nearby
exact breather solutions, but none are found. Our results sup-
port an explanation of the quasibreather solution by KAM
theory, in the sense that a solution of the linear system is de-
formed but preserved when a small nonlinearity is introduced.
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APPENDIX A: QUASIBREATHER SOLUTIONS
IN OTHER SITUATIONS

In this Appendix, we show the occurrence of the qua-
sibreather in additional contexts: the MMT model with
a focusing nonlinearity, as well as a defocusing forced-
dissipated model.

We begin with the focusing MMT model. The focusing
case is given by Eqs. (1) and (2) with λ = −1. The parameter

λ is well known to control the modulational instability of the
nonlinear Schrödinger equation (NLS) as well as the MMT
model. In the context of the MMT model, the sign of λ has
been shown to affect the emergence of coherent structures
in a one-dimensional MMT model with dispersion relation
ω = k1/2 [21]. In our results, however, we find no significant
change in the quasibreather behavior between the focus-
ing/defocusing equations, suggesting (along with the fact that
the breather exists only at weak nonlinearity) that modula-
tional instability is not responsible for the quasibreather. In
Figs. 10(a) and 10(c), we show five fundamental periods Tf

of H and its components H2 and H4 in a fully developed qua-
sibreather state for the focusing equation with β = 2. These
results were obtained with an identical numerical setup to the
one presented in Sec. II, and they are taken at low nonlinearity.
The pattern of oscillation in H2 and H4 is also similar to that
in the defocusing case.

Next, we present results obtained for a forced-dissipated
system. We again solve the defocusing 2D MMT model (with
β = 2), however with the addition of forcing and dissipation
terms. Specifically, we solve the equation

i
∂ψ

∂t
= |∂x|2ψ + λ|∂x|β/4(

∣∣|∂x|β/4ψ
∣∣2|∂x|β/4ψ )

+ F + D1 + D2, (A1)

where F represents the forcing, and D1 and D2 represent
dissipation. These terms are explicitly defined in a spectral
domain, where

F =
{

Fr + iFi, 7 � k � 9,

0 otherwise, (A2)

with Fr and Fi sampled from a Gaussian distribution of
zero-mean, producing a standard white-noise forcing. The
dissipative terms are defined as

D1 =
{−iν1ψ̂k, k � 100,

0 otherwise,

D2 =
{−iν2ψ̂k, k � 7,

0 otherwise,
(A3)
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FIG. 11. The fully developed, angle-averaged wave action spec-
tra at a few nonlinearity levels of the forced-dissipated system, with
the Kolmogorov-Zakharov spectral slope of γ = −10/3 indicated
(dashed).

where ν1 and ν2 are dissipative constants. We solve these
equations on a larger domain of 512×512 modes for nearly
identical initial conditions, with the initial spectral peak now
at kp = 10. In Fig. 10(b), H and its two components are
plotted for 5Tf in the quasibreather state. In this case, we do
not expect the total Hamiltonian to be conserved, but rather
to be quasisteady for the fully developed system. Neverthe-
less, the signature of the quasibreather is clearly present.
Just as in the unforced case, we find that the wave ac-
tion spectrum of the system is altered by the quasibreather.
In Fig. 11, we provide the fully developed spectra of the
forced-dissipated system for several different orders of non-
linearity. When the nonlinearity is low and the quasibreather
is present, we again see a departure from a power-law
spectrum, with a steeper tail region. When nonlinearity is
raised, we observe that the spectra of wave turbulence are
restored (and an associated forward energy cascade develops)
[28].

FIG. 12. The time series of (a) H (dashed) and H2 (solid) starting from t = 0 for the defocusing MMT equation with β = 3 under
symplectic integration, with the corresponding time series of (c) H4. A detailed view beginning at t = 1000Tf of (b) H , H2 and (d) H4 over
5Tf .

APPENDIX B: NUMERICAL VALIDATION
OF THE QUASIBREATHER

In this Appendix, we provide analyses and numerical tests
that rule out the possibility that the structure we discuss is
a numerical artifact. In particular, we show that the quasi-
breather solution is consistent under the following:

(i) The change of integration scheme to a symplectic inte-
grator.

(ii) The change of our dealiasing procedure.
(iii) An increase in the number of Fourier modes (spatial

resolution).
We begin with point (i). Symplectic integration of a Hamil-

tonian system preserves the phase-space geometry of its
solution. Specifically, under Hamiltonian flow, structures such
as sinks and limit cycles are forbidden by Liouville’s theorem.
When using an integrator such as an explicit fourth-order
Runge-Kutta scheme (RK4), however, these structures can be
erroneously introduced into the solution, which may change
the dynamics. To ensure the quasibreather is not an artifact
introduced by nonsymplectic integration, we implement a
simple symplectic integrator, the implicit midpoint method
(IMP) [39], to verify that we still obtain (and preserve) the
quasibreather solution. In the IMP method, we solve the
implicit nonlinear problem via fixed-point iteration. For an
identical numerical setup to that of the main paper, we al-
low the system to freely evolve under the IMP integration
scheme. We set β = 3 and simulate at the low nonlinearity
of ε = 0.001.

We provide in Fig. 12(a) the evolution of H and H2 from
t = 0, with H very well conserved and H2 indicating that the
quasibreather has already formed by t = 1000Tf . The corre-
sponding plot of H4 is provided in Fig. 12(c). Just as in Fig. 1,
these plots of the initial evolution have a low sampling rate,
leading to aliasing. To confirm that the quasibreather has the
same signature in H2 and H4 as in the case of nonsymplectic
integration, high-sampling rate plots of H, H2 [Fig. 12(b)]
and H4 [Fig. 12(d)] are also provided over 5Tf , showing
no difference from the results presented in the main text.
Thus, the quasibreather is not an artifact of nonsymplectic
integration.
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Next, we address point (ii). To prevent the aliasing of
modes due to the cubic nonlinearity of the MMT model, a
standard 1/2 dealiasing rule is applied after each product dur-
ing the evaluation of the nonlinear term. The 1/2 dealiasing
rule is typically implemented via zero-padding the truncated
wave-number domain: if km is the maximum resolved wave
number in our simulation (that is oriented along the x and
y axes), then, in each direction, zero-padding is included
such that for a computation domain of size [−2km, 2km]2, the
nonzero (resolved) Fourier modes are only contained in the
box [−km, km]2. The zero-padding is enforced by setting all

modes outside the box [−km, km]2 to zero after each product
is taken.

This procedure, however, has the effect of subtly changing
the evolution of the system. To be assured that the qua-
sibreather is not an artifact of our dealiasing scheme, we
first show that our dealiasing leads to a slightly modified
Hamiltonian system (analytically), and then we show that the
quasibreather is preserved in the original system without mod-
ification. We start by writing down the truncated Hamiltonian
that we aim to numerically simulate:

H =
∑

k|k|∞∈[−km,km]

k2ψ̂kψ̂
∗
k + 1

2
λ

∑
k1,k2,k3,k

k1+k2=k3+k
|ki|∞∈[−km,km]

(k1k2k3k4)β/4ψ̂k1ψ̂k2ψ̂
∗
k3ψ̂

∗
k , (B1)

where the summation is over every permutation over the subscript wave numbers. When computing the nonlinear term, we
evaluate (via the Fourier transform)

(ψxψ
∗
x )ψx =

⎛
⎜⎜⎜⎜⎜⎝

∑
k1,k3|ki|∞∈[−km,km]

|k1−k3|∞∈[−km,km]

ψ̂k1ψ̂
∗
k3ei(k1−k3)·x

⎞
⎟⎟⎟⎟⎟⎠

∑
k2|k2|∞∈[−km,km]

ψ̂k2eik2·x, (B2)

where the derivatives have been neglected for clarity (β = 0). The second condition under the first sum (red) is the first dealiasing
step, where any product of modes that is mapped outside the bounded computational domain is excluded from the sum. The effect
of dealiasing is therefore to remove certain interactions from the original system. It is not hard to show that including this extra
condition modifies the Hamiltonian such that

H ′ =
∑

k|k|∞∈[−km,km]

k2ψ̂kψ̂
∗
k + 1

2
λ

∑
k1,k2,k3,k

k1+k2=k3+k
|ki|∞∈[−km,km]

|k1−k3|∞∈[−km,km]

(k1k2k3k4)β/4ψ̂k1ψ̂k2ψ̂
∗
k3ψ̂

∗
k , (B3)

where H ′ represents the effective Hamiltonian when dealias-
ing is used. While a second dealiasing step is included after
the second product is taken in (B2), no additional interac-
tions are removed from H ′ by the second dealiasing step:
|k1 + k2 − k3|∞ ∈ [−km, km] is accounted for by the fact that
we already require k1 + k2 − k3 = k and |k|∞ ∈ [−km, km].
We remark that it is not a priori clear that the dealiased system
is still a Hamiltonian, but this fact is discovered when one
attempts to write H ′.

To show that the system evolution according to (B1) also
leads to the quasibreather solution, we perform a different
dealiasing scheme for the simulation. Specifically, we skip
the dealiasing step in the intermediate stage of computing the
cubic term, and only dealias once after cubic multiplication
is completed. Since this dealiasing step is equivalent to keep-
ing only the Fourier modes up to km, this strategy produces
evolution consistent with the system given by H (rather than
H ′). We use this scheme in an otherwise identical setup to
the main text, with β = 3 and ε = 0.001, simulating until a
quasibreather emerges.

The evolution of the Hamiltonian H and the component H2

from t = 0 are presented in Fig. 13(a), and the corresponding
H4 is in Fig. 13(c). For this supplemental test, we use a larger

time step that leads to larger dissipation, though the energy
loss over 1000Tf it is still only 0.5% of the total energy. We
see that a clear peak in H4 has formed before t = 1000Tf ,
indicating the quasibreather has formed. Again, due to the
low sampling rate, aliasing is present in Figs. 13(a) and 13(c).
We provide detailed plots over 5Tf of H, H2 in Fig. 13(b)
and H4 in Fig. 13(d) with sufficient sampling such that no
aliasing is present. It is clear that the quasibreather remains
unchanged under our second scheme, which preserves the
truncated Hamiltonian system, indicating that the structure is
not an artifact of dealiasing.

Finally, we address point (iii). The forced-dissipated results
shown in Sec. I are computed on a domain with 16 times as
many modes, which shows that the quasibreather emerges and
persists in simulations with higher spatial resolution.

APPENDIX C: SEARCH FOR NEARBY
PERIODIC SOLUTIONS

In this Appendix, we detail the methods we have imple-
mented in search of exactly periodic solutions to the 2D,
defocusing Majda-McLaughlin-Tabak (MMT) model without
forcing or dissipation. We employ two different methods:
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FIG. 13. The time series of (a) H (dashed) and H2 (solid) starting from t = 0 for the defocusing MMT equation with β = 3 using a scheme
that avoids the dealiasing step, with the corresponding time series of (c) H4. A detailed view beginning at t = 1000Tf of (b) H , H2 and (d) H4

over 5Tf .

First, we use a traditional method by Flach [30] to obtain
breathers in Hamiltonian lattice problems. Second, we use
a very recent variational method by Azimi et al. [31] for
high-degree-of-freedom dynamical systems. Recall that both
methods use as an initial condition the numerically obtained
quasibreather solution we discuss in the main paper, and our
objective is to find a “numerically exact” periodic breather
whose state space trajectory is close to the near-periodic one
we have observed and reported.

1. Spectral fixed-point method

To implement this method, we require the MMT equa-
tion in wave number form, which is given by

i
∂ψ̂k

∂t
= k2ψ̂k + γ

∑
k1,k2,k3

(k1k2k3k)β/4ψ̂k1ψ̂k2ψ̂
∗
k3δK

× (k1 + k2 − k3 − k). (C1)

We introduce the parameter γ to control the size of the nonlin-
ear term, i.e., the nonlinearity level in the main paper. We now
assert that ψ̂k(t ) is periodic in time, such that we can write a
Fourier series for the solution,

ψ̂k =
∑

n

Akne−i�nt . (C2)

Here we define �1 = 2π/T , where T is the prescribed period
of the solution. The MMT equation (1) now becomes the
system of nonlinear equations,

(k2 − �n)Akn + γ Fkn = 0, (C3)

where Fkn is the full spectral form of the nonlinear term in
(1). We now follow the arguments of [30], and we write two
fixed-point iteration schemes to find solutions to (C3):

A(i+1)
kn = k2

�n
A(i)

kn + γ

�n
F (i)

kn , (C4)

A(i+1)
kn = �n

k2
A(i)

kn − γ

k2
F (i)

kn . (C5)

These schemes share identical fixed points. In the small Akn

approximation, the eigenvalues of (C4) and (C5) are given
by k2/�n and �n/k2, respectively. These are inverse to one

another, such that if the eigenvalue of one map is greater than
1, the other is less than 1. Thus, for any (k, n), we can choose
whether or not the mode shrinks or grows in size in the linear
approximation. The approach put forth in [30] is to select
the fixed-point map for each (k, n) that ensures that only the
fundamental energy-containing mode of the breather grows in
the linear approximation. As the Akn evolve under fixed-point
iteration, the hope is that a stable fixed point is identified
corresponding to a breather with non-negligible amplitude of
the energy-containing mode.

We find that the strategy used by Flach to choose the map
with an eigenvalue greater than 1 leads to quick divergence
of the energy-containing mode in the iteration. Therefore, we
apply a modified scheme, where we choose the map with
an eigenvalue less than 1 for each mode. With the mapping
strategy determined, we can implement the method.

2. Variational method

In this subsection, we adapt the variational method by
Azimi et al. [31] for finding periodic solutions to nonlinear
systems of high dimension. We strongly encourage the reader
to first review their article before reading this Appendix. The
most important change we make to their derivation is to
generalize it for complex scalar fields ψ . Due to nonlocal
derivatives, it is better to consider the wave-number form of
the MMT equation. We begin by writing the MMT equa-
tion in wave-number form (C1). Because this is an evolution
equation for the coefficients of a Fourier series, the periodic
boundary conditions imposed on our physical domain are au-
tomatically satisfied. Thus, the loop space is simply the set of
all possible sets of Fourier modes {ψ̂k} that are periodic with a
period of T . We can then express a loop I in this loop space as

I =

⎡
⎢⎣

ψ̂k(t )

ψ̂∗
k (t )
T

⎤
⎥⎦, (C6)

where t ∈ [0, T ], and k represents all resolved wave numbers
in (1). Note that we have included the conjugate ψ̂∗

k to ensure
that gradients with respect to I are well defined for the com-
plex variables ψ̂k [40]. Just as in [31], we make a substitution
of variables such that t = sT . Next, we require a suitable inner
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product on the loop space. For this, we use the Hermitian inner product

〈I, I ′〉 =
∫ 1

0

∑
k

(ψ̂∗
k ψ̂ ′

k + ψ̂kψ̂
∗′
k )ds + T T ′. (C7)

For this choice of loop space and inner product, the method and conclusions of [31] hold for a periodic complex field subject to
nonlocal derivatives as in (1).

We proceed by outlining our derivation of the τ -evolution equation for I . For a given initial loop I0, we seek a derivative ∂I
∂τ

for which the square residual norm J (I ) monotonically decreases. The square residual norm is defined by J (I ) ≡ 〈R(I ), R(I )〉,
where the MMT equation residual is given by

R(I ) =
⎡
⎣R1

R2

R3

⎤
⎦ ≡

⎡
⎣− 1

T
∂ψ̂k
∂s − ik2ψ̂k − i

∑
(k1,k2,k3 )(k1k2k3k)β/4ψ̂k1ψ̂k2ψ̂

∗
k3δK (k1 + k2 − k3 − k)

c.c.
0

⎤
⎦. (C8)

We now assume some G(I ) to be the derivative of interest [ ∂I
∂τ

= G(I )], and then define

L(I; G) = lim
h→0

R(I + hG) − R(I )

h
(C9)

as the derivative of the residual in the direction of the evolution of I . Reference [31] shows that if G(I ) = −L†(I; R), where
L†(I; R) is the adjoint operator to L(I; G) defined by

〈G,L†(I; R)〉 = 〈L(I; G), R〉, (C10)

then ∂J
∂τ

� 0 is guaranteed for all τ . It then follows that, for this choice of G(I ), any initial guess at a periodic solution to the
MMT equation I0 will evolve in τ until a minimum of J is achieved. If J = 0, no periodic solution is contained within the basin
of attraction. If J = 0, a periodic solution has been identified. For our system, the adjoint operator can be found according to
(C10) as

L†(I; R) =

⎡
⎢⎣

1
T

∂R1
∂s + ik2R1 + 2iR1k−β/2 ∑

k1
k−β/2

1 ψ̂k1ψ̂
∗
k1 − iR∗

1k−β/2 ∑
(k1,k2 ) (k1k2)−β/4ψ̂k1ψ̂k2δK (k1 + k2 − 2k)

c.c.
2

T 2

∫ 1
0

∑
k Re

[
∂ψ̂∗
∂s R1

]
ds.

⎤
⎥⎦. (C11)

With the adjoint operator now determined, we can implement the variational method. For propagation in fictitious time, we use
a first-order exponential time differencing scheme to reduce system stiffness.
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