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Increased extinction probability of the Madden-Julian oscillation after about 27 days
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The Madden-Julian oscillation (MJO) is a tropical weather system that has an important influence in the
tropics and beyond; however, many of its characteristics are poorly understood, including their initiation and
termination. Here we define Madden-Julian events as contiguous time periods with an active MJO, and we show
that both the durations and the sizes of these events are well described by a double power-law distribution. Thus,
small events have no characteristic scale, and the same for large events; nevertheless, both types of events are
separated by a characteristic duration of about 27 days (this corresponds to half a cycle, roughly). Thus, after
27 days, there is a sharp increase in the probability that an event becomes extinct. We find that this effect is
independent of the starting and ending phases of the events, which seems to point to an internal mechanism of
exhaustion rather than to the effect of an external barrier. Our results would imply an important limitation of the
MJO as a driver of subseasonal predictability.
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I. INTRODUCTION

The Earth system presents variability across an enormous
range of temporal, spatial, and energy scales [1–5]. In the
case of weather and climate, these go from small turbulent
structures, in the scales of a few seconds and centimeters, to
ice ages, in tens of thousands of years at the planetary span.
This variability has been traditionally assigned to well-defined
peaks in the power spectrum of the weather-climate signals,
corresponding to certain periodic or nearly cyclic processes
(such as daily cycles, annual cycles, Milankovich cycles, etc.)
that dominate over a secondary background noise.

However, it is starting to be recognized that the most im-
portant part of weather and climate variability comes precisely
from the “background” [5]. It is a remarkable fact that the
variability that arises at each scale turns out to be “similar”
to that at other scales, so that self-similarity characterizes
the weather-climate system. Needless to say, deep under-
standing of this variability is of fundamental importance to
improve predictability and acknowledge its limitations (see,
e.g., Refs. [6,7]), as well as to distinguish between natu-
ral and anthropogenic trends; nevertheless, the self-similarity
paradigm (also called scale invariance or scaling) is far from
having entered into the mainstream practice of Earth sciences
[5].

Self-similarity presents many different aspects. In time se-
ries, one may find it in the probability density of the measured
variable (the signal) in the form of a power-law tail [5,8],
which enhances the probability of extreme records [9] and
implies that large values of the variable can arise without
a characteristic scale. Self-similarity can also manifest in a
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power-law shape of the power spectrum, signaling the absence
of a finite correlation time, which implies correlation patterns
at all temporal scales, including the clustering of extremes.

As an alternative to performing the statistics for individual
measurements of the signal (such as hourly rain), one can
define events for which the signal is above a fixed threshold
for a certain period of time (such as rain events at a fixed
location). The durations of these events can be power-law
distributed also [10], as well as the integral of the signal along
event duration (referred to as the size or sometimes, roughly
speaking, as the “energy” of the event) [11]. Waiting times
between consecutive events have been found to be power-law
distributed in some cases [12–14], although in some others
self-similarity is manifested not in the power-law shape of
the distributions but in bivariate scaling laws relating waiting
time to a threshold in the value of the signal or in event size
[15–18].

Using time series defined over a spatial grid (constituting
an evolving geophysical field), one may be able to construct
spatiotemporal events (or “clusters”) of activated signals,
which again have been claimed to be power-law distributed
in terms of their spatial size, spatiotemporal size, or total
“energy” [11,19,20]. On the purely geometric side, fractal
structures are another signature of self-similarity, and they
have been found, for instance, in clouds [21,22].

Particularly relevant for our purposes is the case of tropical
cyclones (comprising hurricanes, typhoons, tropical storms,
tropical depressions, etc.). Tropical cyclones are routinely
identified as individual spatiotemporal events, for which the
maximum sustained wind speed is recorded every 6 h, from
onset to dissipation. Integration of the cube of this speed along
the lifetime of the tropical cyclone yields the so-called power
dissipation index [23], which is a proxy of the total energy
dissipated by the tropical cyclone [24,25]. Reference [24]
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found that the tropical-cyclone energy estimated in this way
follows a power-law distribution, with nearly the same expo-
nent for all tropical-cyclone basins, although the most extreme
events (in terms of energy) turned out to be not power-law but
exponentially distributed, due to finite-size effects that break
the power-law decay. The results found by Traxl et al. [20] for
spatiotemporal rainfall clusters are probably another side of
the same scale-free phenomenon, but extended to extratropical
systems.

This abundance of power laws and scaling in meteorology
and climatology could be an indication that the weather-
climate system is close to a “critical” state. Indeed, Peters and
Neelin [26] found evidence of the existence of a sudden but
continuous transition between a nonrainy and a rainy phase
as a function of the water-vapor content of the atmosphere,
analogous to a thermodynamic second-order phase transition.
In addition, the state of the atmosphere would show a tendency
to be located at the onset of this transition, i.e., at the critical
point, which would explain the prevalence of scale invariance
in atmospheric processes, as scaling is one of the hallmarks
of critical phenomena [27]. In particular, the scale-invariance
found in single-site rain measurements, spatiotemporal rain
clusters, and tropical cyclones may be a direct manifestation
of Peters and Neelin’s findings [19].

The spontaneous criticality of the atmosphere may be orig-
inated by a feedback mechanism that triggers the existence of
an attractor at the onset of the transition; this phenomenon is
referred to as self-organized criticality [7,28]. In simple terms,
when the atmosphere is in the subcritical phase (low water-
vapor content and no rain), the mechanisms at work increase
the water-vapor content until the critical point is reached and
the chance of rain increases; this hinders the further increase
of the water-vapor content. On the other hand, if the system
enters into the supercritical phase (high water-vapor content),
the dynamics is rainy, which decreases the water-vapor con-
tent, until the nonrainy (subcritical) phase is reached. In this
way, the system fluctuates around the critical point. One key
characteristic of criticality is that perturbations evolve keeping
a delicate balance between amplification and attenuation [29],
which has obvious implications for predictability. The coex-
istence and compatibility of this hypothetical criticality of the
atmosphere with its chaotic dynamics remains a fundamental
open question.

Nevertheless, the concept of scale invariance is problem-
atic from the empirical point of view [30,31], as it is very
difficult to establish its existence rigorously. For power-law
distributions in particular, researchers have traditionally used
linear regression in double logarithmic scale to fit either the
probability density or the complementary cumulative dis-
tribution function, but this procedure is known to lead to
important biases [32–34]. As a consequence, many claims in
the literature about the existence of power-law behavior or
self-similarity can be considered dubious.

The problem continues when dealing with power-law tails,
where the power-law distribution holds asymptotically, or, in
practice, above an unknown lower cutoff. In that case, it has
been usual to establish the value of the cutoff “by the naked
eye,” which is of course arbitrary and cannot be replicated.
Clauset et al. [34] proposed an ad hoc method to find the
value of the lower cutoff, but other researchers have found

this method to perform badly for synthetically generated
power-law tails [35,36]. Another common problem is that,
for the most extreme events, power-law distributions can be
perturbed by finite-size effects [37], and the tail of the dis-
tribution transforms into an exponential-like decay (Clauset
et al.’s method [34] and other fitting methods are unable to
deal with power laws tapered in this way). Further, power laws
can be easily confused with log-normal distributions [38–40],
and there are no appropriate tools for model comparison when
different distributions hold above different lower cutoffs (as
each distribution fits a different subset of the data [41]).

The problem of power-law-tail fitting is far from solved,
but here we will use the approach explained in Refs. [11,42],
which has given reasonably good results in many different
applications. We obviate the problem of correlations between
the observations [43,44], looking for the distribution that best
explains the data values assuming independence (note that
independence is the maximum-entropy outcome when no con-
straint is available for data dependence [45]). When one has
an ergodic system spanning a time window much longer than
the correlation time, one recovers the probability density of
the variable under study. If not, what one obtains in this way
is not an estimation of the (marginal) probability density of
the underlying population but rather the probability density
conditioned to the observed history and constraints.

A different way to approach the problem of extreme events
is by means of extreme-value theory, and, in concrete terms,
by the peaks-over-threshold framework [46]. A limit theorem
(analogous in some sense to the generalized central limit
theorem [47]) ensures that, for sufficiently large thresholds
u, and under statistical independence, the excess x − u of a
random variable x with respect to the threshold follows the so-
called generalized Pareto distribution (note that the threshold
u introduced here is different from the threshold in the signal
mentioned above in order to define events). The generalized
Pareto distribution extends the “classic” Pareto distribution to
zero and negative values of the so-called extreme-value index
ξ (which constitutes the shape parameter of the distribution).
In this way, one has a mathematical justification to use a
particular distribution to fit extremes (but only for “extremely”
large thresholds, in theory). An important problem then in
extreme value theory is to find proper methods to establish
the value of the required threshold in order that the excesses
follow the generalized Pareto distribution.

Interestingly, if instead of calculating the excesses with
respect to the threshold one calculates the relative change, i.e.,
one rescales the random variable by the value of the threshold,
as x/u, the resulting limit distribution is not the generalized
Pareto distribution but rather (under certain circumstances)
the power law. In fact, the generalized Pareto distribution
with a positive extreme-value index and the power-law dis-
tribution are very much related: asymptotically, the former
is characterized by a power-law tail, and both belong to the
so-called Fréchet maximum domain of attraction in extreme
value theory. Further, when a power-law-distributed variable
x is shifted by a constant (such as x − u), it becomes Pareto-
distributed. Informally, we can refer to power-law tails and
Pareto tails as “fat tails.” The present paper discusses in detail
the important relations between both distributions. Note, how-
ever, that extreme-value theory does not provide (in contrast
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to self-organized criticality) an explanation for the origin of
power-law tails, as the Pareto distribution arises for distribu-
tions that have a power-law tail before calculating excesses
(i.e., those distributions belonging to the Fréchet maximum
domain of attraction [46]). Alternative explanations for the
origin of power laws in different systems are explained in
Refs. [48–51].

Although, empirically, the fitting of the generalized Pareto
distribution and the fitting of the power-law distribution face
similar problems (the unambiguous and automatic finding of a
reasonable cutoff or threshold), the methodologies employed
in each case have been different, due probably to the fact
that they are used by different communities of researchers. As
already mentioned, automatic ad hoc algorithms are currently
used for power laws by researchers in the fields of statisti-
cal physics and complex systems [11,34,42], whereas visual
methods (diverse plots such as the Hill plot, the mean-excess
plot, or the CV plot) have been traditionally used for the gen-
eralized Pareto distribution in extreme-event statistics [46,52].

In this paper, we investigate whether the important at-
mospheric phenomenon known as the Madden-Julian (MJ)
oscillation (MJO) reflects in some degree the scale invari-
ance present in many other aspects of weather and climate.
This is important as criticality may underlie or influence the
complexity of the dynamics of MJO propagation. Moreover,
the statistics of MJ events may be affected by different atmo-
spheric conditions and processes. Our approach is similar to
that used in Ref. [24] to study tropical cyclones, but note that
the MJO has the additional complication of being character-
ized by a phase (in addition to an intensity). We pay special
attention to the probabilistic description of the phenomenon
as well as to the fitting procedures. We align with the “ad hoc
recipes” used in complex systems to fit power-law distribu-
tions [11,42], which have the advantage of being automatized,
not visual.

In the next section, we briefly explain the index used to
quantify the occurrence of the MJO as well as our definition of
MJ events. In Sec. III we introduce the two main probability
distributions to fit MJ event sizes and durations, namely the
power-law and the Pareto distributions; we also mention the
important relations between both distributions (explained in
more detail in an Appendix A). In Sec. IV we present our
statistical results, showing the convenience of using the dou-
ble power-law distribution (an extension of the simple power
law) to characterize the size and durations of the MJ events.
The double power law also makes it clear that there is a sudden
decrease in the survival of the MJO after about 27 days, which,
in addition, seems to be independent of the starting and ending
locations of the MJO. Conclusions are presented in the final
section.

II. THE MJO, THE RMM INDEX, AND A DEFINITION
OF MJ EVENTS

A. The MJO through the RMM index

The Madden-Julian oscillation (MJO) [53] constitutes
the principal mode of variability in tropical weather on
subseasonal timescales (i.e., from two weeks to approximately
three months [54]). It has a strong influence on precipitation
in the tropics, but it also affects higher latitudes through tele-

connection patterns [55]. The MJO is an atmospheric structure
that has a tendency to move eastward with an average speed
of about 5 m s−1 (� 4◦ day−1) [53]. It is characterized by
a region of strong convection, with precipitation and upward
motion, and ahead (to the east) and behind (to the west) there
are regions of suppressed convection with dry conditions.
Previous studies have found substantial variability in the oc-
currence of the MJO. From a physical point of view, the basic
mechanisms behind the MJO are not well understood [56];
there are several models and hypotheses [57], but a consensus
has not been reached [58].

Unambiguous definition of the MJO is elusive [59], but to
practically monitor it, Wheeler and Hendon [60] developed a
real-time multivariate MJO (RMM) index that consists of the
first and second principal components (RMM1 and RMM2)
obtained from the empirical orthogonal functions (EOFs) that
combine latitudinal averages of outgoing long-wave radia-
tion (OLR), and zonal winds at lower (850 hPa) and higher
(200 hPa) atmospheric levels. The EOFs are calculated for
daily fields on a latitudinal band of ±15◦ around the Equator.
Notice that, in contrast to other “activation” phenomena, the
RMM index characterizes the MJO through a bivariate signal,
which introduces an extra degree of complication in compari-
son with univariate signals [24,61]. A limitation of our study is
that an index such as the RMM may not capture all the features
of the MJO phenomenon [62], as, for instance, interferences
with other waves may lead to an apparent termination of the
MJO despite that termination not taking place in reality. Thus,
our conclusions apply to the MJO as reflected through the
RMM index.

We downloaded the daily values of the RMM index from
the Australian Government Bureau of Meteorology, from Jan-
uary 1979 to December 2021 [63] (records prior to 1979
are found to be incomplete). Other MJO indices have been
developed, but the one by Wheeler and Hendon (the RMM
index [60]) is the most widely used.

The progression of the MJO can be visualized in a two-
dimensional phase diagram with RMM1 in the horizontal axis
and RMM2 in the vertical axis. Equivalently, the RMM index
can be represented in polar coordinates by its amplitude and
phase (note that we used the term “phase” in the Introduction
with a different meaning). The amplitude A, or intensity, is
just the modulus of the vector defined by RMM1 and RMM2
in Cartesian coordinates, i.e.,

A =
√

R2
1 + R2

2,

where R1 denotes RMM1 and R2 denotes RMM2. When the
amplitude is above a specific threshold Ac, taken equal to
1 (i.e., when the vector is outside the unit circle), the MJO
is active and the vector usually moves counterclockwise. If
the index is below the threshold, then the MJO activity is
considered weak or suppressed, and the path of the vector is
more erratic. The time evolution of the MJ amplitude is shown
in Fig. 1(a) for a window of more than 160 days.

The MJO phase φ as given by the RMM index can be
obtained in several steps, starting with

φ = arctan2(R2, R1),
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FIG. 1. (a) Time window displaying the amplitude A(t ) of the
MJO as given by the RMM index, including the largest event on
record, with d = 153 days, s = 291, and n = 27 (i.e., 3.4 cycles).
t = 1 signals the starting time of this event, corresponding to Dec.
20, 1989. (b) Same for the (discretized) phase φ(t ).

where arctan2 is the 2-argument arctangent (yielding continu-
ous values between −π and π ). The resulting phase is shifted
and rescaled as

φ → 8(φ + π )

2π
,

and subsequently discretized in eight values from 1 to 8, as

φ → �φ� + 1, (1)

with �φ� the integer part of φ. In this way, the negative
quadrant (R1, R2 < 0) corresponds to phases 1 and 2, and so
on, counterclockwise. A selection of the time evolution of the
MJ phase is shown in Fig. 1(b).

The resulting eight discretized phases are associated with
the geographical location of the MJO along the tropical re-
gion. In particular, phases 2 and 3 correspond to the Indian
Ocean, phases 4 and 5 to the Maritime Continent, phases 6
and 7 to the Western Pacific, and phases 8 and 1 to the West
Hemisphere and Africa. Thus, the usual counterclockwise
movement of the vector reflects the eastward movement of the
MJO when it is active.

B. Madden-Julian events, event duration, and event size

In the simplest definition, based on the RMM index, an
MJ event starts when the amplitude A of the index crosses
the threshold Ac from below (from A < Ac to A � Ac, sig-
naling initiation), and it ends when the amplitude crosses the
threshold from above (from A � Ac to A < Ac, extinction or
termination), with the threshold fixed to Ac = 1 (this prescrip-
tion is standard). Thus, the event consists of all the consecutive
days in which the amplitude is above (or at) threshold, signal-
ing a continuously active MJO. A simple code in FORTRAN is
provided in the supplemental material [64]. The example in
Fig. 1 displays the largest MJ event on record (in terms of the
largest size and duration). If an event starts, supposedly, on
the first day on record (Jan. 1, 1979), or if it has not ended on
the last day, the event has to be removed from the analyses, as
it is likely that these are incomplete events.

It is worth mentioning that the MJ events we define are
different from other prescriptions in the literature (the reason
is that one may use the same term for quite different things);
for instance, Samarasinghe et al. [65] consider daily “events”
(each day the amplitude is above the threshold is a different
event), whereas Matthews [66] identifies “events” with com-
plete cycles. In particular, our definition of MJ events is purely
statistical, and we do not introduce, a priori, any arbitrary pre-
scription about which should be, for instance, the minimum
duration of an event to be considered a genuine MJ event.
Instead, we rely on the statistical analysis to clarify these
issues. Alternatively, we could have also used the terms MJ
“instances” or MJ “excursions,” but, for the sake of simplicity,
we stick to MJ events.

The number of consecutive days with amplitude A � Ac

gives the duration d of the MJ event, computed as

d = tf − ti + 1

(in days), where ti is the starting time of the event (first day
above threshold), and tf + 1 is the ending time (tf is the last
day above threshold). The size s of the event is the sum of the
amplitudes along the duration of the event, i.e.,

s =
tf∑

t=ti

A(t ),

with t denoting time (in days). This is essentially the same
definition used for the energy of hurricanes [24] and the size
of rain events [10]. In the rest of the paper, we will study
the statistics of both d and s, but with a preference for s,
for reasons that will become clear later. Other observables
characterizing the events will be defined and used for very
concrete purposes below.

III. POWER-LAW AND PARETO FITTINGS
AND THEIR RELATIONS

As mentioned in the Introduction, our study will deal first
with two main probability distributions with the purpose of
fitting the empirical values of the MJ event sizes. Redefining
s or d (or any other variable) as x, the probability density of
the power-law (pl) distribution is

fpl(x) = α

a

(a

x

)α+1
for x � a, (2)
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and 0 otherwise, with α > 0 and a > 0, where α + 1 is the
exponent of the density (and α is the exponent of the comple-
mentary cumulative distribution function) and a is the lower
cutoff. Note that the fit will be performed in such a way that
a can be larger than some of the values of x, thus those values
will be discarded.

Given a threshold u, we define the excesses y as y = x − u
when x � u (discarding the rest of the values). Extreme-value
theory [46] guarantees that the excesses follow the generalized
Pareto (gp) distribution when u → ∞ and the values of x are
independent. The corresponding probability density is

fgp(y) = 1

σ (1 + ξy/σ )1+ 1
ξ

for y � 0, (3)

and 0 otherwise, considering ξ � 0 and σ > 0, where 1 + ξ−1

is the exponent (of the density) and σ is a scale parameter. ξ

is referred to as the extreme-value index (not to be confused
with the extremal index). In fact, ξ can be smaller than zero
(and in that case 0 � y � σ/|ξ |), but the case of interest for
us is ξ � 0, where the particular case ξ = 0 corresponds to
an exponential distribution, whereas ξ > 0 corresponds to the
standard (nongeneralized) Pareto distribution.

Of special relevance, but not particularly for extreme
events, is the truncated power-law (tpl) distribution, which
may arise when, in a power-law distribution, the most extreme
values deviate from the power law. Then, in order to avoid
additional parameters to model this deviation, these most ex-
treme events, above some upper cutoff b (that truncates the
distribution from above), are eliminated. The distribution is
defined by the probability density

ftpl(x) = αaα

1 − (a/b)α

(
1

x

)α+1

for a � x < b, (4)

and zero otherwise, with −∞ < α < ∞ but α �= 0 and 0 <

a < b. The parameters α and a play the same role as in the
(nontruncated) power-law distribution, but note that they can
take very different values (as in our case every distribution will
fit a different range of the data); thus, we will distinguish atpl

and αtpl from apl and αpl. The upper truncation parameter b
gives a name to the distribution and yields the nontruncated
case in the limit b → ∞ if α > 0. In the next section, we
will see the convenience, from an empirical point of view, of
introducing, in addition, the double power-law distribution.

The connections between the power law and the Pareto
distribution (ξ > 0) are explained in Appendix A. A practical
summary follows:

(i) Pareto is asymptotically a power law, i.e., fgp(y) →
fpl(y) when y → ∞, with α = 1/ξ and a = σ/ξ .

(ii) If x is power law, the excesses y = x − u are Pareto,
with ξ = 1/α and σ = u/α, if u � a.

(iii) If y is Pareto, the shifted variable x = y + u is power
law if u = σ/ξ , with α = 1/ξ and a = u.

(iv) If y is Pareto (for y � 0), the shifted variable x = y + u
is “shifted Pareto” for any value of u (and for x � u), with the
same values of ξ and σ .

(v) The kth-order moments, 〈xk〉 and 〈yk〉 (corresponding
to power law and Pareto, and also for shifted Pareto), become
infinite (diverge) for k � α = ξ−1 (assuming ξ > 0).

FIG. 2. Point process corresponding to the size s of MJ events
at their occurrence times, given by the starting time ti, for the whole
time span analyzed. A moving average with a window width of 99
events is also shown (together with error bars corresponding to one
standard deviation of the mean). No trend in the sizes is apparent
in the average, but there seems to be a modulation with a period of
about 15 years.

(vi) Pareto is an attractor for a broad class of distributions
when y = x − u and x > u, with u → ∞ and independent
values of x.

(vii) The power law is an attractor when z = x/u and x > u,
with u → ∞ and independent values of x.

IV. RESULTS

With the prescriptions explained in the previous section,
we obtain a total of 734 MJ events during the period 1979–
2021 (43 years), which yields a rate of 17.1 MJ events per
year. For comparison, the average number of active days per
year turns out to be 226 (corresponding to 62% of the days and
a mean event duration 〈d〉 � 13.2 days). In Fig. 2 we display
the values of the size of the events in time (as a marked point
process).

A. Probability distributions and scatter plots

The estimation of the empirical probability density of the
sizes of the MJ events, f (s), using the full record, appears
in Fig. 3(a) (in double logarithmic scale [64]), showing its
broadness, ranging from s = 1 to almost 300. The counterpart
for event durations, f (d ), shown in Fig. 3(b), turns out to be
qualitatively similar, ranging from 1 day to more than 150
days. Notice that the distribution of f (d ) shows no special be-
havior around its smallest values, which means that durations
d = 1, 2, or 3 are not “pathological,” and they constitute part
of the same phenomenon given by the longer durations. The
only remarkable change is around d � 27 days [see Fig. 3(b),
and below for the quantification], where a jump in the slope (in
log-log) is apparent (this corresponds to an event size around
47, and it will be more precisely quantified below).

The correlation between the size and the duration of the
events is displayed in the scatter plot of Fig. 4. We fit a
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FIG. 3. (a) Empirical estimation of the probability density f (s)
of the size of MJ events (in log-log scale). Power-law and Pareto
fits are also shown, with exponents αtpl = −0.10, αpl = 2.0, and
αgp = 3.2. (b) Same for the probability density f (d ) of the durations.
Power-law and Pareto fits are given by αtdpl = −0.05, αdpl = 2.3,
and αgp = 7.3 (the power-law fits for d are discrete but represented
by lines). For both observables, Pareto fits are valid for s, d � a;
nevertheless, the region below a is shown for purposes of illustration.

straight line to ln s versus ln d (excluding the events with d �
3, to reduce discreteness effects), leading to the power-law
relation s ∝ dγ with γ = 1.191 ± 0.007 and a Pearson cor-
relation coefficient ρ = 0.992 (the opposite regression, that
of ln d versus ln s, leads to γ = 1.211 ± 0.007). We refer to
this linear correlation between the logarithms as power-law
correlation. Observe that no change in slope (in log-log) is
observable, despite the marginal distributions f (d ) and f (s)
show a change in slope. Thus, the relation between s and d
seems to be more “fundamental” than the individual marginal
distributions, as the s − d relation is maintained for the full
range of values of s and d . In contrast, each of these variables
is uncorrelated with its subsequent values (which is very con-
venient in order to apply the method of maximum-likelihood
estimation [44]).

We can also compute the maximum amplitude within a MJ
event, Amax, as well as the mean amplitude Amean, which is
given by Amean = s/d . It turns out that these two measures of
event amplitude are highly correlated between them, with a
linear regression of the logarithms leading to the regression
curve Amax ∝ A1.55±0.01

mean and a Pearson coefficient ρ = 0.977
(exponent 1.63 for the opposite regression). However, in con-
trast to s and d , these two variables are not broadly distributed,

FIG. 4. Scatter plot (in log-log) showing the relation and high
correlation between sizes and durations of MJ events. Note that the
relation is nonlinear, in concrete, a power law with an exponent γ �
1.2 (the two regression lines are nearly the same). A linear relation is
also shown, for comparison.

as they are restricted to a range from 1 (the threshold value)
to no more than 5 (the empirical upper bound to Amax); as
a consequence, we do not study the corresponding probability
distributions. Nevertheless, the two amplitudes are also highly
correlated with size and duration. In the same way, we find
Amax ∝ s0.280±0.007 for s � 5 with ρ = 0.885 (the exponent
for the opposite regression is 0.358), as well as Amean ∝
s0.175±0.005 for s � 5 with ρ = 0.83 (exponent 0.252 for the
opposite regression).

B. Power-law and Pareto fittings of the event sizes

We proceed by fitting a power-law tail, Eq. (2), to the
distribution of MJ-event sizes. As was obvious from the visual
inspection of Fig. 3(a), a power law cannot fit all events (we
do not observe a complete straight line in a log-log plot),
and we need to find a value of the lower cutoff a for which
all events above a are well fitted, disregarding the rest. This
is a way in which one fits a power-law tail, and this is the
idea of Clauset et al.’s method [34], although instead, as
mentioned in the Introduction, we will use the alternative
method exposed in Refs. [11,42], which is similar in spirit but
has been found to yield more consistent results in controlled
tests [35,36].

Requiring, being very strict, a p-value larger than 0.20 to
accept (i.e., not reject) a power-law fit over a specified range,
when applied to the distribution of sizes f (s), this method
leads to a good fit for apl = 40 (comprising 131 events), with
1 + αpl = 3.0 ± 0.2 and a p-value = 0.85. As we know, this
power-law fit is equivalent to a (generalized) Pareto distribu-
tion for the excesses y = x − a with ξpl = 1/αpl = 0.5 and
σpl = apl/αpl = 20. However, if instead of a power law we fit
in the same range a Pareto distribution to the excesses, Eq. (3),
we get ξgp = 0.3 ± 0.1 (corresponding to 1 + αgp = 4.2) and
σgp = 23 ± 3.5. This fit is performed by using the function
gpd from the R-package evir. The performance of both fits
can be seen in Fig. 3(a).

The reason for the difference (not discrepancy), in particu-
lar in the value of the exponents αpl and αgp, is that, once the
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value of a is selected, the power law only has one parameter
to fit, whereas the Pareto distribution has two, allowing for a
“better fit” (at the cost of being less parsimonious). With this
case, we illustrate the possibility of very different outcomes
for the power-law and the Pareto fits, despite their asymptotic
equivalence: Due to the fact that the fitted Pareto distribution
has not reached its asymptotic behavior in the tail of the em-
pirical distribution, its exponent becomes substantially larger
than that of the power law. In this regard, the value of the
exponent brought by the Pareto distribution can be difficult to
interpret, as in some sense the exponent is not directly visible
in the data due to the resulting value of the scaling parameter σ

(the power-law tail contained in the Pareto distribution would
only be visible for s > 300).

The relative performance of both fits can be quantified
using the Akaike information criterion (AIC = 2P − 2 ln L,
with P the number of parameters and L the likelihood). For
the power law, AICpl = 1170.54, whereas for the Pareto (or
shifted Pareto), AICgp = AICsp = 1170.80; thus, the highest
likelihood provided by the Pareto is not enough to overcome
the parsimony of the power-law distribution, and we conclude
that the power law is a better fit. If instead of the AIC we use
the Bayesian information criterion, the advantage provided by
the power law becomes higher.

To go beyond the characterization of the tail of the distri-
bution of sizes, we attempt the fit of a truncated power law,
Eq. (4), to some range of the size data. The fitting method
is essentially the same as for the untruncated power law; see
Refs. [11,42] (in contrast, Clauset et al.’s method [34] is un-
able to fit truncated power laws). We obtain a good fit with an
exponent 1 + αtpl = 0.90 ± 0.05 in a range from atpl = 3 to
btpl = 56 (comprising 488 MJ events) with a p-value = 0.30.
Note that the resulting value of the exponent αtpl is close to
the value obtained for tropical cyclones [24], another phe-
nomenon governed by convection; so, one may wonder if what
we are seeing in MJO is the other side of the same coin.

C. The double power-law distribution: Event sizes

The truncated-power-law fit together with the previous fits
of the tail (power law or Pareto) cover all the data, except the
smallest values (s < 3), which have to be disregarded. In par-
ticular, a double power law (combining the truncated power
law for the body of the distribution with the untruncated power
law for the tail [41]) seems a particularly satisfying solution
as (given atpl) it only involves three parameters [αtpl, αpl, and
the crossover point between the two regimes, given by a value
of s around θ = 47, as seen in Fig. 3(a)]. The impossibility
of fitting very small sizes (s < 3) may be due, in addition to
the very large number of small events (requiring much more
precision in the fits), to the fact that s has a strange character
as a random variable, as it originates from the integration of a
continuous one (the amplitude) along discrete time, and this
has a clear signature for small events (for larger events, s
becomes continuous, in practice).

The probability density of the double power law (2pl) can
be considered a mixture of the (untruncated) power law and
the truncated power law, see Eqs. (2) and (4), respectively,
weighted by a parameter q (and with both distributions defined

over different, nonoverlapping supports), i.e.,

f2pl(x) = (1 − q)
α1

θ

1

(θ/a)α1 − 1

(
θ

x

)α1+1

for a � x � θ,

(5)

f2pl(x) = q
α2

θ

(
θ

x

)α2+1

for x � θ, (6)

and zero otherwise. The exponents fulfill −∞ < α1 < ∞ but
with α1 �= 0 and α2 > 0. The scale parameter (or crossover)
θ fulfills θ � a (and marks the sudden change of slope in
log-log) and the lower cutoff a fulfills a � 0 if α1 < 0 and
a > 0 if α1 > 0. Power laws have no characteristic scales, but
a double power law has one, given by θ ; so, in some sense,
θ allows us to introduce a nonarbitrary separation between
ordinary events and extreme events. Notice that q is not a free
parameter but it ensures continuity between the two power-
law regimes by requiring

q = α1

α2(θ/a)α1 − (α2 − α1)
.

We identify α1 = αtpl, α2 = αpl, and a = a2pl = atpl �= apl. In
the ideal case, b � θ � apl, but in practice we calculate θ

from the intersection of the two power-law regimes, as seen
in Fig. 3; see Ref. [41]. Notice also that the mixture of power
laws given here by the 2pl distribution is a different distribu-
tion from the mixture considered in Ref. [67] (for example,
α1 > α2 there, but we do not have such a restriction).

Due to the good performance of the double power-law dis-
tribution in the fitting of the event-size data, and the power-law
correlation between event size and the rest of the variables
studied, in the remainder of the article we will pay special
attention to the double power-law distribution (as we explain
below, a power-law regime for one variable together with a
power-law correlation with a second variable leads to another
power-law regime for the second variable). Summarizing, the
results of the double power-law fit for the distribution of the
sizes of MJ events are a2pl = 3 (encompassing 558 events),
1 + α1 = 0.93 ± 0.05, 1 + α2 = 3.0 ± 0.2, and θ = 47.

D. Fitting of the event durations:
Discrete power-law distributions

We proceed by applying the same approach to the distri-
bution of event durations, f (d ). However, the results of the
power-law fitting are bad in this case, in particular for the
truncated power-law regime. The reason is that the duration
d is a discrete random variable (measured in number of days),
and the fitted power-law distributions are continuous (as men-
tioned, the size reflects in part this discretization, but the size,
unlike the duration, is not a pure discrete variable). Therefore,
we simply redefine the power-law distributions to deal with
discrete random variables, which essentially only changes the
normalization constant in Eq. (2); see Refs. [68,69] (notice
that the normalization constant is fundamental in the method
of maximum-likelihood estimation).

The resulting probability mass function (the equivalent to
the probability density) of the truncated discrete power law
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(tdpl) turns out to be

ftdpl(x) =
[

1

ζ (α + 1, a) − ζ (α + 1, b + 1)

]
1

xα+1
for

x = a, a + 1, . . . , b

and zero otherwise, with ζ (ν, c) = ∑∞
x=c 1/xν the Hurwitz

zeta function, 0 < a � b and −∞ < α < ∞ for b finite
(tdpl), but α > 0 if b → ∞, leading to ζ (α + 1, b + 1) → 0
and defining the (untruncated) discrete power-law (dpl) distri-
bution.

The results obtained when fitting the (untruncated) dis-
crete power law to the event durations are adpl = 23 days
(comprising 141 events), 1 + αdpl = 3.3 ± 0.2, and p = 0.42.
On the other hand, a Pareto fit over the same range leads to
ξgp = 0.14 ± 0.10 (corresponding to a very large 1 + αgp =
8.3) and σgp = 14 ± 2. The Akaike information criterion leads
to AICpl = 1036.8 for the power law and AICgp = 1039.8,
so the power law outperforms the Pareto (approximating the
power law to the continuous case) and is therefore preferred.
The truncated discrete power law (for fitting a different range
from the tail) leads to adtpl = 6, bdtpl = 31 days (with 370
events), 1 + αdtpl = 0.95 ± 0.12, and p = 0.71. As the two
power-law regimes overlap, the double power law constitutes
a good description, for which we obtain a change of slope at
θ = 27 days; see Fig. 3(b). Thus, the discrete double power
law is able to fit the event durations for d � 6 days with
exponents 0.95 and 3.3. The fact that the Pareto distribution
yields such an extremely large value of the exponent (8.3)
may be an indication of the lack of stability of the fit when
the asymptotic regime is not reached and of the superiority of
using the simpler power law for the tail.

E. Relations and correlations between different observables

As the sizes and durations are correlated, the exponents of
both power-law distributions are not independent. Remember
that we have shown (in a certain sense, see Fig. 4) that s ∝
dγ , with γ � 1.2. There is a well-known theoretical relation
[70,71] between the exponent γ and the power-law exponents,
given by

γ = α(d)

α(s)
= ξ (s)

ξ (d)
(7)

(where we have introduced the superscripts to distinguish
between s and d , of course). Certainly, when we consider
the untruncated power-law tails, the relation is fulfilled by the
empirical values we have obtained (α(s)

pl � 2.0 and α
(d)
pl � 2.3),

within statistical uncertainty. This is a further reason to prefer
the power-law fit in front of the Pareto fit, as for Pareto we
would obtain α(d)

gp /α(s)
gp = 7.3/4.2 = 1.7, far from the empiri-

cal value of γ . For the truncated power laws describing the
bulk of the distributions, the values of αtpl are very close to
zero, and the associated uncertainties turn out to be larger than
the values of αtpl, making a proper validation of the relation
between the power-law exponents and γ impossible.

In addition, the relation between the power-law exponents
and γ given by Eq. (7) can explain why the amplitudes Amean

and Amax are not broadly distributed. Take Amean, for instance,
for which we have established s ∝ Aγ

mean with γ � 4 (see
above). As α

(s)
pl � 2, this would lead to a hypothetical power-

law exponent α
(Am)
pl � 8 for Amean, which implies a very fast

decay, very difficult to detect empirically and to distinguish
from an exponential decay, with the limited number of data
that we have. This constitutes indirect evidence that both Amean

and Amax could be power-law distributed, but with very high
values of the exponents.

F. Increased probability of extinction of MJ events
and conditional distributions

As we have seen, the different fits of f (s) and f (d ) confirm
a clear change of behavior for intermediate values of s and
d , which means that MJ events beyond a “barrier” of about
θ = 27 days (47 units in size) have more difficulty surviving.
Where does this barrier come from? As the phase conveys
spatial information, it seems interesting to separate the size
and duration distributions into different starting and ending
phases of the MJ events.

Thus, we consider the probability density of the event size
conditioned to a given set of values of the starting phase,
f (s | φi ), or conditioned to (a given set of values of) the ending
phase, f (s | φf ). The starting phase φi of an event is its phase at
the starting time t = ti, and the ending phase φf is the phase at
t = tf. We find that f (s | φi ) shows practically no dependence
on the initial phase; see Fig. 5(a) (where we compare the
size distribution for events starting in phases 8 to 3 with that
for starting phases from 4 to 7, i.e., events starting from the
Western Hemisphere to the Indian Ocean with events starting
in the Maritime Continent or the Pacific; we group the phases
because for their individual values the statistics is too low). In
fact, the slight difference between the two conditional distri-
butions can be explained by the statistical fluctuations arising
from the low number of events at the tails of the distributions.
Changing sizes for durations, the conclusion is the same.

On the other hand, f (s | φf ) seems to show a somewhat
larger effect of the phase (the ending phase in this case), in
particular for the most extreme events, see Fig. 5(b), where
there are relatively more extreme events ending in phases 8 to
3 than in phases 4 to 7, which could mean that the former
(those ending from the Western Hemisphere to the Indian
Ocean) have an increased probability of extinction in com-
parison with the latter (which end at the Maritime Continent
or at the Pacific Ocean); nevertheless, this happens with no
apparent change in the value of θ (remember: the character-
istic scale for s or d). As an illustration, out of the 15 most
extreme events with φi = 8 to 3, ten of them end in the same
range of phases (after completing one cycle, or more), and
five end in the range from 4 to 7. On the contrary, out of the
11 most extreme events with φi = 4 to 7, only three end in
the same phase, and eight end with φf = 8 to 3. In the next
subsection, we will show that this effect seems in fact to be an
artifact, and the best explanation is that there is no significant
influence of the ending phase on the sizes and durations of the
events, i.e., sizes and durations can be considered independent
of ending phases (in the same way they are more clearly seen
as independent of the starting phases).

G. Total phase advance of MJ events

For the purpose of clarifying the previous issue, we intro-
duce a variable that counts the total phase advance n of a MJ
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FIG. 5. (a) Empirical probability densities of event sizes re-
stricted to different values of their initial phases. The two subsets
have nearly half of the events each. No clear influence of the initial
phase on the change of slope is observed. (b) Empirical probability
densities of sizes restricted to their final phases. The number of
events is 353 for φf from 8 to 3 and 381 for φf from 4 to 7. There
seems to be an influence in the tail, but we show in the main text that
it is not significant.

event, defined as

n =
tf∑

t=ti+1

�φc(t ),

where �φc(t ) = φc(t ) − φc(t − 1) accounts for the daily
changes in the continuous phase φc [the continuous phase is
the value of the phase prior to discretization, taking values
from 0 to 8−, i.e., φ = �φc� + 1; see Eq. (1)]. Notice that a
change of φ from 8 to 1 has to be counted as �φ = 1, and
therefore the resulting �φc has to be increased by 8 (and the
opposite for a change from 1 to 8). For that reason, in general,
n �= φc(tf ) − φc(ti ). In fact, n turns out to be the number of
cycles in an event, but multiplied by 8. Notice also that the
phase advance can be negative, and a few MJ events are
characterized by negative values of the total phase advance
(the event with the smallest phase change yields n = −1.25;
in contrast, the largest value in data is n = 27, which corre-
sponds to 3.4 cycles; see Fig. 1).

The total phase advance n turns out to be power-law
correlated with the size s (and therefore with the rest of the ob-
servables studied in this work). Indeed, we find s ∝ n0.83±0.02

for n � 0.1 (1.13 for the opposite regression) with ρ = 0.856.

FIG. 6. Empirical probability density f (n) of the total phase
advance of each MJ event (where the phase is not discrete but con-
tinuous). Events with n � 0.1 are excluded. Power-law fits are also
included. A sudden change of slope around n = θ = 5 is observed.
Conditional distributions f (n | φf ) are also included.

Figure 6 shows that the probability density f (n) of n is (as
expected from the power-law correlation with s) broadly dis-
tributed.

The fit of f (n) yields a power-law tail given by apl = 4.5
(comprising 90 events), 1 + αpl = 3.4 ± 0.25, and p = 0.32.
The fit of a truncated power law leads to atpl = 0.25, btpl = 5.6
(comprising 421 events), 1 + αtpl = 0.77 ± 0.055, and p =
0.22. The two power laws cross at a value of n = θ = 5, which
means that after a total phase advance of about 5 (a bit more
than half a cycle), the MJ event is more likely to decay, which
would indicate a sort of “exhaustion” of the MJO, in the same
way as reflected by the size and duration of the events.

Separation of f (n) into different starting phases leads to
distributions very similar to f (n) (not shown); some small
difference is observed for different starting phases, but the
difference does not seem significant in comparison with the
uncertainty in the estimation of the distributions. The prob-
ability densities conditioned to different ending phases are
included in Fig. 6, leading to results analogous to those for
f (s|φf ), in which it is difficult to discern if there is an effect
of the ending phase.

Some simulations are helpful at this point. We want to
generate independent values of the staring phase φi and of the
total phase advance n [due to the independence inferred from
f (n | φi )], and for this purpose we resample their empirical
distributions. Assuming that φi and n are independent, we re-
sample both distributions independently, i.e., we take a value
uniformly from the list of empirical values of φi, we do the
same (independently) from the values of n, and we calculate
the corresponding final phase φf from both variables. In this
way, we are able to compute the distribution of n conditioned
to the final phase, as well as the distributions of s and d
(in this case, the resampled values of s and d are not taken
independently from n, as they are correlated, so corresponding
values need to be taken).

We find that when we repeat this procedure many times
(a very large number of resamplings, e.g., 100 000), the re-
sulting distributions conditioned to the final phase turn out
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to be indistinguishable (do not depend on φf). This demon-
strates, numerically, that independence of n, s, and d on the
initial phase implies independence or near independence on
the ending phase (for a distribution of initial phases given by
the empirical distribution). In contrast, when the number of
resamplings is small, i.e., when it is the same as the observed
number of events N , the tail of the distributions may show
apparent differences between them, which therefore we con-
clude are just statistical fluctuations.

H. Peak of the hazard rate

The increased probability of extinction of the MJO when
the characteristic scale θ is reached can be understood better
using the hazard rate function h(x) [72]. This is defined as the
probability density, but conditioned to the fact that the random
variable has indeed reached a value x [so h(x) is not normal-
ized by the total number of events, but it is “normalized” by
the number of events that reach the value x, which depends,
of course, on x], and is given by h(x) = f (x)/S(x), with S(x)
the complementary cumulative distribution function. For the
double power-law distribution, Eqs. (5) and (6), we obtain

h2pl(x) = (1 − q)|α1|θα1

[1 − q(θ/a)α1 ]xα1+1 − (1 − q)θα1 x
for a � x � θ,

h2pl(x) = α2

x
for x � θ,

taking the expression for S(x) from Ref. [11] and using that
α1 < 0. The denominator (in the first formula) has a maxi-
mum at

α1

√
(1 − q)θα1

[1 − q(θ/a)α1 ](α1 + 1)

corresponding to a size equal to 27.2 when we introduce the
parameters describing the size of the events, and to a duration
of 14.9 days substituting the corresponding parameters. This
means that the hazard rate, as given by h2pl(x), reaches a
minimum at that value and therefore h2pl(x) has a positive
derivative at s → θ−, but a negative derivative at s → θ+;
then the hazard rate has a maximum at s = θ ; this constitutes
a (local) maximum of the “hazard” that the MJO becomes
extinct, i.e., the extinction rate is peaked at x = θ (with x
representing size or duration).

V. CONCLUSIONS

We have defined Madden-Julian events from the RMM
index, and we have studied the statistics of several of their
observables. Sizes and durations of MJ events present very
high variability, being broadly distributed, and they are quan-
titatively well described by double power-law distributions
(except for the smallest and shortest events). The power-law
tail contained in the double power-law distribution outper-
forms a (generalized) Pareto fit of the tail, both for sizes and
durations.

We have found some inconsistencies when fitting the
Pareto distributions: although extreme-value theory teaches
us that the generalized Pareto distribution holds above
(infinitely) large thresholds (assuming independence), the re-
sulting Pareto fits do not show their asymptotic behavior (the

tail of the Pareto distribution is not seen in the range covered
by the empirical data). Further, the Pareto exponents obtained
for both sizes and durations are incompatible with the clear
scaling relation between both variables. This supports the
preference for the double power law.

The double power-law fits make it clear that, for durations
less than about 27 days, a MJ event propagates without a char-
acteristic scale for extinction, as given by the first power-law
regime (parametrized by α1) of the size and the duration dis-
tributions; however, for the events that reach 27 days (which,
obviously, constitutes a characteristic scale, breaking the scale
invariance), the MJ propagation becomes more difficult in
comparison, and extinction more likely. We have investigated,
from a statistical point of view, the origin of this sharp increase
in the probability of extinction, conditioning the distributions
(of sizes and durations) to different starting and ending phases
(taking advantage that the phase of the MJO is related to its
position along the Equator). The resulting conditional distri-
butions do not show any significant influence either of the
starting phase or of the final phase (this latter case is less
clear, and some resampling of the empirical data is necessary
to clarify the issue).

Ruling out the influence of the phase implies that the influ-
ence of the position can be ruled out as well; for example, a MJ
event starting in the Indian Ocean and another one in the Pa-
cific are practically indistinguishable in terms of their duration
and size. This means that we cannot associate the increased
extinction of the MJ events with the effect of the Maritime
Continent barrier or to any other geographical aspects. In
some sense, all MJ events, independently of their starting
position, see the same “barrier” after about 27 days, and thus
we assume that this effect, instead of an external influence,
is due to an intrinsic cause, related to the MJO dynamics. As
the MJO is considered to be one of the most important drivers
of subseasonal forecasting, the fact that most MJ events do
not survive this 27-day barrier could limit the time horizon in
which the MJO can bring forecasting skill. On the other hand,
as the distribution that we find for the sizes of MJ events turns
out to be very similar to the energy distribution of tropical
cyclones [24], it would be important to investigate in depth
if the characteristic scale for dissipation of tropical cyclones
implicit in Ref. [24] could have an intrinsic origin as well
(contrary to the claim in Ref. [24], where it was associated
with a finite-size and therefore external effect).

At this point, we can speculate about the physical origin
of this increased extinction probability of the MJ events. One
mechanism that has about the right timescale and is indepen-
dent of the initiation phase of the MJO is that the Kelvin
wave associated with the MJO convection circumnavigates the
globe and eventually generates the conditions that lead to its
demise. In that regard, based on a moisture budget analysis
[73], it has been proposed that the downstream influence of
the MJO can lead to its future demise. In particular, for MJO
events terminating over the Maritime Continent, it was found
that the weaker convergence anomalies that cause the decay
travel within the MJO envelope as it propagates eastward
and can be detected up to 30 days in advance. However, this
timescale is not found in other MJO termination events [73],
and more studies are needed to pinpoint the physical processes
that cause the enhanced extinction we have reported here. In
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addition to the previous mechanism, an anonymous referee
pointed out other alternatives: circulations driven by strati-
form precipitation that slowly dry out the lower troposphere;
MJO rainfall, cloudiness, and/or winds gradually cool the sea
surface; or intrusion of subtropical dry air advected by MJO
Rossby gyres. In any case, let us mention that there are many
studies about initiation and propagation of the MJO, but only a
few on termination, as far as we are aware; thus, more research
along these lines certainly seems necessary.

One could also investigate how alternative definitions of
what a MJ event is may influence our results. For instance,
in our original definition, the waiting time between consec-
utive MJ events can be as small as one day, but one can
be more restrictive and not allow such short waiting times,
in the sense that events separated by waiting times smaller
than a fixed value are considered the same event (merging the
original events into a single one; this was done, for instance,
in Ref. [61]). We have verified that this merging procedure
reduces mainly the number of small MJ events (in size or
duration) and increases the number of large events, but the
properties of the size and duration distributions are qualita-
tively the same, and the tail of the distribution keeps roughly
the same original power-law exponent. Nevertheless, if we
pretend to find a meaningful minimum waiting time to apply
this merging procedure, we conclude that fixing any small
value would be arbitrary, as the distribution of waiting times
is smooth (and resembles a power law) for relatively small
values. A characteristic scale is only found for larger values,
of the order of 20 days, but for such a large minimum waiting
time the resulting number of MJ events becomes too small to
perform our statistical analysis.
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APPENDIX A: RELATION BETWEEN THE POWER LAW
AND THE PARETO DISTRIBUTIONS

There are fundamental connections between the power law
and the generalized Pareto distribution with ξ > 0 (i.e., the
Pareto distribution):

(i) The Pareto distribution yields a power law, asymptot-
ically; i.e., fgp(y) → fpl(y) for large y, with α = 1/ξ and
a = σ/ξ . However, note that the power-law character of the
Pareto distribution depends on ξ in a very particular way. The
scale at which the power-law tail is reached is given by σ/ξ ;

therefore, the probability that a Pareto random variable is at its
power-law tail is C−1/ξ (with C some constant larger than 1),
which becomes very small when ξ approaches 0 (and becomes
1 when ξ → ∞). In other words, this probability depends on
ξ and vanishes for ξ = 0.

(ii) Taking the excesses y = x − u of a power-law dis-
tributed variable x yields a Pareto distribution, with ξ = 1/α

and σ = u/α, if u � a (i.e., the excesses of any power law
over any threshold u � a yield a Pareto, as stated by the limit
theorem of extreme-value theory, but the limit u → ∞ is not
required). Notice that, in contrast with the exponent (ξ−1),
the scale parameter σ of the resulting Pareto barely reflects
any property of the original power-law data, but it depends
strongly on the selected threshold.

(iii) Conversely, a Pareto-distributed variable y shifted as
x = y + u yields a power law for x if u = σ/ξ , with α = 1/ξ

and a = u (i.e., a shifted Pareto yields a power law for a
precise value of the shift u; in other words, the power law is a
very particular case of a shifted Pareto). In general, the shifted
Pareto (sp) distribution is given by the probability density

fsp(x) = 1

σ

(
1 + ξ

x − u

σ

)−(1+ 1
ξ )

for x � u,

and 0 otherwise, with −∞ < u < ∞ (and restricted to ξ >

0). The shifted Pareto is referred to as the location Pareto
distribution in Ref. [74].

(iv) Needless to say, if the excesses y follow a generalized
Pareto distribution for y � 0, the variable x defined as x = y +
u, for any value of u, will follow a shifted Pareto distribution
for x � u.

(v) The kth-order moments 〈xk〉 and 〈yk〉 of both distri-
butions (power law and Pareto) do not exist (i.e., become
infinite) for k � α = ξ−1 (remember that we assume ξ > 0).
Of course, this also holds for the shifted Pareto distribution.

(vi) As we mentioned in the Introduction [46], for in-
dependent values of x and x > u with u → ∞, the Pareto
distribution is an attractor for a broad class of distributions
under the transformation y = x − u.

(vii) In a similar way, the power law is an attractor
under the transformation z = x/u, for x > u and u → ∞
(the distribution of x is not specific, but, in addition to the
power law, there are other limiting distributions; see the next
Appendix).

Thus, we conclude that there is a certain equivalence be-
tween fitting a power law to some data and fitting a Pareto
distribution to its excesses, that is, a power law always implies
a Pareto distribution for the excesses, whereas the reciprocal
is true if the shift u and the lower cutoff a of the power
law are precisely selected. Additionally, a power law can be
theoretically justified in the same way as a Pareto distribution,
just considering x/u instead of the excesses x − u.

APPENDIX B: THE POWER LAW
AS A LIMIT DISTRIBUTION

Given a random variable x and a threshold value u, let
us consider z = x/u for x > u; then, ln z = ln x − ln u. The
sometimes-called Pickands–Balkema–De Haan theorem [46]
ensures that, for ln u → ∞ (i.e., for u → ∞), a generalized
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Pareto distribution emerges for ln z (if some regularity con-
ditions are fulfilled). Considering the particular case ξ = 0
(note that ξ = 0 for ln z, not for z), we have that the attractive
distribution is the exponential, defined for ln z > 0, which in
terms of z leads to a power law, f (z) = 1/z1+1/σ for z > 1,
with σ > 0; this yields another power law in terms of x,

f (x) = 1

uσ

(u

x

)1+1/σ

for x > u

(and zero otherwise). Note that σ , the scale parameter of the
exponential distribution for ln z, becomes the extreme-value
index of the power-law distribution for x > u (i.e., the inverse
plus 1 of the exponent). In some sense, we could define ξ ′ = σ

(using standard notation in extreme-value theory).
The case ξ > 0 (for ln z) is of less interest for us than the

case ξ = 0, nevertheless it yields

f (x) = 1

σ [1 + σ−1ξ ln(x/u)]1+1/ξ x
for x > u

(and zero otherwise). This is a regularly varying function
with the power-law term 1/x (with exponent 1, or ξ ′ = ∞)
multiplying a slowly varying function. Notice that this decay
is slower than any power-law tail of the type 1/x1+1/ξ with

ξ > 0. The case ξ = 0 is included in the case ξ > 0 taking
the limit ξ → 0.

The case ξ < 0 is of no interest for us (as it does not have
a power-law tail); nevertheless, it is included in the previous
formula, with the additional constraint 1 + σ−1ξ ln(x/u) > 0.
Thus, the previous formula for f (x) holds, but for the sake of
clarity it can also be written as

f (x) = 1

σx

(
1 − |ξ |

σ
ln

x

u

)−1+1/|ξ |
for u < x < ueσ/|ξ |

(and zero otherwise). Moreover, an exponential distribution,
f (x) = λe−λ(x−u), is also possible as a solution, but not in-
cluded in the previous formulas. Somehow, the exponential
should be in between the cases ξ < 0 and ξ = 0. As far as
we know, this solution has no counterpart in the Pickands–
Balkema–De Haan framework.

In summary, the Pickands–Balkema–De Haan theorem,
through a simple transformation, ensures that the limiting
distribution for x when x > u and u → ∞ is a power law
if the limiting distribution for ln x − ln u is an exponential
(corresponding to a Gumbel maximum domain of attraction
for ln x). If the limiting distribution for ln x − ln u is not an
exponential, other attractors arise for x.
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