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Simulation of universal optical logic gates under energy sharing collisions of Manakov solitons
and fulfillment of practical optical logic criteria
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The universal optical logic gates, namely, NAND and NOR gates, have been theoretically simulated by employ-
ing the energy sharing collision of bright optical solitons in the Manakov system, governing pulse propagation
in a highly birefringent fiber. Further, we also realize the two-input optical logic gates, such as AND, OR, XOR,
XNOR, for completeness of our scheme. Interestingly, our idea behind the simulation naturally satisfies all the
criteria for practical optical logic, which in turn displays the strength and versatility of our theoretical simulation
of universal optical logic gates. Hence, our approach paves the way for the experimentalists to create a new
avenue in this direction if the energy sharing collisions of Manakov solitons are experimentally realized in the
future.
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I. INTRODUCTION

Photons can be used in the form of optical solitons to
execute classical information processing and communication
rather than electrons through a nonlinear medium, like highly
birefringent fiber. The rapid growth in modern day informa-
tion theory and the limitations on semiconductor devices, such
as speed limits, energy losses, and interconnect delays, lead
researchers to look for an alternate mode of technology. One
such highly desirable approach is to employ all optical devices
to replace the conventional integrated circuits in electronics.
Light pulses are promising candidates due to their wide range
of bandwidth, ultrahigh speed, low heat generation, etc. [1].
Optical logic gates serve as fundamental building blocks in
such optical devices [2]. These optical logic gates could be
simulated by harnessing nonlinear effects in semiconductor
optical amplifier [3–5] and in photonic crystals. Interestingly,
here, all the logic operations are to be performed with light
in the form of solitons, nonlinear coherent structures with
remarkable stability. This overcomes the demerits of present-
day computers (digital electronics) such as processing speed,
space, heat dissipation, etc. Realization of practical optical
logic (POL) gates by employing soliton interactions is a
promising effort to replace the conventional classical comput-
ers, where electrons play a major role. In recent years, many
research works have been proposed and reported concerning
the optical logic operations in different physical phenomena
[6–12]. However, none of them have tried to verify whether
they fulfill the criteria called POL.

In the present work, we theoretically propose the simu-
lation of universal optical logic gates by making use of the
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rigorous asymptotic analysis of a four-soliton energy sharing
collision which in turn concretely provides the mathematical
support for the simulation of optical logic gates for the experi-
mentalists. In addition to this, the input and output states of the
solitons can be measured anywhere asymptotically rather than
at a particular fiber distance. For demonstrative purpose, here
we analyze our collision dynamics at the fiber distance z =
±15 km. Also, we propose the optical logic gates for the stan-
dard Manakov model in which there is no fiber attenuation.
Even in the presence of fiber losses or attenuation, one of the
authors of the present paper revealed that the energy sharing
property of the Manakov solitons is preserved under strong
environmental perturbations [13]. In our previous works, we
theoretically explored the realization of optical single-input
gates [14] and two-input gates, such as OR gate and NOR gate
[15]. Here, we wish to make a proposal for all other basic
two-input logic gates including the universal NAND gate. We
emphasize that our theoretical approach naturally satisfies all
the criteria for POL (see Sec. IV below for more details).
For this purpose, we consider the incoherent propagation of
two orthogonally polarized high-intense optical pulses in an
elliptically birefringent fiber with high birefringence [16,17].
This type of pulse propagation is described by the follow-
ing coupled nonlinear Schrödinger (CNLS) equations which
can be represented by the system of coupled evolution equa-
tions [18,19]:

i(�1ζ + β1x�1τ ) − β2

2
�1ττ + γ (|�1|2 + B|�2|2)�1 = 0,

(1a)

i(�2ζ + β1y�2τ ) − β2

2
�2ττ + γ (|�2|2 + B|�1|2)�2 = 0,

(1b)

where ζ and τ are respectively the propagation direction and
the normalized time; � j’s, j = 1 and 2, are complex slowly
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varying amplitudes; β1x and β1y are the inverse of the group
velocities of the two modes; β2 represents group velocity
dispersion; and the effective Kerr nonlinearity coefficient γ

is defined as 8n2ω0
9cAeff

, where n2 is the nonlinear index coefficient,
ω0 is the carrier frequency, and Aeff is the effective core area.
Here, we have neglected the rapidly varying coherent coupling
terms [19]. Furthermore, γ and β2 are chosen to be same for
both the pulses as they are at the same wavelength. The cross
phase modulation (XPM) coupling parameter B = 2+2 sin2 θ

2+cos2 θ
,

where θ is the ellipticity angle which can vary between 0 and
π/2. We note that in the case of linearly birefringent fiber
the XPM coefficient B takes the value 2/3 and in circularly
birefringent fibers it becomes 2. In a specially fabricated el-
liptically birefringent fiber with ellipticity angle θ = 35◦, one
can achieve the B value as 1 [19]. Also in telecommunication
fibers, the birefringence is random. In that case, B can be made
to be unity. Meanwhile, the linear and nonlinear polarization
mode dispersion (PMD) terms will appear [20] and therefore
the coupled nonlinear Schrödinger equations can exactly be
reduced to the Manakov system but with additional pertur-
bative terms originating from the PMD. For lossless fibers,
after suitable transformations, the above equation (1) can be
expressed in the following dimensionless form using soliton
units [16,17,19],

i�1z − sgn(β2)

2
�1tt + μ(|�1|2 + B|�2|2)�1 = 0, (2a)

i�2z − sgn(β2)

2
�2tt + μ(|�2|2 + B|�1|2)�2 = 0, (2b)

where the dimensionless length and the retarded time are
defined as z = ζ

LD
and t = T

T0
= (τ − β̃1ζ ), in which the dis-

persion length LD = T 2
0

|β2| , the nonlinear length LNL = 1
γ P0

, and

β̃1 = 1
2 (β1x + β1y), with T0 and P0 being the initial width and

the peak power, respectively, while μ = γ P0T 2
0

|β2| > 0. In the
anomalous (normal) dispersion regime, β2 < 0 (> 0), where
the high-frequency (low-frequency) pulses travel faster than
the low-frequency (high-frequency) pulses, the above coupled
system of equations is referred to as focusing (defocusing)
CNLS equations and the fiber supports bright (dark and dark-
bright) solitons. These are consequences of the polarization
modulation instability [21]. For the polarizing angle θ = 35◦
(for which B = 1) in the anomalous dispersion regime, with a
scaling transformation z′ = z

2 , q j = √
μ� j , j = 1 and 2, and

dropping the prime, we get the standard Manakov model in
normalized form as follows [22],

iq1z + q1tt + 2(|q1|2 + |q2|2)q1 = 0, (3a)

iq2z + q2tt + 2(|q1|2 + |q2|2)q2 = 0. (3b)

The Manakov system (3) and its N-component gener-
alization have been extensively studied (for details, see
Refs. [22–28] and references therein). The salient attribute
of this Manakov system is the interesting energy sharing col-
lision of bright solitons as a consequence of change in the
polarization vector during collision. In such energy sharing
collisions, the intensity of the solitons in a given compo-
nent can be suppressed (enhanced) while the other solitons
experience a converse effect. Contrary to this, the solitons
in the second component display a reverse scenario, thereby

preserving the total intensity as well as the intensity of the
individual component [23–28]. Following this, multisoliton
interactions in the Manakov system have been studied by
using the Hirota’s bilinearization method in Refs. [25,27,28].
Recently, bound-state solitons and mutivalley dark solitons
of various multicomponent CNLS-type systems have been
explored by employing the Darboux transformation method
[29]. The Manakov bright solitons have been first experi-
mentally observed in the spatial domain with AlGaAs planar
waveguides [30]. On the other hand, this Manakov system
serves as an appropriate framework for the experimental study
of modulation instability (MI) and its connection with rogue
waves and different kinds of breathers, in optical fibers. In
particular, an experimental configuration to realize an XPM
coefficient with unity value and with very low polarization
mode dispersion (PMD) [20] has been successfully demon-
strated in Refs. [31] and [32] for MI studies in the Manakov
system featuring anomalous and normal group velocity dis-
persion, respectively.

Recently, optical dark rogue waves have also been exper-
imentally observed in the Manakov model with defocusing
nonlinearity [33]. Thus, the Manakov solitons are suitable
candidates for experimental realization and for further tech-
nological applications. Also, in Ref. [13], it has been clearly
demonstrated that this energy sharing property of the Man-
akov solitons is preserved even in the presence of fiber losses.
There it has been shown that for B = 2/3, with appropriate
initial conditions, the bright solitons undergo efficient energy
sharing collisions with a switching efficiency of 96%. Another
interesting and detailed study on system (2) with B = 2/3 [34]
shows that for faster colliding velocity, a similar transmis-
sion collision scenario occurs with larger (smaller) solitons
becoming even larger (smaller). In our simulation procedure
of logic gates, we fix a threshold level, above (below) which
one shall have 1 (0) state. So, the observations in Refs. [13,34]
suggest that our present approach of realizing 1 (0) logic and
subsequent logic gate simulation will hold good.

II. SCHEMATIC OF FOUR-SOLITON COLLISION
PROCESS

In highly birefringent fibers, it was pointed out in Ref. [25]
that the bright Manakov solitons typically exhibit pairwise
collision under interaction. In such a collision process, all the
solitons undergo energy sharing collisions and every soliton
interacts with every other soliton which is involved in the
collision process. To be specific, we employ just a four-bright-
soliton-collision process, in which each soliton undergoes
three pairwise energy sharing interactions. One can refer
to the Supplemental Material of Ref. [15] for the explicit
four-soliton solution and its detailed asymptotic analysis. We
denote the input solitons as unprimed solitons S j , j = 1, 2, 3,
and 4. We refer to the solitons emerging after the first, second,
and third pairwise collisions as primed, double-primed, and
triple-primed solitons, respectively. In fact S′′′

j represent the
output solitons. The schematic pairwise four-soliton-collision
process considered in our present work is shown in Fig. 1.
Here, we use the pairwise energy sharing collisions of bright
Manakov solitons as such without imposing any constraints
on the colliding solitons for realizing the universal logic gate.
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FIG. 1. Collision picture of four solitons: S1, S2, S3, and S4.

The intensities of the four colliding solitons at the input and
at the output are calculated analytically from a systematic but
rather lengthy asymptotic analysis.

III. NOTION BEHIND THE SIMULATION OF OPTICAL
LOGIC GATES

During the energy sharing collision, the Manakov solitons
experience a change in their states (polarizations) due to the
enhancement or suppression of intensity which is a desirable
property for performing computation. Also, it is sufficient to
examine these states well before (i.e., at the input) and well
after (output) collisions. The key idea is to define the asymp-

totic states of the jth soliton as ρ j± = q j
1(z→±∞)

q j
2(z→±∞)

= Aj±
1

Aj±
2

, where

Aj±
1,2 are the polarization components (1,2) of the jth soliton.

Here subscripts denote the components, + (−) designates the
state after (before) collision, and superscript j represents the
soliton number. The logic gates deal with binary logic, either
1 or 0. We define such a 1 (0) state if the intensity |ρ j± |2 of the
state vector exceeds (falls below) a particular reference value.
For simulating the two-input logic gate, the inputs are fed into
the solitons S1 and S2 well before interaction, and the output is
taken from the soliton S4 after interaction. The explicit forms
of the states of the solitons S1 and S2 before interaction are

ρ1− = α
(1)
1

α
(2)
1

, (4)

ρ2− = A2−
1

A2−
2

= N2−
1

N2−
2

= α
(1)
1 κ21 − α

(1)
2 κ11

α
(2)
1 κ21 − α

(2)
2 κ11

, (5)

where

κil =
∑2

n=1 α
(n)
i α

(n)∗
l

(ki + k∗
l )

, i, l = 1, 2, 3, 4.

Similarly, the state of the soliton S4 after collision is given

by ρ4+ = α
(1)
4

α
(2)
4

. In the above equations, α
(m)
l (l = 1, 2, and 4;

m = 1 and 2) represent the polarization parameters of solitons
S1, S2, and S4 and they can take any arbitrary complex value.
The other quantities, κ11, κ21, and κ12, are defined by the soli-
ton parameters α and k. Though the third soliton S3 does not
explicitly appear in the above expressions, it indirectly influ-
ences the energy sharing collisions. The ratio of intensities of
two components for the solitons S1 and S2 before interaction
as well as that for soliton S4 after interaction can be obtained
by taking the absolute squares of these complex states and
they are given by |ρ1−|2, |ρ2−|2, and |ρ4+|2, respectively.
Hence, one can measure the ratio of the intensities of the
two components for the input and output solitons analytically
from the asymptotic analysis. Then as mentioned before if the
ratio of intensities of two components for a given soliton Sj is
greater (less) than some specific threshold value, say 1, before
interaction, then we denote the input state of that soliton Sj as
the “1(0)′′ state. Thus the 1(0) state of a particular soliton Sj

corresponds to |ρ j−|2 > 1(< 1).

IV. CRITERIA FOR PRACTICAL OPTICAL LOGIC
AND THEIR FULFILLMENT

The article by Miller [35] lays out nicely the relevant crite-
ria for optical logic, such as cascadability, fan-out, logic-level
restoration, input and output isolation, critical biasing, and
independence of loss. All these requirements are naturally
met by the proposed soliton-collision-based computing. As a
result, the scheme does stand out in a way against a myriad of
other nonlinear switching schemes. Below, we discuss all the
criteria in detail, in the framework of soliton collision.

(i) Fan-out. In a four-soliton-collision process, if the input
state is assigned to the soliton 1 (S1) before collision, then it
can be switched to the output of any of the other two solitons
after collision, say solitons S2 and S4, by appropriately im-
posing conditions on the soliton parameters. This essentially
implies the process of fan-out which indicates the state of
one soliton (S1) before collision is used to drive as an input
to at least two different solitons (S2 and S4) after collision.
To facilitate our understanding, we consider the following
example. The parametric values to drive the 0 input state to
solitons S2 and S4 are chosen as k1 = 1 + i, k2 = 1.2 + 0.5i,
k3 = 0.9 − 0.5i, k4 = 1.3 − i, α

(1)
1 = 2, α

(2)
1 = 6, α

(2)
2 = 1 −

i, α
(1)
3 = 2, α

(2)
3 = 1, and α

(2)
4 = 2 − i. The parametric values

of α
(1)
4 and α

(1)
2 are determined as 0.6 − 0.3i and 0.002 − 0.4i,

respectively, from the following conditions:

α
(1)
4 = α

(1)
1 α

(2)
4

α
(2)
1

, (6)

N2+
1

N2+
2

− α
(1)
4

α
(2)
4

= 0. (7)

The expressions for N2+
1 and N2+

2 are already given in
the asymptotic analysis (see, the Supplemental Material of
Ref. [15]). In order to drive the 1 input state of the soliton
S1 to the solitons S2 and S4, we have to choose the soliton S1

parameters as α
(1)
1 = 6 and α

(2)
1 = 2. From the above condi-

tions, the parameters α
(1)
4 and α

(1)
2 are evaluated as 6 − 3i and
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TABLE I. Truth table.

Input S1 Output 1 S′′′
2 Output 2 S′′′

4

0 0 0
1 1 1

3.4 − 0.8i and all the other parameters are as same as those
for the 0 state. The fanning out of the input states is clearly
given in Tables I and II. Figures 2 and 3 depict the fanning out
of input states 0 and 1, respectively.

(ii) Logic-level restoration. Here the optical pulses are
propagating in the form of solitons which is by nature a
localized coherent structure that can travel over long distances
without alteration in shape and is robust against strong envi-
ronmental perturbations. This special property of solitons can
restore the logic signal throughout its propagation in an optical
fiber.

(iii) Input and output isolation. In the realization of optical
logic gates, the inputs are fed into the first two pulses before
collision, say soliton S1 and soliton S2, respectively. Then the
output is measured in the last pulse after collision (total of
four solitons involved in the composite collision), say soliton
S4. This final soliton is well separated from the input soliton.
Hence, the input and output solitons are treated separately,
which will prevent the input pulses from being reflected back
into the output pulse.

(iv) Logic level independent of loss. To achieve this, we
need a differential signaling that requires the ratios of pow-
ers or difference of powers at the input. Interestingly, in our
present work, indeed we define the state of a particular soliton
as the ratio of the intensities of the soliton propagating in the
two components. For example,

|ρ1|2 = |A1
1|2

|A1
2|2

, (8)

TABLE II. Intensity table.

Input S1 Output 1 S′′′
2 Output 2 S′′′

4

0.1 0.1 0.1
9 9 9

where |ρ1|2 represents the state of the soliton S1, |A1
1|2 repre-

sents the intensity of the soliton S1 propagating in the q1 mode,
and |A1

2|2 denotes the intensity of the soliton S1 propagating in
the q2 mode. Thus, we have taken the ratio of intensities of
the solitons propagating in two different modes (q1 and q2)
to represent the state of a particular soliton, say soliton S1.
This automatically satisfies the differential signaling criteria
in Ref. [35].

(v) Absence of critical biasing. In order to achieve 1(0)
states, we do not require a precise value of ratio of intensities
of two components for the solitons. Rather, one can fix an
arbitrary threshold value above (below) which all the values
of intensities can be treated as 1(0) states. Specifically, we are
considering 1(0) states which are having |ρ|2 values above
(below) a threshold. And hence, there is no need for high
precision for the states. In this way, we introduce the absence
of critical biasing in the soliton-collision-based optical com-
puting.

(vi) Cascadability. We employ the four-soliton-collision
process for the simulation of the NOR gate in the present paper.
However, in our earlier work [14], we have demonstrated the
simulation of one input gates such as the COPY gate, the NOT

gate, and the ONE gate by employing a three-soliton-collision
process. Here the input is fed into the second soliton S2 before
collision and the output is taken up from the third soliton S3

after collision.

(a) (b) (c)

FIG. 2. Fan-out gate. The state of the input soliton (S1) is 0, and the states of the output solitons (S2 and S4) are 0 and 0. Panel (a) displays
the mesh plots of the intensity profiles while panels (b) and (c) depict the two-dimensional plots of intensities at the input (z = −15) and at
the output (z = 15), respectively.
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(a) (b) (c)

FIG. 3. Fan-out gate. The state of the input soliton (S1) is 1, and the states of the output solitons (S2 and S4) are 1 and 1. Panel (a) displays
the mesh plots of the intensity profiles while panels (b) and (c) depict the two-dimensional plots of intensities at the input (z = −15) and at
the output (z = 15), respectively.

In the present paper, it is shown that for the simulation of
the NOR gate, the inputs are fed into the solitons S1 and S2

before collision and the output is taken up from soliton S4 after
collision. Instead, in order to use the criteria of cascadability,
one can use the output of the one-input gate, say the COPY

gate (which can be realized from the three-soliton collision),
and S′′

3 as one of the inputs to the universal NOR gate, whereas
the first soliton S1 can be treated as another input, while the
output is taken up from soliton S4 as usual. In a nutshell, we
may claim that one can simulate the two-input gate (universal
gate) by cascading the output of the one-input gate.

Thus, the fulfillment of POL by our present proposed
work and the experiments on Manakov solitons and their
energy sharing collisions [32,36] demonstrate the definite
possibility to simulate optical logic gates satisfying POL.

This is an important advancement in soliton-collision-based
computing.

V. SIMULATION OF TWO-INPUT OPTICAL LOGIC GATES
USING FOUR-SOLITON COLLISIONS

In this section, we demonstrate the simulation of all the
two-input optical logic gates, including universal gates such
as the NAND, NOR, AND, OR, XOR, and XNOR gates, from out of
the four-soliton-collision process.

A. NAND gate

To achieve the required output corresponding to the NAND

gate, we deduce the following condition on the soliton param-
eters from asymptotic analysis:

α
(2)
4 =

(
α

(1)
1

α
(2)
1

× α
(1)
2

(
(k1 − k2)

∣∣α(1)
1

∣∣2 − (k2 + k∗
1 )

∣∣α(2)
1

∣∣2) + (k1 + k∗
1 )α(1)

1 α
(2)∗
1 α

(2)
2

(k1 + k∗
1 )α(1)∗

1 α
(1)
2 α

(2)
1 − α

(2)
2

(
(k2 − k1)

∣∣α(2)
1

∣∣2 + (k2 + k∗
1 )

∣∣α(1)
1

∣∣2)
)

α
(1)
4 . (9)

The above relation (9) is obtained by imposing the condition
ρ4+ = (ρ1−ρ2−)−1 on the state vectors of the input solitons
(S1, S2) and the output soliton (S4) so that the Boolean algebra
of the NAND gate is satisfied. Assigning (0,0) input states to
(S1, S2) by choosing α

(1)
1 = 2, α

(2)
1 = 6, α

(1)
2 = 2, and α

(2)
2 =

5, we achieve the 1 output state from soliton S4 for the pa-
rameter choices k1 = 0.5 + i, k2 = 1 + 0.5i, k3 = 0.9 − 0.5i,
k4 = 1.3 − i, α

(1)
3 = 3, α

(2)
3 = 1, and α

(1)
4 = 0.1 − 0.2i along

with the condition (9), which is depicted in Fig 4. Assigning

(0,1) input states to (S1, S2) by choosing α
(1)
1 = 2, α

(2)
1 = 6,

α
(1)
2 = 50, and α

(2)
2 = 45, we achieve the 1 output state from

soliton S4. All the other soliton parameters are chosen to be
the same as those above for all the combinations of input
states. The (1,0) input states are fed into the solitons (S1, S2)
by choosing α

(1)
1 = 11, α

(2)
1 = 2, α

(1)
2 = 2, and α

(2)
2 = 5, so

that we achieve the 1 output state from soliton S4. Assigning
(1,1) input states to (S1, S2) by choosing α

(1)
1 = 9, α

(2)
1 = 2,
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TABLE III. Truth table of the NAND gate.

Input 1 Input 2 Output
(S1) (S2) (S′′′

4 )

0 0 1
0 1 1
1 0 1
1 1 0

α
(1)
2 = 7, and α

(2)
2 = 1.5, we achieve the 0 output state from

soliton S4. The truth table and the corresponding intensity
tables (calculated values of the ratios of intensities of solitons)
are given in Tables III and IV. The other universal gate,
namely the NOR gate, has already been demonstrated in our
recent work [15].

TABLE IV. Intensity table of the NAND gate.

Input 1 Input 2 Output
|ρ1−|2 |ρ2−|2 |ρ4+|2

0.1 0.2 33
0.1 7 1.6
24 0.02 1.8
23 32 0.005

B. AND gate

As discussed in the NAND gate, here we deduce the fol-
lowing condition on the soliton parameters from asymptotic
analysis in order to achieve the required output corresponding
to the AND gate:

α
(1)
4 =

(
α

(1)
1

α
(2)
1

× α
(1)
2

(
(k1 − k2)

∣∣α(1)
1

∣∣2 − (k2 + k∗
1 )

∣∣α(2)
1

∣∣2) + (k1 + k∗
1 )α(1)

1 α
(2)∗
1 α

(2)
2

(k1 + k∗
1 )α(1)∗

1 α
(1)
2 α

(2)
1 − α

(2)
2

(
(k2 − k1)

∣∣α(2)
1

∣∣2 + (k2 + k∗
1 )

∣∣α(1)
1

∣∣2)
)

α
(2)
4 . (10)

The above relation (10) is obtained by imposing the condition
ρ4+ = ρ1−ρ2− on the state vectors of the input solitons (S1,
S2) and the output soliton (S4) so that the Boolean algebra of
the AND gate is satisfied. Now, assigning (0,0) input states to
(S1, S2) by choosing α

(1)
1 = 2, α

(2)
1 = 6, α

(1)
2 = 2, and α

(2)
2 =

5, we achieve the 0 output state from soliton S4 for the pa-

rameter choices k1 = 0.5 + i, k2 = 1 + 0.5i, k3 = 0.9 − 0.5i,
k4 = 1.3 − i, α

(1)
3 = 3, α

(2)
3 = 1, and α

(2)
4 = 0.001 − 0.002i

along with the condition (10), which is depicted in Fig. 5. For
the (0,1) input states of the solitons (S1, S2), we obtain the 0
output state from soliton S4 by choosing α

(1)
1 = 2, α

(2)
1 = 6,

α
(1)
2 = 50, and α

(2)
2 = 45. All the other soliton parameters are

FIG. 4. NAND gate. The states of the input solitons (S1 and S2) are 0 and 0, and the state of the output soliton (S4) is 1. Panel (a) displays
the mesh plots of the intensity profiles while panels (b) and (c) depict the two-dimensional plots of intensities at the input (z = −15) and at
the output (z = 15), respectively.
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TABLE V. Truth table of the AND gate.

Input 1 Input 2 Output
(S1) (S2) (S′′′

4 )

0 0 0
0 1 0
1 0 0
1 1 1

chosen to be the same as those above for all other combi-
nations of input states. Assigning (1,0) input states to (S1,
S2) by choosing α

(1)
1 = 6, α

(2)
1 = 2, α

(1)
2 = 2, and α

(2)
2 = 5,

we achieve the 0 output state from soliton S4. Finally, (1,1)
input states are given to the solitons (S1, S2) by choosing
α

(1)
1 = 9, α

(2)
1 = 2, α

(1)
2 = 7, and α

(2)
2 = 1.5, and we obtain

the 1 output state from soliton S4. The truth table and the
corresponding intensity tables are given in Tables V and VI.

TABLE VI. Intensity table of the AND gate.

Input 1 Input 2 Output
|ρ1−|2 |ρ2−|2 |ρ4+|2

0.1 0.2 0.03
0.1 6.9 0.6
7.6 0.02 0.2
23 21 165

The detailed demonstration of the OR logic gate is discussed
in the Supplemental Material of our recent work [15].

C. XOR gate

To simulate the XOR gate, two inputs are fed into solitons
S1 and S2 and the output is taken up from soliton S4, as usual.
In order to get the desired output satisfying the truth table of
the XOR gate, we make use of the condition ρ4+ = ρ1− − ρ2−
and choose

α
(1)
4 =

(
α

(1)
1

α
(2)
1

− α
(1)
2

(
(k1 − k2)

∣∣α(1)
1

∣∣2 − (k2 + k∗
1 )

∣∣α(2)
1

∣∣2) + (k1 + k∗
1 )α(1)

1 α
(2)∗
1 α

(2)
2

(k1 + k∗
1 )α(1)∗

1 α
(1)
2 α

(2)
1 − α

(2)
2

(
(k2 − k1)

∣∣α(2)
1

∣∣2 + (k2 + k∗
1 )

∣∣α(1)
1

∣∣2)
)

α
(2)
4 . (11)

Assigning the (0,0) input states to (S1, S2) by choosing α
(1)
1 =

2, α
(2)
1 = 6, α

(1)
2 = 2, and α

(2)
2 = 5, we achieve the 0 output

state from soliton S4 for the parameter choices k1 = 0.5 + i,
k2 = 1 + 0.5i, k3 = 0.9 − 0.5i, k4 = 1.3 − i, α

(1)
3 = 3, α

(2)
3 =

1, and α
(2)
4 = 2 − i along with the condition (11), which is

shown in Fig 6. Likewise, setting the (0,1) input states to (S1,
S2) by choosing α

(1)
1 = 2, α

(2)
1 = 6, α

(1)
2 = 5, and α

(2)
2 = 2,

we achieve the 1 output state from soliton S4 for the above
parameter choices. All the other soliton parameters are the
same as those mentioned above for all the other combinations
of input. Assigning (1,0) input states to (S1, S2) by choosing
α

(1)
1 = 6, α

(2)
1 = 2, α

(1)
2 = 2, and α

(2)
2 = 5, we achieve the 1

output state from soliton S4 for the above parameter choices.
Finally, the (1,1) input states are fed into the solitons (S1, S2)

FIG. 5. AND gate. The states of the input solitons (S1 and S2) are 0 and 0, and the state of the output soliton (S4) is 0. Panel (a) displays the
mesh plots of the intensity profiles while panels (b) and (c) depict the two-dimensional plots of intensities at the input (z = −15) and at the
output (z = 15), respectively.
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FIG. 6. XOR gate. The states of the input solitons (S1 and S2) are 0 and 0, and the state of output soliton (S4) is 0. Panel (a) displays the
mesh plots of the intensity profiles while panels (b) and (c) depict the two-dimensional plots of intensities at the input (z = −15) and at the
output (z = 15), respectively.

by choosing α
(1)
1 = 6, α

(2)
1 = 2, α

(1)
2 = 5, and α

(2)
2 = 2, and

we achieve the 0 output state from soliton S4 for the parameter
choices. Tables VII and VIII provide the truth table and the
corresponding intensity table of the XOR gate, respectively.

D. XNOR gate

In order to get the desired output satisfying the truth table
of the XNOR gate, we make use of the condition ρ4+ = (ρ1− −
ρ2−)−1 and choose

α
(2)
4 =

⎛
⎜⎝α

(1)
1

α
(2)
1

−
α

(1)
2

(
(k1 − k2)

∣∣α(1)
1

∣∣2 − (k2 + k∗
1 )

∣∣α(2)
1

∣∣2
)

+ (k1 + k∗
1 )α(1)

1 α
(2)∗
1 α

(2)
2

(k1 + k∗
1 )α(1)∗

1 α
(1)
2 α

(2)
1 − α

(2)
2

(
(k2 − k1)

∣∣α(2)
1

∣∣2 + (k2 + k∗
1 )

∣∣α(1)
1

∣∣2
)
⎞
⎟⎠α

(1)
4 . (12)

Setting the (0,0) input states to (S1, S2) by choosing α
(1)
1 = 2,

α
(2)
1 = 6, α

(1)
2 = 2, and α

(2)
2 = 5, we achieve the 1 output

state from soliton S4 for the parameter choices k1 = 0.5 + i,
k2 = 1 + 0.5i, k3 = 0.9 − 0.5i, k4 = 1.3 − i, α

(1)
3 = 3, α

(2)
3 =

1, and α
(1)
4 = 2 − i along with the condition (12), which is

depicted in Fig 7. Assigning the (0,1) input states to (S1,
S2) by choosing α

(1)
1 = 2, α

(2)
1 = 6, α

(1)
2 = 5, and α

(2)
2 = 2,

we obtain the 0 output state from soliton S4 for the above

TABLE VII. Truth table of the XOR gate.

Input 1 Input 2 Output
(S1) (S2) (S′′′

4 )

0 0 0
0 1 1
1 0 1
1 1 0

parameter choices. All the other soliton parameters are the
same as those mentioned above for all the other combinations
of input. The (1,0) input states are fed into the solitons (S1,
S2) by choosing α

(1)
1 = 6, α

(2)
1 = 2, α

(1)
2 = 2, and α

(2)
2 = 5,

and we achieve the 0 output state from the soliton S4 for the
parameter choices. Finally the (1,1) input states are given to
the solitons (S1, S2) by choosing α

(1)
1 = 6, α

(2)
1 = 2, α

(1)
2 = 5,

and α
(2)
2 = 2, and we obtain the 1 output state from the soliton

TABLE VIII. Intensity table of the XOR gate.

Input 1 Input 2 Output
|ρ1−|2 |ρ2−|2 |ρ4+|2

0.08 0.2 0.02
0.1 49 54
8 0.03 10
7.6 4.5 0.9
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TABLE IX. Truth table of the XNOR gate.

Input 1 Input 2 Output
(S1) (S2) (S′′′

4 )

0 0 1
0 1 0
1 0 0
1 1 1

S4 for the above parameter choices. The truth table and the
corresponding intensity tables of the XNOR gate are given
inTables IX and X, respectively.

VI. CONCLUSION

We have theoretically demonstrated the simulation of op-
tical universal logic gates, namely, the NAND and NOR gates,
using the energy sharing collision of four bright solitons in
a randomly varying highly birefringent fiber described by the
Manakov system. For completeness of our study, we have also
simulated the AND, OR, XOR, and XNOR optical logic gates.
The greatest advantage of our present work is that the notion
behind the simulation of two-input logic gates satisfies all the
criteria for practical optical logic. One can extend the work
to realize flip flops, half adder and full adder, etc. The same
theoretical realization of universal gates may be accomplished

TABLE X. Intensity table of the XNOR gate.

Input 1 Input 2 Output
|ρ1−|2 |ρ2−|2 |ρ4+|2

0.13 0.2 41
0.14 32 0.02
7.6 0.03 0.1
7 5 1.1

by using bound solitons in the future. Work is in progress
in this direction and it paves the way to simulate multistate
logic and memory-storage devices. We hope that the present
research work will insightful for the experimentalists who
are interested in realizing the energy sharing collision of
solitons.
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FIG. 7. XNOR gate: The state of input solitons (S1 and S2) are “0′′ and “0′′ and the state of output soliton (S4) is “1′′. The first column
(a) displays the mesh plots of the intensity profiles while the middle and last columns (b) and (c) depict the two-dimensional plots of intensities
at the input (z = −15) and at the output (z = 15), respectively.
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