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Coexistence of Gaussian and non-Gaussian statistics in vector integrable turbulence
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Integrable turbulence studies the complex dynamics of random waves for the nonlinear integrable systems,
and it has become an important element in exploring the sophisticated turbulent phenomena. In the present
work, based on the coupled nonlinear Schrödinger models, we have shown the coexistence of Gaussian and
non-Gaussian single-point statistics in multiple wave components, which might be viewed as an exclusive feature
for the vector integrable turbulence. This coexistent statistic can relate to different distributions of the vector
solitonic excitations depending on the time-invariant nonlinear spectra. Our results are expected to shed light on
a deeper understanding of the turbulent behaviors of vector waves and may motivate relevant experiments in the
coupled optical or atomic systems.
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I. INTRODUCTION

Integrable nonlinear partial differential equations, such as
the celebrated Korteweg-de Vries and nonlinear Schrödinger
equations, appear as a type of unique systems that are char-
acterized by an infinite number of conserved quantities, with
the dynamical behaviors confined on some particular surfaces
in the phase space [1–4]. These equations, at the lead-
ing order, describe the nonlinear wave phenomena in many
branches of physics including hydrodynamics, nonlinear op-
tics, condensed matters and so on. In principle, integrable
equations can be solved by using the inverse scattering trans-
form (IST) [1], also known as the nonlinear Fourier transform,
and a fascinating solution coined the name soliton has at-
tracted extensive interest. This wave-natured entity transports
and interacts with its profile unchanged, presenting the parti-
clelike property.

When a random wave field contains a large ensemble of in-
teracting solitons with certain parameter distribution, it can be
linked to the concept soliton gas, first introduced by Zakharov
[5,6]. It was an analog to the gas of interacting particles in
the statistical mechanics. This concept is usually dedicated
to the statistical understanding of a collection of solitons
in integrable systems, on the contrary, for nonintegrable
systems the term soliton turbulence [7] was suggested to
reveal some different behaviors such as the incoherent soliton
turbulence [8].

More recently, the terminology integrable turbulence (IT)
was introduced for studying the complex dynamics of random
waves in nonlinear integrable systems [9], and it has attracted
much attention from the theoretical and experimental com-
munities [10–15]. Roughly speaking, IT includes two aspects:
One is the weakly interacting wave turbulence [16], and the
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other one is for the strong turbulence where nonlinear local-
ized modes such as solitons or breathers dominate [11–13].
The latter may further relate to the theory of soliton gas.
Although specific, IT may serve as a valuable direction for
better understanding the sophisticated turbulent phenomena to
some extent.

A ubiquitous integrable model as the paradigm of study-
ing IT is the scalar one-dimensional nonlinear Schrödinger
equation (NLSE) with focusing nonlinearity. The turbulent
dynamics of this equation is determined by the initial con-
dition, and its IST spectrum is invariant as the time evolves.
Here we shall mention two typical random initial conditions
[17]: (i) the noisy perturbation of a plane wave that triggers the
modulation instability (MI) process [18]; (ii) the partially co-
herent waves with a narrow Fourier spectrum that experience
self-focusing interaction [15,19]. Both conditions result in a
random wave field characterized by a stationary single-point
statistics for the long-time evolution. This stationary state
contains numbers of highly nonlinear localized excitations,
such as solitons and breathers, which move and interact on
a background of small-amplitude radiation waves.

Surprisingly, the noise-driven MI leads to the Gaussian
single-point statistics of the wave field at long times, with
an exponential distribution of the wave intensities. This
phenomenon has been observed in numerical simulations
and optical experiments, but its rigorous proof is still open
[11,12,17,18,20]. Alternatively, the Gaussian-distributed par-
tially coherent waves can induce a non-Gaussian statistics
of the long-time wave field with the heavy-tailed intensity
distribution [14,15,21,22]. Such a distribution is the sign of
probabilistic increase of the so-called rogue waves (RWs),
some high-amplitude wave structures that emerge with low
probability. This term was initially employed to label un-
expected and destructive giant oceanic waves, but has now
been generalized to represent large-amplitude waves in many
physical systems [23–27].
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Although there exist fruitful results on the scalar IT, es-
pecially within the framework of 1D NLSE, the study of the
turbulent dynamics for the vector integrable systems is rather
limited. On the one hand, those systems of coupled waves
have their importance in describing the physical phenomena
with two or more different components, with the applica-
tions in fluid dynamics, nonlinear optics, and Bose-Einstein
condensates (BECs) [28–31]. On the other hand, the vec-
tor integrable systems, e.g., the vector NLSEs, present some
unique features such as the energy transfer and redistribution
between the coupled modes that may lead to various new types
of vector solitonic solutions [32–37], as well as determinis-
tic RW solutions [28,31,38]. These solutions have also been
constructed for other vector systems including the three-wave
resonant interaction equations [39] and the long-wave-short-
wave resonance [40]. Hence, we have reasons to expect some
exclusive statistical manifestation of the turbulent wave fields
for the vector integrable systems. In the present work, a typical
paradigm is provided for this purpose.

II. MODEL AND METHODS

We consider a dimensionless vector NLSE with two
components, i.e., the well-known focusing Manakov
equation [41],

i
∂ψ1

∂t
+ ∂2ψ1

∂x2
+ 2(|ψ1|2 + |ψ2|2)ψ1 = 0, (1a)

i
∂ψ2

∂t
+ ∂2ψ2

∂x2
+ 2(|ψ1|2 + |ψ2|2)ψ2 = 0, (1b)

where t is the evolution variable that plays the role of time,
x is the transverse variable, and the complex wave func-
tions ψ1(x, t ) and ψ2(x, t ) describe the physical fields of
interest (e.g., those in water waves, nonlinear optics, BECs,
etc. [28–31]). The initial value problem of this integrable
model can be solved by using the IST method for appropriate
boundary conditions [3], and various solitonic solutions can
be constructed by means of the Hirota method and Darboux
transformation [28,31,32,34].

To our knowledge, there are few statistical results on the
relatively strong turbulence of Eq. (1), where the nonlinear
coherent excitations such as solitons and breathers widely
appear in the wave fields. References [42,43] considered the
initial conditions as the weak-noise-perturbed plane waves
in both modes, and found the long-time wave amplitudes to
obey Gaussian distribution for both components; when the
noisy perturbations become strong, both modes may display
non-Gaussian distribution. This property in fact represents
no essential difference from that of the scalar IT based on
the single NLSE [12,13]. Here, for the Manakov model, we
show a coexistence of Gaussian and non-Gaussian single-
point statistics in the different components, which may be
viewed as a unique feature for the vector IT.

For the above purpose, we employ the initial condition as a
constant background of unit amplitude in one component and
a partially coherent wave field for another component, namely,

ψ1(x, 0) = 1, ψ2(x, 0) = f (x), (2)

where f (x) is a complex random function with its real and
imaginary parts taking two independent Gaussian distributed

FIG. 1. Three-dimensional plots of parts of the turbulent wave
fields |ψ1(x, t )| and |ψ2(x, t )| for a specific realization of f (x), with
σ = 0.2 and lc = 3.

and Gaussian correlated random functions. They have zero
mean and the same variance σ 2 and the same correlation
length lc. Thus, the intensity | f (x)|2 follows an exponential
distribution with 〈| f (x)|2〉 = 2σ 2.

We performed extensive numerical simulations on Eq. (1)
by using the fourth-order split-step method [3] in a periodic
box of the size L = 512π , with a uniform grid of N = 215

nodes. The simulation was implemented up to t f = 400 where
the IT has developed to its stationary state in both compo-
nents, and a tendency toward the Fermi-Pasta-Ulam-Tsingou
recurrence [44] was not observed. We have checked our re-
sults by using different integration schemes and found no
changes (a brief discussion on the numerical errors can be
seen in Appendix A).

III. RESULTS AND DISCUSSIONS

A. Scintillation index

As a typical example, Fig. 1 presents part of the wave fields
for a specific realization of f (x). We see that both fields con-
tain large numbers of nonlinear localized excitations (which
will be classified as solitons and breathers). They move and
interact on the background of small radiation waves. However,
there appears obvious difference between the random patterns
of the two components, which is a basic but universal charac-
ter for the hundreds of realizations of simulation results that
may result in different distributions of the wave amplitudes
between components.

We introduce a single statistical quantity to describe the
intensity fluctuations of the wave fields, the so-called scintil-
lation index (SI) [45], defined as

κ j (t ) = 〈|ψ j |4〉
〈|ψ j |2〉2 − 1, j = 1, 2, (3)

where the averages are taken over x direction as well as
the different realizations of f (x). This index is also named
as the kurtosis [10], the normalized fourth-order moment of
the wave amplitude |ψ j |, which is efficient in characterizing
RWs in turbulent wave fields [45–47]. Generally speaking,
Gaussian statistics has a SI of unity, while κ > 1 implies a
heavy-tailed distribution of the intensities where the waves
are concentrated that may lead to a higher probability of RW
formation.
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FIG. 2. (a) Scintillation indices κ , each averaged over 200 real-
izations of f (x), as functions of t . (b) Probability density functions
P(|ψ |2) of the normalized wave intensities |ψ |2 at t = 400. The blue
dashed line is for the mode ψ1 and the red solid line is for the
mode ψ2. Accordingly, the results for the 1D scalar NLSE (the green
dot-dashed lines) are given with ψ2(x, 0) as the initial conditions.
The parameters include σ = 0.2 and lc = 3.

Figure 2 presents the main statistical findings for hundreds
of simulations. Figure 2(a) shows the evolution of the SI
with the time for both components. After a transient regime
from the initial stage, κ1,2 converges to a stationary regime
and nearly does not change for t > 200 (more numerical
evidences supporting the stationary regime can be found in
Appendix B). Here the most interesting result is that κ1 ap-
proaches to unity while κ2 tends to a value larger than two,
which explicitly reveals a coexistence of the Gaussian and
non-Gaussian single-point statistics of wave amplitudes for
the long-time propagation. More clearly, in Fig. 2(b) we dis-
play the probability density function of the normalized wave
intensity |ψ j |2 measured at t f = 400 [the wave functions are
normalized as ψ1 → ψ1 and ψ2/(

√
2σ ) → ψ2]. Apparently,

the component ψ1 shows an exponential distribution and the
component ψ2 gives a heavy-tailed distribution with its tail
more elevated. This implies that the probability of the occur-
rence of RWs is more increased for the second mode.

In addition, in this figure we also provide the results for the
1D scalar NLSE, i.e., Eq. (1) with the component ψ1 vanished.
Apparently the time evolution of κ2 changes when the initial
plane wave in ψ1 is considered. For the short timescale, κ2

of the scalar case has one maximum hump before tending

to the stationary regime [also see Fig. 3(c)], while for the
vector case it contains several fast oscillations and a relatively
slow decaying. For the long timescale, κ2 of the vector case
approaches a value larger than that of the scalar case, which
means a higher probability of RW occurrence. This point can
also be reflected from Fig. 2(b), where the PDF curve of ψ2 is
more elevated for the vector wave fields.

The transient regime of κ (t ) is further described in Fig. 3
representing the early stage of vector integrable turbulence.
We display typical examples with increasing strength of the
disorder. For enough small σ [see Fig. 3(a)], the vector sys-
tem is decoupled (also explained in the following section),
and ψ1 behaves like the noise-induced MI of scalar NLSE
[11,20], with κ1 showing a decaying oscillations due to the
phenomenon of recurrence. The component ψ2 is nearly a
linear field synchronized by the potential term |ψ1|2ψ2. As
σ increases, the oscillations are decreasing and not well syn-
chronized [see Figs. 3(b) and 3(c)] since the coupling of the
vector fields takes effect. However, κ2 is very unlike the scalar
case with only one maximum hump [48], instead it results
from the mutual interaction between the recurrence-like be-
havior in ψ1 and focusing effect in ψ2. When σ is large
enough, the oscillations of κ (t ) almost disappear and there
presents a single hump [see Fig. 3(d)], where the focusing
effect seems to dominate. After these fast oscillations (or one
hump), the slow decaying of κ2(t ) is a remarkable effect when
|ψ2| is large enough to compete with |ψ1| [see Figs. 3(c) and
3(d)]. The decaying might be a result of this competition that
can reduce the gap between κ1 and κ2. This argument is better
verified in Fig. 3(d), where κ1 shows a slow growth at the same
time as κ2 decays.

B. Parametric dependence

To see the dependence of the long-time wave statistics on
the initial parameters (σ, lc), we define the following time-
averaged SI,

κ j = 1

t f − t0

∫ t f

t0

κ jdt j = 1, 2, (4)

where t0 = 200 is used, after which both components tend to
the stationary states with nearly invariant values of SI (see the
examples in Appendix B). For practical use, |κ − 1| < ε (ε =
0.05) was set as the criterion for the Gaussian single-point
wave field; otherwise, the wave statistics was seen to obey
the non-Gaussian distribution (in this work, we mainly dealt
with the heavy-tailed distribution with κ > 1 + ε). Figure 4(a)
presents a diagram based on our extensive simulations. We
found that, with σ increasing, the vector wave field transits
from a coexistence of the Gaussian and non-Gaussian statis-
tics to both non-Gaussian statistics. For the smaller correlation
length lc < 2, this transition appears to happen at the point
with a bit larger σ . As a result we have confirmed a parameter
regime where the Gaussian and non-Gaussian distributions of
the wave fields can exist at the same time.

Here we emphasize that this regime still corresponds to
the nonlinear coupling of the two components in Eq. (1).
As a comparison, considering the enough small σ , we may
have |ψ1(x)| � |ψ2(x)| for ∀x at any time such that the Man-
akov model is decoupled. The component ψ1 has the similar
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FIG. 3. Ensemble-averaged scintillation indices κ as functions of t for lc = 3. (a) σ = 0.001; (b) σ = 0.1; (c) σ = 0.2; (d) σ = 0.5. The
blue solid line is for the mode ψ1 and the red solid line is for the mode ψ2. In panel (c), κ (t ) for the scalar NLSE is given with the initial
conditions chosen the same as ψ2(x, 0) of the vector case.

behavior as the weak-noise-driven MI for the scalar NLSE
which shows the Gaussian statistics for the long-time prop-
agation. The component ψ2 becomes a linear system with the
intensity |ψ1|2 as an external potential. The linear waves may
also present the non-Gaussian distribution due to the concen-
tration effect of this potential. However, this distribution of the
normalized waves for the component ψ2 does not change with
σ because of its linear property.

Figure 4(b) gives an example showing the transition from
the decoupled to the coupled regimes (Other cases have the

similar transient variations). Also in this figure we provide
the time-averaged SI for the scalar NLSE as comparison
[equivalent to the cases with ψ1(x, 0) = 0 and ψ2(x, 0) =
f (x)]. When σ � 10−3, the time-averaged SI is invariant in
both components, corresponding to the regime of decoupled
waves, as analyzed above. As σ � 10−3, κ2 begins to vary
with σ , so the nonlinear coupling has taken effect. A regime
10−3 � σ � 0.26 exists where κ1 nearly equals to unity while
κ2 is obviously larger than one. This is the regime we say
the coexistence of Gaussian and non-Gaussian distributions

FIG. 4. (a) The diagram showing two different regimes, where the left regime is for the Gaussian statistics in the component ψ1 and
non-Gaussian statistics in the component ψ2, while the right regime has the non-Gaussian statistics in both components. (b) Plots of κ with
σ varying in several orders of magnitude (lc = 2.0). The blue squares and red circles correspond to the components ψ1 and ψ2, respectively,
while the green diamonds are for the scalar NLSE results.
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FIG. 5. Typical vector wave fields generated from the initial conditions (2) with σ = 0.2 and (a) lc = 1; (b) lc = 5. The corresponding
global spectra calculated by the DK scheme are portrayed in panels (c) and (e), with the portions near the imagine axis zoomed in panels
(d) and (f).

under the influence of nonlinear coupling. The varying trend
of κ2 with σ in this regime is apparently different from that
for the 1D scalar NLSE. It composes of an increasing and
a decreasing intervals, which may be respectively due to
the nonlinear focusing and the decaying effect as explained
in Fig. 3. When σ � 0.26, both components present non-
Gaussian (heavy-tailed) distributions with κ1,2 monotonically
increasing with σ , indicating a stronger nonlinear coupling.

C. Nonlinear spectral analysis

Now we turn to a deeper understanding of the nonlinear
wave fields with localized coherent excitations by using the
tool of IST. This technique decomposes the nonlinear waves
into localized solitary eigenmodes and dispersive radiation
components, which can be employed to study from single
soliton to soliton ensembles in integrable systems [12,18,49],
and even be effective for analyzing some nearly integrable
systems with small perturbations [46,50–52].

The basis of the IST is to solve the Zakharov-Shabat spec-
tral problem for a given vector wave field [ψ1(x, t ), ψ2(x, t )],

dY
dx

=
⎛
⎝ −iλ 0 ψ1

0 −iλ ψ2

−ψ∗
1 −ψ∗

2 iλ

⎞
⎠Y, (5)

where Y(x, t ; λ) is a vector and λ = ξ + iη ∈ C represents
the spectral eigenvalues, ξ and η are, respectively, the real
and imaginary parts. For the integrable Manakov system, the
spectrum of eigenvalues is invariant as the t variable evolves.
These eigenvalues are symmetrically distributed on the upper
and lower complex planes.

Generally speaking, there are two cases of interest. One
case is for the localized wave fields with the intensity van-

ishing at the boundaries. Such that a typical eigenvalue
apparently away from the real and imaginary axes corresponds
to the vector soliton, and its total intensity is four times |η|
while its velocity is associated with ξ . The eigenvalues that
appear very near the real axis stand for linear radiation waves
with small amplitudes.

Another case is for the periodic boundary conditions,
which is used in our study. The spectral properties of this case
can be analyzed by Floquet theory [4,53–56]. This theory tells
that all bounded solutions of Eq. (5) can be written in the form

Y(x) = eiγ xŶ(x), (6)

where γ ∈ R is the Floquet exponent and Ŷ(x) has the
basic period L along x coordinate, i.e., Ŷ(x + L) = Ŷ(x).
Equation (6) shows that

Y(x + L) = eiγ LY(x). (7)

Therefore, the full spectrum is derived with the Floquet expo-
nent as a parameter

γ ∈
[

0,
2π

L

)
. (8)

Similar to the scalar NLS case, the main spectrum corresponds
to the special values γ = 0 and γ = π

L that are for the periodic
and antiperiodic eigenfunctions, respectively. Substituting the
Floquet equation (6) into Eq. (5), we rewrite the eigenvalue
problem as follows:⎛

⎜⎝
i∂x − γ 0 −iψ1

0 i∂x − γ −iψ2

−iψ∗
1 −iψ∗

2 −i∂x + γ

⎞
⎟⎠Ŷ = λŶ. (9)
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Since Ŷ is periodic, We can numerically solve the spectral
problem (9) by using the Fourier collocation (FC) method
[3,49] with periodic boundary conditions. Each choice of
the Floquet exponent γ in Eq. (8) results in the eigenvalues
constituting part of the spectrum. This type of algorithm, also
known as Deconinck-Kutz (DK) scheme [57], is efficient for
solving the nonlinear spectral problems with periodic poten-
tials [58,59]. The spectrum can also be analyzed by employing
a numerical IST procedure with a spatial periodization of the
wave field under consideration [60]. An example is given in
Appendix C to show that both methods can produce the spec-
tral distribution effectively. Appendix D demonstrates that our
methods work correctly on some known solitonic solutions of
Eq. (1).

Figures 5(a) and 5(b) present two typical wave fields given
by Eq. (2) with the same σ = 0.2 but different lc (note that
only the partial simulation domain was displayed for clarity).
The corresponding global spectra for the periodic waveforms
are given in Figs. 5(c)–5(f). For both wave fields, we see
a large complex conjugate loop dominating the spectrum
distribution, which is much wider for smaller lc. There are
many small-amplitude loops crossing the real axis that can be
viewed as being perturbative for lc = 1, but these structures
are hardly seen for lc = 5. Additionally, we found that lots
of small-size loops (some of them are pointlike) concentrate
near the point (ξ, η) = (0,±1), and they may correspond to
the solitonlike objects. In various realizations of randomness,
the composition of the spectral portraits appear to be similar
when σ and lc are the same as in Fig. 5.

As to multiple realizations of the initial conditions, the
statistical distribution of the main spectral eigenvalues on
the complex plane was given in Fig. 6 for two typical cases
with the same σ but different lc. Here, the probability density
function p(ξ, η) represents the eigenvalue distribution of main
spectra, and p(ξ, η)dξdη is the probability of eigenvalues
found in the spectral element λ ∈ [ξ, ξ + dξ ] × [η, η + dη].
Note that we only recorded the eigenvalues with |η| > ε

(ε = 0.05) to avoid the linear radiation waves with very small
amplitudes, and in this figure we plot log10[p(ξ, η)] for a
clearer view of the density functions with their values cover-
ing different orders of magnitudes. The function p(ξ, η) was
normalized as

∫ +∞
−∞ dξ

∫ +∞
ε

dη p(ξ, η) = 1.
Although both cases in Fig. 6 support the coexistence of

Gaussian and non-Gaussian statistics [see in Fig. 4(a)], their
eigenvalue distributions of main spectra form distinct global
shapes that depend on the correlation length. For lc = 1 [see
Fig. 6(a)], many eigenvalues locating at the lower positions
(with smaller |η|) have sufficiently large real parts which
means that the corresponding nonlinear excitations have ac-
quired significant velocities. The eigenvalues at the higher
positions (with larger |η|) own neglectable (much smaller)
real parts. In contrary, for lc = 5 [see Fig. 6(b)], all the eigen-
values are almost distributed adjacent to the imaginary axis.
Figures 6(c) and 6(d) portray the local vision of the main
spectra very near the imaginary axis, which clearly show
the spectral expansion along ξ depending on the correlation
length lc. To further compare the distribution of the imagi-
nary parts of those eigenvalues, we individually look at in
Fig. 6(e) the probability density function of η, defined as
p(η) = ∫ +∞

−∞ p(ξ, η)dξ . We found the distribution almost the

FIG. 6. Logarithm plots of the probability density functions
log10[p(ξ, η)] for the main spectral eigenvalues with σ = 0.2 and
(a) lc = 1; (b) lc = 5. The statistics was taken from 100 realizations
of the initial conditions. Corresponding to panels (a) and (b), panels
(c) and (d) portray the zoomed areas adjacent to the imaginary axis
with finer plot grids. (e) Probability density functions p(η) showing
the distribution of the imaginary parts of the eigenvalues for panels
(a) and (b). Note that we only consider η > 0 due to the symmetric
distribution of the eigenvalues.

same except for two regions η � 0.2 and η � 1.0. In these
regions, the smaller lc increases the ratio of small nonlinear
excitations and linear radiation waves with η < 0.2, while the
larger lc increases the percentage of large vector solitonlike
entities with η > 1.0. Thus, we get the point that, for certain
range of the parameters, variation of the correlation length
can apparently change the wave contents (revealed from
the distribution of the main spectra), but the coexistence of
Gaussian and non-Gaussian distributions is preserved. We
stress that the nonlinear spectra for the Manakov model are
very different from those for the scalar NLS equation, as
explained in Appendix E.

We notice that for the focusing Manakov equations with
nonzero boundary conditions, Ref. [36] has found three
different types of IST eigenvalues, where the first type
corresponds to the trivial vectorization of the breather so-
lutions of the scalar NLS equation, while the second and
third types are the analog of the distinct dark-bright soliton
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FIG. 7. Scintillation indices κ as functions of t : (a) ψ1(x, 0) = 1, ψ2(x, 0) = 0.6, and ψ3(x, 0) = f (x) with σ = 0.2 and lc = 3;
(b) ψ1(x, 0) = 1, ψ2(x, 0) = f1(x) with σ = 0.2 and lc = 1, and ψ3(x, 0) = f2(x) with σ = 0.2 and lc = 3. Corresponding to panels (a) and
(b), the probability density functions P(|ψ |2) of the normalized wave intensities |ψ |2 at t = 350 are displayed in panels (c) and (d). For all
panels, the blue solid line, red dashed line, and green solid line are for the components ψ1, ψ2, and ψ3, respectively.

solutions. The multisoliton solutions containing a combina-
tion of the three types of eigenvalues may display resonant
interactions among them [37]. Here our global distribution
of eigenvalues is based on the periodic boundary conditions,
and how their locations on the complex plane of the spec-
tra relate to the three types of eigenvalues for the nonzero
boundary conditions on the whole line should be an open
question.

IV. GENERALIZATION AND SUMMARIES

Till now we have realized the Gaussian plus non-Gaussian
statistics in a two-component IT that contains large num-
bers of nonlinear solitonic excitations. Naturally one may
wonder whether the similar combined distributions exist in
the N-component integrable system with N > 2. So we would
consider a generalization of the Manakov model (1)

i
∂�

∂t
+ ∂2�

∂x2
+ 2‖�‖2� = 0, (10)

where � is a N-component vector � = (ψ1, ψ2, · · · , ψN ),
and ‖ · ‖ is the Euclidean norm as ‖�‖2 = ∑N

j=1 |ψ j |2. This
model is integrable by the IST [61]. Here, we report a sim-
ulation example for N = 3, as shown in Fig. 7. Using the
appropriate initial conditions of the similar types as Eq. (2),
this instance realizes at the long times two different combi-
nations of the single-point wave statistics: (i) the Gaussian
distribution for two components and the non-Gaussian dis-
tribution for the third component [see Figs. 7(a) and 7(c)];
(ii) the non-Gaussian distribution for two components and the

Gaussian distribution for the third component [see Figs. 7(b)
and 7(d)]. This realization indicates that the exponential and
heavy-tailed wave intensity distributions can coexist at least in
a three-component IT, with its combination presenting some
diversity.

In summary, by studying the turbulent wave behaviors
of the two-component Manakov model, we have revealed a
unique feature for the vector integrable turbulence, namely,
the coexistence of Gaussian and non-Gaussian single-point
statistics for the long-time evolution. This nontrivial property
can be observed for a range of initial parameters, which cor-
respond to the effective coupling of the nonlinear wave fields.
The nonlinear spectral analysis further shows that the distribu-
tion of the solitonic coherent excitations may be changed with
the Gaussian plus non-Gaussian statistics preserved. We also
provide the evidence that the similar combined distributions
can be realized for the integrable three-component NLSEs.
We hope to open up a new gate for the theoretical investi-
gation on vector integrable turbulence, and also expect future
realizations of our results in the relevant experiments such as
those in multimode optical fibers and coupled BEC systems
[29,30,62].
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APPENDIX A: NUMERICAL ERRORS

In this Appendix, we briefly discuss the numerical errors
for our simulation results. The coupled system (1) has infinite
numbers of conserved integrals over the evolution coordi-
nate, with the first three being the mass, momentum, and
Hamiltonian:

S1 = 1

L

∫
|ψ1|2dx, S2 = 1

L

∫
|ψ2|2dx, (A1a)

P = i

L

∫ (
ψ1

∂ψ∗
1

∂x
− ψ∗

1
∂ψ1

∂x
+ ψ2

∂ψ∗
2

∂x
− ψ∗

2
∂ψ2

∂x

)
dx,

(A1b)

H = 1

L

∫ [∣∣∣∣∂ψ1

∂x

∣∣∣∣
2

+
∣∣∣∣∂ψ2

∂x

∣∣∣∣
2

− (|ψ1|2 + |ψ2|2)2

]
dx.

(A1c)

The preservation of these integrals can be checked by tracking
their relative errors as Sr (t ) = |S(t ) − S(0)|/|S(0)|, Pr (t ) =
|P(t ) − P(0)|/|P(0)|, and Hr (t ) = |H (t ) − H (0)|/|H (0)|. We
present a typical result in Fig. 8, where we see that all the
relative errors are considerably small. For our simulations,
the errors are generally bounded at the level of less than
10−7. Thus, the mass, momentum, and Hamiltonian are well
conserved.

In addition, we have checked the time-invariance of the
main spectra for specific realizations. The relative errors of
all the IST eigenvalues at t = 0 and t f = 400 are kept below
the level of 10−4, in which more than 90% of the eigenvalues
have the relative errors less than 10−8, and the errors for those
with |η| > 0.05 are smaller than 10−6. Thus, we can conclude
that in our simulations the nonlinear spectra are well preserved
with time increasing, as required by the integrability of the
system.

FIG. 9. (a) Time evolution of the ensemble-averaged kinetic
(blue solid line) and potential energies (red dashed line). (b) The
normalized moments averaged over different ensembles as functions
of time. The blue solid line and light-blue dashed line correspond
to the 1st moments for ψ1 and ψ2, while the red solid line and pink
dashed line correspond to the 3rd moments. The parameters are the
same as those in Fig. 2.

APPENDIX B: THE STATIONARY REGIME

We provide more numerical evidences to support the ex-
istence of the stationary regime for relatively long times.
First, we check the ensemble-averaged kinetic energy Hl =
〈 1

L

∫
(|∂ψ1/∂x|2 + |∂ψ2/∂x|2)dx〉 and potential energy Hnl =

〈− 1
L

∫
(|ψ1|2 + |ψ2|2)2dx〉, with the results shown in Fig. 9(a).

Second, we consider the ensemble-averaged 1st and 3rd nor-
malized moments of the wave fields M (1)

j = 〈|ψ j |〉/〈|ψ j |2〉 1
2

and M (3)
j = 〈|ψ j |3〉/〈|ψ j |2〉 3

2 , where j = 1, 2 is for different
wave components. The time evolution of these moments are
plotted in Fig. 9(b). All the statistical quantities indicate the
same trend as in Fig. 2 that the IT may approach its station-
ary state after a short-time transient regime starting from the
initial conditions.

We also present here the ensemble-averaged scintillation
indices κ (t ) for several σ with different orders of magnitudes
(lc = 2), as seen in Fig. 10. This figure shows that the use of
t0 = 200 is appropriate in Eq. (4) since the wave fields in both
components tend to their stationary states after this time.

APPENDIX C: AN EXAMPLE ON THE NONLINEAR
SPECTRA

Through an example we show that the nonlinear spectra
can be effectively obtained by either the DK scheme or FC
method with a periodization of the wave field. Figure 11(a)
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FIG. 10. Ensemble-averaged scintillation indices κ as functions
of t for lc = 2. (a) σ = 0.0001; (b) σ = 0.01; (c) σ = 0.2; (d) σ =
0.84. The blue dashed line is for the mode ψ1 and the red solid line
is for the mode ψ2.

presents the wave profiles in a periodic box of size L = 2π ,
where we use a plane wave in one component and partially
coherent humps in another component. Their nonlinear spec-
tra by different schemes are given in Fig. 11(b), revealing
the same global distribution of the eigenvalues composed of
three main complex conjugate loops and a small-amplitude
loop across the real axis. The distinction is that we have
denser points of eigenvalues for the DK scheme since it is
more computationally efficient than the FC method when the
periodization is large.

APPENDIX D: FOURIER COLLOCATION METHOD ON
SOME KNOWN SOLUTIONS

Hereby we demonstrate that the FC method (including the
related DK scheme) works correctly on some known solutions
of the Manakov model with vanishing or periodic boundary
conditions.

The N-soliton solutions of Eq. (1) can be written explicitly
as (the notations are the same as in Ref. [3])

(
ψ1

ψ2

)
= 2i

N∑
j,k=1

(
α j

β j

)
eθ j−θ∗

k (M−1) jk, (D1)

where

θk = −iλkx − 2iλ2
kt, (D2)

and M is an N × N matrix with its elements given by

Mjk = 1

λ∗
j − λk

[e−(θ∗
j +θk ) + (α∗

j αk + β∗
j βk )eθ∗

j +θk ]. (D3)

We first check the single-soliton solutions, where we set N =
1 in Eq. (D1). Letting λ = ξ + iη and introducing the polar-
ization vector c = (α1, β1)T /

√
|α1|2 + |β1|2, the solutions can

be written as

(ψ1, ψ2)T = c · 2ηsech[2η(x + 4ξ t + x0)]e−2iξx−4i(ξ 2−η2 )t .

(D4)

The polarization vector can control the relative power dis-
tribution between the two components of this solutions. We
present two cases in Figs. 12(a)–12(f): One is for c = (1, 0)T

where the Manakov soliton is just the scalar NLS soliton
and another one is for c = (0.6, 0.8)T , with the same spec-
tral eigenvalue λ = 0.25 + i. For different power distribution,
we see in Figs. 12(c) and 12(f) that this eigenvalue can be
accurately calculated by using the FC method.

Second, we see the two-soliton solutions (N = 2) which
describe the collision of two Manakov solitons. A redis-
tribution of the power among the two components is a
distinctive feature that does not occur for the scalar NLS soli-
tons. We take λ1 = 0.1 + 0.7i, λ2 = −0.1 + 0.7i, (α1, α2) =
(1, 1), and (β1, β2) = (0.25, 0), as plotted in Figs. 12(g) and
12(h). In Fig. 12(i), we present the eigenvalues computed by
using the FC method, and find that the results fully agree.

Finally, we consider the Type I solitons with the same
parameters as in Fig. 2 of Ref. [36]. This is the trivial
vectorization of the breather solutions of the scalar NLS
equation with finite background. Its spectrum consists of a
segment [−i, i] and discrete eigenvalues λ = ±1.25i. For the
used parameters, we can employ the DK scheme with periodic
boundary conditions. The spectrum was numerically solved,
as provided in Fig. 12(l), where it completely accords with
our expectation.

APPENDIX E: A COMPARABLE VIEW ON THE
NONLINEAR SPECTRA

In this Appendix, we compare the nonlinear spectra be-
tween the Manakov model (see Figs. 5 and 6) and the scalar
NLS equation with ψ (x, 0) = f (x) [equivalent to the case of
ψ1(x, 0) = 0 and ψ2(x, 0) = f (x)]. In Figs. 13(a) and 13(b),
the global spectra for typical wave fields with σ = 0.2 and dis-
tinctive lc (lc = 1 and lc = 5) are demonstrated. The zoomed
pictures of the spectra near the origin are respectively shown
in Figs. 13(c) and 13(d). For the scalar NLS equation, the
small-amplitude bands across and near the real axis represent
small linear waves and breather type structures. We see that
most of the larger-amplitude nonlinear excitations correspond
to the pointlike eigenvalue bands, which stand for the soliton-
like objets. The distribution of these eigenvalues depends on
the correlation length lc when σ is fixed.

The main difference between the Manakov and scalar NLS
spectra includes two aspects: (i) The vector case contains a
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FIG. 11. (a) The profiles of a vector wave field |ψ1(x)| and |ψ2(x)| at t = 0 within a periodic box [−π, π ]. (b) Comparison of the
spectra computed respectively by the DK scheme (red dots, �γ = 1/500) and FC method with a spatial periodization (blue circles, including
128 periods).

FIG. 12. Typical solitonic solutions of Manakov model (the left two columns) and their IST spectra computed by using the FC method (the
right column). (a)–(c) The single-soliton solutions with λ = 0.25 + i and c = (1, 0)T ; (d)–(f) the single-soliton solutions with λ = 0.25 + i and
c = (0.6, 0.8)T ; (g)–(i) the two-soliton solutions with λ1 = 0.1 + 0.7i, λ2 = −0.1 + 0.7i, (α1, α2) = (1, 1), and (β1, β2) = (0.25, 0); (j)–(l)
the Type I soliton solutions with the same parameters as in Fig. 2 of Ref. [36].
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FIG. 13. The global spectra for typical scalar NLS wave fields with σ = 0.2 and (a) lc = 1; (b) lc = 5. The spectral distribution near the
real axis is zoomed in panels (c) and (d), respectively. Logarithm plots of the probability density functions log10[p(ξ, η)] for the main spectral
eigenvalues of the scalar NLS equation with initial parameters σ = 0.2 and (e) lc = 1; (f) lc = 5. The statistics was taken from 100 realizations
of the initial conditions.

large eigenvalue loop dominating the spectrum shape which
is attributed to the addition of ψ1(x, 0) = 1, while the scalar
case does not have such a structure; (ii) the eigenvalues
representing solitons locate near the point λ = ±i for the
vector case, while the scalar case has a distinctive distribution.

In Figs. 13(e) and 13(f) we plot statistical distribution of
the main spectral eigenvalues for the scalar NLS. As com-
pared with those in Fig. 6, a remarkable difference on the
global distribution can be seen due to the vectorization of the
system.
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