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Spectral crossovers in non-Hermitian spin chains: Comparison with random matrix theory
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We present a systematic investigation of the short-range spectral fluctuation properties of three non-Hermitian
spin-chain Hamiltonians using complex spacing ratios (CSRs). Specifically, we focus on the non-Hermitian
variants of the standard one-dimensional anisotropic XY model having intrinsic rotation-time (RT ) symmetry
that has been explored analytically by Zhang and Song [Phys. Rev. A 87, 012114 (2013)]. The corresponding
Hermitian counterpart is also exactly solvable and has been widely employed as a toy model in several condensed
matter physics problems. We show that the presence of a random field along the x direction together with
the one along the z direction facilitates integrability and RT -symmetry breaking, leading to the emergence
of quantum chaotic behavior. This is evidenced by a spectral crossover closely resembling the transition from
Poissonian to Ginibre unitary ensemble (GinUE) statistics of random matrix theory. Additionally, we consider
two phenomenological random matrix models in this paper to examine 1D Poisson to GinUE and 2D Poisson
to GinUE crossovers and the associated signatures in CSRs. Here 1D and 2D Poisson correspond to real and
complex uncorrelated levels, respectively. These crossovers reasonably capture spectral fluctuations observed in
the spin-chain systems within a certain range of parameters.
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I. INTRODUCTION

Non-Hermitian Hamiltonians possessing complex eigen-
values arise in a wide variety of systems, including those
with dissipation, such as the dissipative kicked rotor, open
quantum systems like boundary-driven spin chains with spin
injection and ejection terms, and gain-loss Hamiltonians com-
monly encountered in quantum optics. Among non-Hermitian
Hamiltonians, a subclass is formed by those which pos-
sess the constraint of parity-time (PT ) or the more general
rotation-time (RT ) symmetry and can exhibit real spectra.
These Hamiltonians have received a lot of attention since
real eigenvalues guarantee unitary time evolution leading to
conservation of probability amplitude which is fundamental
to describing a quantum theory useful in physical interpre-
tation of natural phenomena. The subject of PT -symmetric
quantum mechanics has been deeply enriched by the seminal
works of Bender, Mostafazadeh, and others [1–12], who have
established it as an extension of conventional or Hermitian
quantum mechanics.

Mathematically, the linear parity operator P performs
spatial reflection and has the effect p → −p and x → −x,
whereas the antilinear time-reversal operator T has the ef-
fect of transforming p → −p, x → x, and i → −i. The joint
action of PT together is basically a reflection, i.e., PT =
(PT )−1. Bender and coworkers have established an extensive
collection of non-Hermitian PT -symmetric Hamiltonians in
their research. In general, it has been shown that the reality of
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quantum spectrum is an outcome of unbroken PT symmetry.
A Hamiltonian is called PT symmetric if its eigenfunctions
are simultaneously eigenfunctions of the PT operator, and
in such cases PT symmetry is not spontaneously broken.
Many examples of non-Hermitian Hamiltonians possessing
PT symmetry have been discussed in Refs. [1,2,4,5,13–26].
Beyond complex Hamiltonians with PT symmetry and pos-
sessing real spectra, one comes across Hamiltonians which are
RT symmetric. It has been demonstrated in Ref. [27] that RT
symmetry is a superset, i.e., a more general notion compared
to PT symmetry, such that a wide class of Hamiltonians
may be identified that have properties similar to that of PT -
symmetric systems, despite not being explicitly PT symmet-
ric (PT symmetry is only a special class of RT symmetry).

In numerous scenarios, non-Hermiticity can be imparted to
a system without necessitating its openness in terms of inter-
action with an external bath or environment. One approach,
for instance, involves introducing external imaginary fields to
establish PT symmetry and achieve a real spectrum. Several
popular Hermitian spin-chain models have been modified to
include imaginary interactions, resulting in the emergence of
complex spectra, in general. For instance, the quantum Ising
model in the presence of a magnetic field in the z direction
as well as an imaginary field in the x direction has been
studied analytically in Ref. [28]. Therein, the authors examine
various symmetries of the system and study the spin sys-
tem in the light of perturbation theory, providing some exact
results for magnetization along the z and x directions. This
modified Ising model is the discretized lattice version of the
Yang-Lee model considered by von Gehlen in Refs. [29,30].
In fact, the Yang-Lee zeros have recently been observed by
measuring the quantum coherence of a probe spin coupled to
an Ising-type spin bath. The quantum evolution of the probe
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spin introduces a complex phase factor which effectively re-
alizes an imaginary magnetic field. It also substantiates that
imaginary magnetic fields are not unnatural and are indeed
experimentally accomplishable [31]. The classical Heisenberg
spin chain with PT symmetry has been studied under the ac-
tion of Slonczewski spin-transfer torque modeled by applying
an imaginary magnetic field [32]. Interestingly, this correla-
tion between the imaginary magnetic field on spin dynamics
and Slonczewski spin-transfer torque allows an experimental
verification of the PT symmetry-breaking phase transition
in some spin chains [33,34]. Exact solutions using the Bethe
ansatz technique have been provided for an XXZ spin chain in
the presence of an imaginary magnetic field at the boundary in
Ref. [35]. Such exact solutions are also available for the one-
dimensional dissipative Hubbard model with two-body loss
[36]. Giorgi in Ref. [37] studied spontaneous PT -symmetry
breaking in an exactly solvable non-Hermitian dimerized
chain where non-Hermiticity is introduced via a staggered
magnetic field. In Ref. [38], a PT -symmetric non-Hermitian
version of a quantum network, originally proposed in
Refs. [39,40], has been studied in the context of quantum state
transfer. Besides the above examples, non-Hermiticity may
also arise from PT -symmetric on-site imaginary potentials in
tight-binding models and strongly correlated systems [41–52].
Additionally, some authors have used the PT -symmetric
nature of non-Hermitian Hamiltonians to produce efficient
algorithms to compute their spectra with arbitrarily high preci-
sion [53,54]. Studies of RT -symmetric bosonic and fermionic
systems have been conducted in diverse capacities, encom-
passing exactly solvable models, quantum batteries, detection
of exceptional points through dynamics, and the identification
of unbroken phases using quantum-information-related tech-
niques, in Refs. [27,55–59]. Some authors have focused on
solvable fermionic spin chains. For example, in Refs. [55,56],
Zhang and Song analytically studied and identified excep-
tional points and regions of broken as well as unbroken
symmetries in a one-dimensional anisotropic non-Hermitian
XY model in a transverse magnetic field (z direction) having
intrinsic RT symmetry, with respect to certain parameters.

Despite such extensive analytical explorations, non-
Hermitian spin chains of the aforementioned nature have
received relatively little attention within the context of ran-
dom matrix theory (RMT) and quantum chaos. In addition to
other objectives, our aim in this paper is to contribute in this
direction by studying the short-range fluctuation properties of
the anisotropic XY model in a transverse magnetic field (z
direction) having intrinsic RT symmetry, as introduced by
Zhang and Song in Ref. [55]. In particular, we examine the
spectral fluctuations using the statistics of complex spacing
ratios (CSRs), which constitutes a relatively new metric to
deal with complex spectra. Along with the original model, we
consider a modification in this Hamiltonian by adding a longi-
tudinal magnetic field along the x direction, which breaks its
RT -invariant nature. On addition of this field, an integrability
to quantum-chaotic transition is observed, portrayed by a sym-
metry crossover from Poisson to Ginibre unitary ensemble
(GinUE)-resembling statistics of RMT. We also examine an-
other modification of this spin chain by making the transverse
field imaginary, while maintaining the longitudinal magnetic
field, and find that the agreement with GinUE improves. These

are the some of the key highlights of this paper. Further-
more, we consider phenomenological random matrix models
to study 1D Poisson to GinUE and 2D Poisson to GinUE
crossovers. By 1D and 2D Poisson, we mean real and complex
uncorrelated levels, respectively. This kind of parameter-
dependent spectral crossover in Hermitian systems, especially
across symmetry classes like Poisson, Gaussian orthogonal
ensemble (GOE), Gaussian unitary ensemble (GUE), and
Gaussian symplectic ensemble (GSE) have been observed and
exhaustively studied in several many-body quantum systems
such as spin chains, lattice models, periodically driven sys-
tems, gas of interacting particles, etc. [60–75]. However, when
it comes to non-Hermitian systems, there have been fewer
studies related to parameter-dependent Poisson and GinUE-
like behavior, as well as spectral transitions [76,77]. With
this in mind, in this paper, we investigate the integrability-
to-quantum-chaotic crossovers in non-Hermitian spin chain
systems, which are characterized by the Poisson to GinUE
transition within RMT.

The organization of this paper is as follows. This Intro-
duction section is followed by Sec. II, wherein the CSRs and
related concepts have been reviewed. We define and examine
the interpolating random matrix models in Sec. III, followed
by a discussion of investigated spin Hamiltonians in Sec. IV.
Section V contains the simulation outcomes for the spin-chain
Hamiltonians and their comparison with RMT results. We
conclude with a summary of our key observations along with
possible future directions in Sec. VI.

II. COMPLEX SPACING RATIOS

The distribution of CSRs, introduced in Ref. [76], has come
up as a reliable measure for distinguishing the integrable-
vs-chaotic fluctuation properties of complex spectra and has
found abundant use in recent works of non-Hermitian physics
[76–80]. It may be defined for both real and complex spectra,
unlike other popular ratio distributions like the traditional
spacing ratios [81–84] and the nearest-neighbor (NN) or next-
nearest-neighbor (NNN) ratios [85], which are useful only in
the case of real spectra. We briefly recapitulate the techniques
involved in finding CSR for completeness of this paper.

Let {x1, x2, · · · , xN } denote real or complex eigenvalues.
For each eigenvalue x, let xNN denote its nearest neighbor and
xNNN its next-nearest neighbor, which are identified on the
basis of distances in real or complex planes. The CSRs are
then defined as

zk = xNN
k − xk

xNNN
k − xk

; k = 1, . . . , N. (1)

When the spectrum is real, z ≡ r with −1 � r � 1. On the
other hand, for complex spectra, z = reiθ , where 0 � r � 1
and −π � θ < π . Besides the probability density function
ρ(r, θ ) for the CSR, it is useful to consider the radial Pr (r) =∫ π

−π
dθ rρ(r, θ ) and the angular Pθ (θ ) = ∫ 1

0 dr rρ(r, θ )
marginal density functions. Furthermore, it is instructive to
look at the averages associated with these quantities, viz.,
〈r〉 and 〈cos θ〉. Such average quantities have been frequently
used along with the distribution of normal spacing ratios in
several crossover-related studies [84,86–92]. These single
number signatures are useful, for example, to estimate the
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FIG. 1. Plots of CSR density in the complex plane along with radial and angular marginals for 1D-Poissonian to GinUE crossover in MM1
for 1500 matrices of size N = 256.

parameter value at which a symmetry crossover takes place
from one symmetry class to other in a physical system.

For uncorrelated levels in the complex plane, associated
with (2D) Poissonian spectral fluctuations, a flat distribution
in the unit circle is observed for the CSR such that
ρ(z) = (1/π )�(1 − |z|). Consequently, in this case, the radial
and angular distributions are given by Pr (r) = 2r�(1 − r),
and Pθ (θ ) = 1/2π , respectively. These then lead to 〈r〉 = 2/3
and 〈cos θ〉 = 0. On the contrary, quantum chaotic behavior
is inferred from an overlap with the Ginibre unitary statistics
of RMT, featured by cubic level repulsion, ρGinUE ∝ r3 as
r → 0, along with a dip in the ratio density at the center and
at small angles. In Ref. [76], among other things, the authors
have obtained the analytical expression for CSR density in
GinUE case in terms of an (N − 1)-fold integral. They found
that the Wigner-like surmise obtained from the N = 3 case
are not universal in nature and does not approximate large-N
behavior due to boundary effects. To resolve this issue, they
introduced the toric unitary ensemble (TUE), which can be
viewed as a two-dimensional analog of the circular ensemble.
For the TUE, they also obtained an (N − 1)-fold expression
for the CSR density and demonstrated that small N cases of
this ensemble are universal and capable of approximating
the large-N behavior of GinUE. For our analyses, along with
large GinUE-matrices simulation data, we use their N = 5
result, which is denoted using TUE5. The averages obtained
using TUE5 are 〈r〉 = 0.7315 and 〈cos θ〉 = −0.1938. The
same averages evaluated using large size (∼ 104) GinUE
matrices are 〈r〉 = 0.7381 and 〈cos θ〉 = −0.2405. As noted
in Ref. [76], the convergence of 〈cos θ〉 computed from the
TUE surmises is much slower than that of 〈r〉. We should
also remark that, very recently, series-expansion-based

approximate formulas have been derived for the GinUE CSR
distribution in Ref. [80].

It is known that the non-Hermitian Ginibre ensembles ex-
hibit cubic-level repulsion irrespective of the symmetry class,
i.e., orthogonal or unitary, or even symplectic [93–95]. This is
unlike their Hermitian counterparts, where very distinct level
repulsion behavior is observed depending on the symmetry
class. As far as GinOE is concerned, it is known that it pos-
sesses real eigenvalues along with complex-conjugate pairs,
and that the expected fraction of real eigenvalues for large di-
mensions is given by

√
2/(Nπ ) [96]. These eigenvalues have

noticeable effects on the CSR, resulting in heightened values
in the radial and angular marginal densities near r = 1 and
θ = −π (or π ), respectively, compared to the GinUE results.
However, as N is increased, these deviations tend to diminish.
Moreover, in a GinOE-GinUE crossover model, even for a
tiny perturbation from GinOE towards the GinUE limit gets
rid of these deviations. This difficulty is compounded, par-
ticularly in data sets derived from physical models, where
substantial statistical noise may be present. As a result, at-
tempting to investigate a GinOE-to-GinUE crossover using
CSR is not viable.

III. PHENOMENOLOGICAL MATRIX MODELS FOR
POISSON-GinUE and GinOE-GinUE CROSSOVERS

For a system undergoing a transition from one sym-
metry class to another, one often examines the associated
effects on the spectral fluctuations, which are commonly as-
sessed by the distribution of NN spacings or their ratios.
In this context, for Hermitian systems, there already exist
known interpolating formulas (either phenomenological or
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FIG. 2. Plots for MM1, similar to Fig. 1, for an ensemble comprising 250 matrices of dimension N = 2000.

derived from small-dimension random matrix models) for
the distribution of spacings between consecutive eigenval-
ues, as well as the associated ratios. These formulas cover
various cases such as Poisson-GOE crossover, Poisson to
semi-Poisson crossover, and the transitions among GOE,
GUE, and GSE. [84,90–92,97]. On the other hand, tran-
sitional models or crossover ensembles have remained far
less explored in non-Hermitian systems and non-Hermitian
RMT. A few examples can be found in Refs. [98–101]. In
this section, we consider phenomenological interpolating ran-
dom matrix ensembles based on two cases of the following
matrix model:

Hα = H0 + αV√
1 + α2

. (2)

Here H0 is an “initial” random matrix for the crossovers
detailed below. The “final” N-dimensional random matrix V
is taken from GinUE, i.e., its matrix elements are complex, in-
dependent, and identically distributed (iid) Gaussian variables
with zero-mean and unit-variance for both real and imaginary
parts. The parameter α facilitates the crossover with α = 0
yielding the initial ensemble and α → ∞ leading to GinUE.
For the matrix H0, we consider the following two choices,
corresponding to which we refer the above crossover model
as matrix model 1 and 2 (MM1 and MM2):

MM1: H0 is chosen as an N-dimensional diagonal matrix
with iid zero-mean and unit-variance real Gaussians,

MM2: H0 is chosen as an N-dimensional diagonal matrix
with iid complex Gaussians zero mean and unit variance for
both real and imaginary parts.

We study the CSR density and the associated radial and
angular marginals for the above crossover matrix models by
varying the interpolation parameter α. For each matrix model,

we show the results for N = 256 and 2000 with ensemble
comprising 1500 and 250 matrices, respectively. For MM1,
which governs 1D Poisson to GinUE transition, the results are
presented in Figs. 1 and 2. The CSR density has been shown
in the complex plane in the first columns, and the marginal
densities for radial and angular distributions obtained from
the simulation are depicted using histogram in the second and
third columns, respectively. The black solid and red dashed
lines shown with these histograms correspond to Poisson and
TUE5 analytical CSR results, respectively. Additionally, we
show blue solid lines which are based on the simulation of
large (∼104) GinUE matrices which, in the case of angu-
lar distribution, differ appreciably from TUE5 result towards
θ = ±π . The stark differences between the top rows (a-c)
of Figs. 1 and 2, and the others in these two figures is due
to the eigenvalues having very small imaginary parts in the
former case. This is the reason behind the accumulation of
CSR in the vicinity of the real line noted for α = 0.001 in the
N = 256 case and α = 0.0002 in the N = 2000 case. With
increasing α, the eigenvalues gradually spread in the unit disk
and approaches GinUE statistics.

For MM2, which facilitates 2D Poisson to GinUE
crossover, we show similarly the plots in Figs. 3 and 4. The
crossover is observed in the CSR density as well as the
marginals in these figures as α is increased beyond zero.
Moreover, it is instructive to examine the α = 0 limit. We find
that in Fig. 3, for relatively smaller matrix dimension, N =
256, the radial distribution Pr (r) matches closely with the
expected Poissonian analytical result. However, the angular
distribution shows elevated density near θ = 0 and deviates
from the expected uniform behavior. Increasing the matrix
dimension alleviates this deviation, as can be seen in Fig. 4,
where we have considered N = 2000.
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FIG. 3. Plots of CSR density in the complex plane along with radial and angular marginals for 2D Poissonian to GinUE crossover as
modeled in MM2 for an ensemble comprising 1500 matrices of size N = 256.

IV. INVESTIGATED HAMILTONIAN MODELS

The XY spin-chain system in the presence of a trans-
verse magnetic field (field along z direction) may be

represented as

H (XY) =
L∑

j=1

(
Jxσ

(x)
j σ

(x)
j+1 + Jyσ

(y)
j σ

(y)
j+1 + λσ

(z)
j

)
, (3)

FIG. 4. Plots for MM2, similar to Fig. 3, for an ensemble of 250 matrices of dimension N = 2000.
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where Jx, Jy ∈ R are the coupling constants while λ ∈ R is
the strength of the magnetic field along the z direction. The
operators σ (x,y,z) act on a (C2)⊗L dimensional Hilbert space,
L being the chain length. In terms of Pauli matrices (σ(x,y,z))
and identity matrices (I), these are given by σ

(x,y,z)
j = I ⊗ I ⊗

.... ⊗ σ(x,y,z) ⊗ ... ⊗ I ⊗ I. The Pauli matrix part, therefore,
acts on the jth site of the chain while the identity operators
act on the rest of the sites. Periodic boundary condition is
imposed so σ

(x,y,z)
N+1 = σ

(x,y,z)
1 . The coupling constants for the

Heisenberg terms may be modified to render them complex,
leading to a non-Hermitian variant of the above Hamiltonian,
as given below [55]:

H1 =
L∑

j=1

(
1 + iγ

2
σ

(x)
j σ

(x)
j+1 + 1 − iγ

2
σ

(y)
j σ

(y)
j+1 + λσ

(z)
j

)
.

(4)

The parameter γ ∈ R in this model controls the extent of
non-Hermiticity. It is to be noted that while [R, H1] �= 0 and
[T , H1] �= 0, we have [RT , H1] = 0. However, due to the
antilinear nature of T and hence of the RT operator, the
last relation does not guarantee existence of simultaneous
eigenstates of both H1 and RT [7,15]. In case every eigenstate
of H1 does happen to be an eigenstate of the RT operator, it
is said that the RT symmetry of H1 is unbroken. On the other
hand, if some of the eigenstates of H1 are not simultaneously
eigenstates of the RT operator, one concludes that the RT
symmetry of H1 is broken. To remind ourselves, the operator
R is the linear rotation operator and has the effect of rotating
each spin by an angle of π/2 about the z axis:

R ≡ exp

⎡
⎣− iπ

4

L∑
j=1

σ
(z)
j

⎤
⎦ =

L∏
j=1

1√
2

(I − iσ (z) ) j . (5)

This amounts to an action, (σ (x)
j , σ

(y)
j , σ

(z)
j ) →

(σ (y)
j ,−σ

(x)
j , σ

(z)
j ). On the other hand, the antilinear

time-reversal operator T has the action T iT = −i. A
Hamiltonian symmetric with respect to an antilinear operator
such as T , shows eigenvalues which are either real or
appear in complex conjugate pairs [6,7]. When acting on
the Pauli matrices, T acts as complex conjugation such that
(σ (x)

j , σ
(y)
j , σ

(z)
j ) → (σ (x)

j ,−σ
(y)
j , σ

(z)
j ).

In Ref. [55], the authors have exactly solved this spin-
chain model using the techniques of Jordan-Wigner, Fourier,
and Boguliobov transformations extended to complex ver-
sions. Based on the exact results, exceptional points sep-
arating broken-unbroken regions of RT symmetry have
also been identified. The spectra of the Hamiltonian in
Eq. (4) possesses, respectively, real and complex eigenval-
ues corresponding to unbroken and broken RT -symmetric
phases, which, in turn, are decided by the parameter γ .
Therefore, in the above model, RT symmetry plays the
same role as PT symmetry does in the generally studied
PT -symmetric pseudo-Hermitian systems showing the real
spectrum [1,2].

Two limiting cases of this Hamiltonian are of particular
importance to emphasize the above points. First, when γ = 0,
the above Hamiltonian reduces to the ordinary XY model with
an external magnetic field in the z direction, the Jx = Jy = 1/2

case of Eq. (3):

H0 = 1

2

L∑
j=1

(
σ

(x)
j σ

(x)
j+1 + σ

(y)
j σ

(y)
j+1 + 2λσ

(z)
j

)
. (6)

H0 is left unchanged under the action of R and T separately
as well as under their joint action. This is unlike H1, which
remains invariant only under the joint action of R and T . The
Hamiltonian H0 has a full real spectrum and all its eigenstates
are shared by the RT operator. In the other limiting case of
H1 when γ  λ and 1, H1 reduces to

Him = iγ

2

L∑
j=1

(
σ

(x)
j σ

(x)
j+1 − σ

(y)
j σ

(y)
j+1

)
, (7)

which displays a fully imaginary spectrum. Any eigenstate of
Him corresponding to a nonzero eigenvalue is not an eigenstate
of the RT operator.

We consider the following modification of H1 by introduc-
ing an additional magnetic field along the x direction:

H2 =
L∑

j=1

(
1 + iγ

2
σ

(x)
j σ

(x)
j+1 + 1 − iγ

2
σ

(y)
j σ

(y)
j+1

+ λσ
(z)
j + λ1σ

(x)
j

)
. (8)

The introduction of this perturbative longitudinal field makes
H1 nonintegrable on proper tuning of the system parameters
like γ , λ, and λ1. It also breaks the RT invariance of the
system. Especially, when the x field is random and the z field
is varied manually, we see particularly distinct signatures of
integrability breaking portrayed by a transition from Poisson
to GinUE statistics and can be compared with the matrix
models of Sec. III. Upon inspection, we also find that the
general trend of the numerical results remains the same if,
instead of the field along the x direction, we introduce a field
along the y direction.

Another variant of the above model is one where the z field
is rendered imaginary, viz.,

H3 =
L∑

j=1

(
1 + iγ

2
σ

(x)
j σ

(x)
j+1 + 1 − iγ

2
σ

(y)
j σ

(y)
j+1

+ iλσ
(z)
j + λ1σ

(x)
j

)
. (9)

The significance of such imaginary fields has already been
discussed in Sec. I. In the present context, this field makes the
complex eigenvalues have a significant imaginary part even
when γ is small, since now the parameter λ also contributes
to complex eigenvalues. This resulting effect can be seen
in the density of the CSR, which is nonvanishing over the
whole unit disk even for small γ values. In the two previous
Hamiltonians, H1 and H2, this is not the case since γ is
the only non-Hermiticity-inducing parameter. For this Hamil-
tonian also, the transition from integrable to nonintegrable
behavior is expected to be captured by the matrix model 2
of Sec. III.

In the following section, we examine the spectral fluctu-
ations of the three Hamiltonians H1, H2, and H3 by varying
parameters controlling non-Hermiticity and strengths of the
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FIG. 5. Plots of CSR density in the complex plane for the L = 6 case of H1. The parameter λ is a random variate from the Gaussian
distribution N (0, 1), while γ is manually assigned the values 0.01, 0.3, and 2 in (a)–(c). For lower values of γ , the densities are distributed on
the real axis but they spread in the unit circle eventually as the value is increased and the eigenvalues acquire significant imaginary parts.

magnetic fields. For each case, one out of the set of available
parameters is changed manually, while the others are chosen
to be zero-mean, unit-variance Gaussian random numbers
[∼N (0, 1)]. As far as the random nature of magnetic field
is concerned, in real systems, it could be due to external
sources producing a resultant magnetic field which is spa-
tially inhomogeneous, leading to a spin-glass-like random
energy landscape [102–104] or rapidly varying in time over
the timescale of a typical magnetic measurement. For exam-
ple, in Refs. [105–109], many-body spin systems have been
realized using trapped ions with laser-driven interactions. The
site-dependent static disorder has been mimicked using Stark
shifts by laser beams focused to individual ions [107,108].
Moreover, by temporally modulating the ac-Stark shifts, em-
ploying an arbitrary-wave-form generator with a switching
time much faster than all other relevant timescales, time-
dependent on site-energies have been engineered [108].

Interestingly, in the context of RMT investigations, the
local spectral fluctuations are independent of such details and
can exhibit signatures of integrability or chaos irrespective
of the source of randomness. In particular, since CSR is a
measure for short-range spectral correlations, universal RMT
behavior is typically expected. Long-range correlations, on
the other hand, often depend on system-specific details and
deviate from RMT statistics. Indeed, while the impact of dis-
tinct sources of randomness can be different on the system,
by tuning the corresponding strengths one can achieve the
desired level of symmetry breaking which, in turn, can lead to
chaos. As a consequence, quantum spin chains in an external
random magnetic field have been the subject of investigation
in several studies focusing on the spectral fluctuations and
the associated symmetry crossovers, especially in the case of
Hermitian quantum-spin chains [60–73].

V. EMPIRICAL RESULTS : DISCUSSION

In this section, we discuss the results of short-range
spectral fluctuation properties of the above-discussed non-
Hermitian spin chain models using the CSRs, in which
quantum chaotic behavior can be identified via its vanishing
density at the origin and a suppression of the same at small
angles. This suppression at small angles is seen in the angular
marginal distribution Pθ (θ ) and the slightly undulatory nature
of the radial marginal distribution Pr (r) associated with the
cubic level repulsion distinctive of the Ginibre ensembles.
One of our key observations is the Poisson-to-GinUE like

spectral transition for a certain range of parameters in H2 and
H3, which we study for chain lengths L = 6 and 8. Through
our numerical experiments, we identify parameter values for
which these spin systems show spectral fluctuations quite
similar to a transition from Poisson to GinUE statistics.

The plots presented in this section contain results of density
of CSR in the complex plane, and the marginal densities Pr (r)
and Pθ (θ ) for the three Hamiltonians H1, H2, and H3 gener-
ated by varying parameters controlling non-Hermiticity and
strengths of the magnetic fields. These numerical results are
then compared with analytical results for Poisson and N = 5
TUE (TUE5) represented, respectively, with black solid and
red dashed lines in the plots. We also plot the results from the
matrix model simulation of N = 104 GinUE matrices with a
blue solid line. As mentioned earlier, one out of the set of
system parameters is manually varied, while the others are
taken from the Gaussian distribution ∼N (0, 1). We consider
the entire spectrum of eigenvalues for generating these results.
The overall size of the Hamiltonian matrices corresponding
to L = 6 and L = 8 sized spin chains are 64 and 256, re-
spectively. Ensembles comprising 4000 and 1500 matrices are
considered, respectively, for these two sizes for both the chain
lengths and various statistical properties of the energy spectra
are examined. For H2 and H3, the Poisson-to-GinUE-like tran-
sition is quite apparent. In fact, even moderate chain lengths,
like L = 6, lead to results quite close to GinUE on properly
adjusting the system parameters. Moreover, in general, a rich
variety of spectral-fluctuation behavior is observed for the
three Hamiltonians as system parameters are varied. Detailed
discussions of the results for each of them can be found in the
following subsections.

A. Plots for H1

Here we examine the spectral fluctuations of the Hamilto-
nian H1. In Fig. 5, the CSR for an L = 6 spin-chain length of
this model is inspected with the variation of γ , while λ is taken
from the Gaussian distribution N (0, 1). In Fig. 5(a), at γ =
0.01, a majority of the eigenvalues are real within the numer-
ical precision considered and are of the form ±x. Only a few
eigenvalues have noticeable imaginary parts, but even those
are very small. As a consequence, the CSR density is nonzero
only on and in the vicinity of the real line. In Fig. 5(b), for
γ = 0.3, along with the nonzero density along the real line, a
faint pattern appears inside the unit circle. This becomes more
pronounced for γ = 2 in Fig. 5(c) where a bow-arrow-like
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FIG. 6. Plots of CSR density and its marginals (r and θ distributions) for L = 6 for H1. γ ∼ N (0, 1), while λ is 0.01 in (a)–(c), 0.5 in
(d)–(f), and 1 for (g)–(i). Black solid lines depict the analytical results for the Poisson distribution, the red dashed one corresponds to N = 5
results for the toric unitary ensemble (TUE), and the blue solid line corresponds to results from 104-sized GinUE matrices. In all cases,
close-to-Poisson results are observed.

structure is observed. On inspection of the eigenvalues for
this particular case, a number of interesting patterns in the
eigenvalues are observed. Along with the real eigenvalues of
the form ±x, complex eigenvalues of the form ±(x ± iy) are
observed. These patterns in the eigenvalues affect the CSR
distribution which involves doubly-degenerate real as well
as complex-conjugate ratios. We should remark here that in
some works related to the study of many-body localization
transition in non-Hermitian models, this crossover from real to
complex eigenvalues and the suppression of imaginary parts
of complex eigenvalues for general non-Hermitian Hamilto-
nians having time-reversal symmetry has been discussed as
a signature of many-body localization [110]. In Fig. 6, CSR
density plots along with marginal densities Pr (r) and Pθ (θ )
are plotted, but now with λ manually varied and γ taken as
Gaussian random numbers from N (0, 1). The density plots
show some resemblance to Poisson-like statistics in all three
cases of λ, viz., 0.01 in Figs. 6(a)–6(c), 0.5 in 6(d)–6(f),
and 1 in 6(g)–6(i). In the CSR plot in the complex plane,
as shown in Figs. 6(a), 6(d), and 6(g), there is an enhanced
density around the origin, which becomes more concentrated
and hence brighter as λ increases. In Figs. 6(c), 6(f), and 6(i),
the Pθ (θ ) plot shows uneven surface due to these regions.
Compared to Pθ (θ ), Pr (r) is closer to (2D) Poisson-statistics
behavior, as observed in Figs. 6(b), 6(e), and 6(h). However, if
λ is increased further the results start showing deviation from
the Poisson statistics. In the context of RT symmetry, for γ

value fixed around zero, H1 is mostly in the RT -preserved
phase, which results in most of the eigenvalues being real, as
in the case of Fig. 5. On the other hand, the variation in γ

caused due to sampling from Gaussian distribution, along with
particular choices of λ, results in the RT -broken phase of
H1, and hence majority of the eigenvalues are complex which
result in the plots observed in Fig. 6.

Besides the plots, in Table I, we provide a list of single-
number signatures 〈r〉 and −〈cos θ〉 for various values of λ

and γ . Along with the marginal distributions, these averages
help in stipulating the nature of the distribution and how close
it is to being Poisson or GinUE. For H1, these averages when γ

is varied and λ is Gaussian have to be analyzed rather carefully
because neither of the them are close to (2D) Poisson values
for γ = 0.01. However, when γ is increased to 0.3 and 2,
〈r〉 gets closer to 0.67, but even then −〈cos θ〉 values are not
that close to zero. Also, on careful examination of the density
of CSR plots, we see that their behavior is in fact closer to
the 1D-Poisson case for smaller values of γ , which when
increased leads to the remarkably different bow-arrow-like

TABLE I. Single number signatures of the H1, L = 6 for param-
eter values corresponding to the plots.

γ 〈r〉 −〈cos θ〉
0.01 0.479 0.053
0.3 0.600 −0.069
2 0.633 −0.059

λ 〈r〉 −〈cos θ〉
0.01 0.655 −0.072
0.5 0.647 −0.042
1 0.650 −0.048
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FIG. 7. Plots of CSR density and the associated marginals for L = 6 of H2. The parameter γ is varied manually while λ, λ1 are random
variates from the Gaussian distribution N (0, 1). We have γ = 0.01 in (a)–(c) (top row), 0.5 in (d)–(f) (middle row), and 3 for (g)–(i) (bottom
row). Plots (d)–(f) show subtle signatures of GinUE denoted by the red line. The ratio density at the center, vanishes to some extent in (d).
This is also seen in the Pθ (θ ) vs θ plot in (f), which also shows slight suppression of small angles. For γ = 3 in (g), the results of density plots
show areas of elevated brightness on the disk, but the corresponding marginals show features very similar to the previous one.

structure already discussed above. Also for H1, we see that
negative values of −〈cos θ〉 arise in most cases for variation
of both γ and λ. In fact, the only non-negative value for H1,
L = 6 arises for γ = 0.01. Such negative values of −〈cos θ〉
have also appeared in Ref. [76] for spin models with bulk
dephasing. For the variation of λ when γ is Gaussian, the
spectral statistics somewhat close to Poisson, evident from
the radial marginal density and 〈r〉. However, the angular
marginal density and 〈cos θ〉 still show deviations from the
uniform distribution expected for the Poisson. However, this
distribution is expected to get flattened out as the Hamiltonian
matrix dimension is increased.

B. Plots for H2

We now examine the variation in spectral fluctuations for
H2 depending on system parameters γ , λ, and λ1. These
are shown in Figs. 7–9 for L = 6, and in Figs. 10–12 for
L = 8. In each case, one of the parameters is manually varied,
while the remaining two are taken from Gaussian distribution
N (0, 1).

In Fig. 7, CSR density in the complex plane and the
marginals Pr (r), Pθ (θ ) are studied for three values of γ , viz.,
0.01, 0.5, and 3. For γ = 0.01, like Fig. 5(a), the spectra ex-
hibits only a limited proportion of complex eigenvalues char-
acterized by small imaginary parts which reflect in the ratio
density spreading on the real line. This is more pronounced on
the negative real axis and almost disappears at the origin. For
γ = 0.5 in Figs. 7(d)–7(f), the quantum chaotic behavior in
the density plot is somewhat implied from the vanishing den-

sity at the origin and at small angles. However, neither Pr (r)
nor Pθ (θ ) is close to analytical results. In Fig. 7(f), a slight
dip at small angles is noticed. As the value of γ is further in-
creased, ratio density gets localized at random regions within
the unit circle. The marginal densities Pr (r) and Pθ (θ ) also
show statistics quite distinct from both Poisson and GinUE.

In Fig. 8, we vary λ and examine its impact on the
CSR. For λ = 0.001, which corresponds to the weak z
field, close-to-Poisson-like statistics is observed for the CSR
density in Fig. 8(a) and a slight dip is noticed in Pθ (θ ) in
Fig. 8(c). However, Pr (r) shown in Fig. 8(b) matches Poisson
statistics closely. The suppression of CSR density at small
angles and origin, as in Fig. 8(d), results from an increase
in λ to 0.9 and causes a clear transition from almost-Poisson
to GinUE-like statistics. In this case, both radial and angular
marginal densities in Figs. 8(e) and 8(f) exhibit a resemblance
to GinUE results. As λ is increased further, there is an
increase in the density at smaller angles within the angular
distribution, as depicted in Fig. 8(i). This trend aligns with
the accumulation of the CSR at small angles compared to the
remaining parts of the unit disk, as can be seen in Fig. 8(g).
Intriguingly, this behavior stands in direct contrast to that
observed in GinUE. However, in general, for the case of H2,
it is possible to achieve the best overlap to RMT statistics by
carefully tuning λ while the other two parameters are chosen
from a random distribution.

For H2, changes in λ1 in Fig. 9 do not show much over-
lap to GinUE results and vary quite significantly from RMT
statistics except for the case of λ1 = 0.5, where suppression of
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FIG. 8. Plots of CSR and its marginal densities for H2, L = 6, with the variation of λ, with γ and λ1 ∈ N (0, 1). Poisson-like behavior
featured by a flat distribution of the ratio density in the unit circle and uniform radial and nearly flat angular distributions is observed for
λ = 0.001 in (a)–(c) (top row). As the value of λ is increased, large-N GinUE-like behavior is observed for λ = 0.9 in (d)–(f) (middle row).
Pr (r) shows slight undulation, a distinguishing feature in the GinUE case. Pθ (θ ), on other hand, shows a strong suppression of small angles.
On the contrary, for λ = 3 in (g)–(i) (bottom row), accumulation of CSR at small angles is observed.

FIG. 9. Plots of CSR density and the associated marginals for H2 with L = 6. In this case, only λ1 is varied while the remaining parameters
are Gaussian variates from distribution N (0, 1). Although close-to-Poisson and GinUE-like behavior is observed for λ1 = 0.001 in (a)–(c) (top
row) and 0.5 (d)–(f) (middle row), respectively, RMT behavior, in general, is much less prominent when λ1 is varied compared to λ as in the
previous figure.

054210-10



SPECTRAL CROSSOVERS IN NON-HERMITIAN SPIN … PHYSICAL REVIEW E 108, 054210 (2023)

FIG. 10. Similar to Fig. 7 but with L = 8 in this case. Due to larger chain size, as γ is increased away from 0, the suppression of small
angles is much more prominent and persists till broader range of values compared to L = 6 case. Especially for γ = 2.1 in (d)–(f), GinUE
features are very prominent.

FIG. 11. Here λ is varied for L = 8 of H2. Poisson-like features are very prominent for λ = 0.01 in (a)–(c) in the top row and, when λ is
increased to 1.2 in (d)–(f) (bottom row), the features are close to RMT analytical results.

FIG. 12. In this case, λ1 is varied for L = 8 of H2. Larger chain size ensures more prominent RMT behavior for λ1 = 0.5 [(d)–(f), bottom
row] compared to that observed in Fig. 9 for λ1 = 0.5 in L = 6 spin-chain size.
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TABLE II. Single number signatures of H2, L = 6 for parameter
values corresponding to the plots.

γ 〈r〉 −〈cos θ〉
0.01 0.564 0.355
0.5 0.689 0.002
3 0.662 0.094

λ 〈r〉 −〈cos θ〉
0.001 0.674 −0.018
0.9 0.713 0.040
3 0.668 −0.153

λ1 〈r〉 −〈cos θ〉
0.001 0.651 0.009
0.5 0.706 0.011
4 0.679 −0.142

small angles is somewhat noticeable from the density of CSR
and the angular marginal distribution plot.

In Figs. 10–12, which portray the above three cases for
spin chain length L = 8, we find that for adequate values
of the crossover parameters, it is possible to approach the
exact results of GinUE more closely, due to the increased
Hamiltonian matrix dimensions. In Fig. 10, for very small
values of γ (e.g., 0.01), the ratios again assemble near the
real line but eventually spreads across the unit disk, as can
be seen in the plot for γ = 2.1. This feature is common in
all cases of γ variation, which indicates that this parameter
leads to a transition from real to complex eigenvalues. As
previously discussed, this kind of transition from real to com-
plex eigenvalues has been indicated in other non-Hermitian
spin-chain models and in our MM1, which captures inter-
polation between 1D-Poisson and GinUE statistics. Coming
back to the present case, GinUE-like behavior can be seen
for γ = 2.1, whereas for H2, L = 6, the GinUE-like features
were not prominent for either γ = 0.5 or 3. As γ is increased
further, CSR gets localized at certain regions of the unit circle,

TABLE III. Single number signatures of the H2, L = 8, for pa-
rameter values corresponding to the plots.

γ 〈r〉 −〈cos θ〉
0.01 0.559 0.219
2.1 0.714 0.062

λ 〈r〉 −〈cos θ〉
0.01 0.675 0.006
1.2 0.715 0.080

λ1 〈r〉 −〈cos θ〉
0.001 0.659 0.019
0.5 0.704 0.057

which is quite different from either Poisson or GinUE behav-
ior. In Fig. 11, where we examine the impact of variation of
the parameter λ, Poisson-like characteristics are noticeably
prominent for λ = 0.01, although a suppression for small
angles is seen in Pθ (θ ). For λ = 1.2, GinUE correspondence is
well evident. The plots in Fig. 12, based on the variation of λ1,
show a trend similar to that in Fig. 9, however, in the former
case of L = 8, GinUE-like behavior is much stronger. Overall,
we find that quantum chaotic features for H2 are much more
pronounced when the parameter λ is varied, while the others
are chosen to be random numbers.

The results for H2 can be well approximated by MM1,
which interpolates between 1D-Poisson and the GinUE sym-
metry classes, when γ is varied manually as discussed above.
This can be seen by comparing the plots in Figs. 1 and 2 of
the matrix model with the spin chain simulation in Figs. 7 and
10. When λ and λ1 are varied, the remaining plots of H2 for
both L = 6 and L = 8 show closer overlap to MM2 results
in Figs. 3 and 4, which capture the 2D Poisson to GinUE
crossover.

The single number signatures for L = 6 and 8 of this chain
are given in Tables II and III. We see that for various values

FIG. 13. Same plots as in Fig. 7 but for L = 8 case of the H3 Hamiltonian. γ = 0.01 in (a)–(c) and 2.2 in (d)–(f). Close-to-GinUE behavior
is observed for γ = 2.2, also evident from the marginal distributions which are close to GinUE results plotted with the red dashed line. For
γ = 0.01, results distinct from either Poisson or GinUE-like statistics is observed from a bow-arrow-like structure embedded in the unit circle
for the density of CSR. The corresponding radial and angular marginal distributions show noticeable deviation from the uniform distribution
of the Poisson statistics.
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FIG. 14. In this plot, λ is varied for L = 8 case of H3. Poisson-like behavior is observed for λ = 0.01 with some deviations in the case of
the angular distribution while GinUE-like behavior is observed for λ = 1.2, also evident from the angular marginal distributions, but in this
case the radial distribution varies slightly from the analytical results.

of γ , λ, λ1, 〈r〉 is closest to the GinUE value of (∼0.74) for
L = 8. Values as close as 0.704 (λ1 = 0.5), 0.714 (γ = 2.1),
and 0.715 (λ = 1.2) are observed. Similar to H1, the negative
values of −〈cos θ〉 also appear for H2, L = 6, in the cases
of λ = 0.001, 3 and λ1 = 4. However, further exploration is
needed to understand this behavior in the context of our spin
chains. In general, erratic behavior which is neither Poisso-
nian nor GinUE is exhibited if any of the system parameters
γ , λ, and λ1 are increased over a certain value, depending on
the system size.

C. Plots for H3

For H3, we inspect the spectral properties for a chain length
of L = 8 in Figs. 13–15. In Fig. 13, for γ = 0.01, the distribu-
tion of CSR is quite distinct compared to the other spin chains
or the matrix models. Due to the imaginary transverse field,
not only do we have a significant number of complex eigenval-

ues, but the presence of complex-conjugate pairs gives rise to
the bow-arrow-like structure embedded in the unit circle of the
density of CSR plot. We also see increased brightness along
the real line suggesting the presence of real eigenvalues of
the type ±x. For the corresponding radial distribution, we see
deviation from Poisson-like statistics for r values close to 1.
The angular distribution also shows bumps on either sides of
θ = 0 and near θ = ±π , thus deviating from the expected uni-
form distribution of the Poisson. The spectral statistics of H3

when γ is small is neither close to MM1 nor MM2. However,
prominent GinUE-like features appear for γ = 2.2. Also, we
note that nonintegrable behavior persists for larger values of
γ compared to H2. Furthermore, we observe that the results
deviate significantly from RMT or Poissonian statistics as the
strength of parameter γ increases. On the other hand, for the
variation of λ and λ1 in Figs. 14 and 15, the numerical results
are captured well by those from MM2, interpolating between
2D Poisson and GinUE. This becomes evident by comparing

FIG. 15. In this case, λ1 is varied for L = 8 case of H3. For λ1 = 0.01, Poisson-like statistics is observed with some deviations near the
origin for the angular marginal distribution while the radial distribution matches the analytical results very well. For λ1 = 0.5 in (d)–(f), subtle
expressions of GinUE statistics are noted with some deviations for the radial and angular marginal distributions.

054210-13



SARKAR, SEN, AND KUMAR PHYSICAL REVIEW E 108, 054210 (2023)

TABLE IV. Single number signatures of the H3, L = 8, corre-
sponding to the plots shown previously.

γ 〈r〉 −〈cos θ〉
0.01 0.684 0.004
2.2 0.711 0.068

λ 〈r〉 −〈cos θ〉
0.01 0.675 −0.007
1.2 0.707 −0.065

λ1 〈r〉 −〈cos θ〉
0.01 0.662 −0.015
0.5 0.705 −0.062

the plots in Figs. 3 or 4 with Figs. 14 and 15. The exceptional
cases which arise for the γ variation in Fig. 13 has already
been discussed above. The single number signatures for H3 are
given in Table IV and for certain values of the system param-
eters, the results are quite close to GinUE (cf. 〈r〉 ∼ 0.711 for
γ = 2.2, 0.707 for λ = 1.2, and 0.705 for λ1 = 0.5). Negative
values for −〈cos θ〉 are also observed for λ and λ1 variation in
this case.

VI. SUMMARY

In this paper, we have studied the short-range spectral fluc-
tuation properties of three non-Hermitian spin-chain models
using CSRs, their marginal densities and the corresponding
single number signatures. Although studies of integrability
breaking and symmetry crossovers due to disorder, defects,
or random Zeeman fields are very common in Hermitian
spin-chain literature, they are more or less scarce for non-
Hermitian spin chains especially in the context of RMT. The
key aspects considered in this paper can be summarized in the
following three points.

First, in these spin chains, non-Hermiticity has been ren-
dered by the addition of complex coupling constants and
imaginary random fields. Therefore, they are not open in
the usual sense, since there is no direct interaction with the
environment (which may be a larger spin system) such as in
boundary driven spin chains. In fact, it can be thought that the
dissipative nature of these spin chains has been manifested
through the imaginary system parameters.

Secondly, the symmetry properties of these Hamiltonians,
the breaking of which results in symmetry class transitions,
render them compelling case studies within the realm of RMT.
For example, the anisotropic non-Hermitian XY model with

transverse field, i.e., H1 has been shown to be RT symmetric
due to its construction in Ref. [55], which plays the same
role as PT -symmetry in other pseudo-Hermitian spin chain
models. We have modified H1 by the addition of an extra
random longitudinal field in the case of H2 and for H3, the z
field has been made imaginary keeping the perturbative longi-
tudinal x-field intact. These modifications lead to the breaking
of their RT invariance, which in turn facilitates integrability
breaking and a transition from Poisson to GinUE-resembling
statistics of RMT is observed on fine-tuning of system pa-
rameters. The single-number signatures are also quite close
to GinUE (∼0.74) in several cases discussed previously. It is
expected that these signatures of nonintegrability and overlap
with RMT improve further with increasing system dimension.
One of the constraints in examining larger system dimensions
in cases like this is the ever-increasing Hilbert space for full
space diagonalization, which requires greater computational
resources and time. Despite this, a more thorough exploration
is one of our future ventures.

Third, we also provide simulation results for phenomeno-
logical matrix models of 1D and 2D Poisson to GinUE
crossovers, which in many scenarios approximate the spectral
transitions shown by these spin chains rather well. These
kinds of interpolating models are already well-known for
Poisson-GOE and Poisson-semi-Poisson distributions. The
first matrix model capturing 1D-Poisson to GinUE crossover
is particularly interesting in the context of real to complex
eigenvalue-kind of transitions which have been discussed
in the context of many-body localization transition in non-
Hermitian systems. This transition has previously been used
as a diagnostic tool to understand many-body localization in
hard-core boson models [110]. It will be of interest to see
whether this same diagnostic can be used to understand ergod-
icity and many-body localization in our spin-chain models.
Lastly, an intriguing but challenging problem would be to
deduce analytical results for CSR in crossover matrix models
of the kind considered in this paper.
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