
PHYSICAL REVIEW E 108, 054209 (2023)

Nonmonotonic enhancement of diversity-induced resonance in systems of mobile oscillators

Cong Liu , Zhi-Xi Wu ,* and Jian-Yue Guan
Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory

of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China
and Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China

(Received 23 May 2023; accepted 15 October 2023; published 8 November 2023)

Diversity is omnipresent in natural and synthetic extended systems, the phenomenon of diversity-induced
resonance (DIR), wherein a moderate degree of the diversity can provoke an optimal collective response,
provides researchers a brand-new strategy to amplify and utilize the weak signal. As yet the relevant advances
focus mostly on the ideal situations where the interactions among elements are uncorrelated with the physical
proximity of agents. Such a consideration overlooks interactions mediated by the motion of agents in space.
Here, we investigate the signal response of an ensemble of spatial mobile heterogeneous bistable oscillators
with two canonical interacting modes: dynamic and preset. The oscillators are considered as mass points and
perform random walks in a two-dimensional square plane. Under the dynamic scheme, the oscillators can only
interact with other oscillators within a fixed vision radius. For the preset circumstance, the interaction among
oscillators occurs only when all of them are in a predefined region at the same moment. We find that the DIR can
be obtained in both situations. Additionally, the strength of resonance nonmonotonically rises with respect to the
increase of moving speed, and the optimal resonance is acquired by an intermediate magnitude of speed. Finally,
we propose reduced equations to guarantee the occurrence of such mobility-optimized DIR on the basis of the
fast switching approximation theory and also examine the robustness of such phenomenon through the excitable
FitzHugh-Nagumo model and a different spatial motion mechanism. Our results reveal for the first time that the
DIR can be optimized by the spatial mobility and thus has promising potential application in the communication
of mobile agents.
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I. INTRODUCTION

A counterintuitive phenomenon that the system consisting
of heterogeneous elements may perform a better role than that
of homogeneous ones in inducing an uniform behavior has
been verified in disciplines ranging from taming spatiotempo-
ral chaos in nonlinear pendula [1,2], optical wave amplifica-
tion in physics [3], epidemic contagion and circadian rhythms
in biophysics [4–6], complicated spiking activities and ad-
vanced cognition in the brain [7–10] to the norm forming in
social systems [11]. As striking examples, groups composed
of diverse individuals can make more efficient group decisions
than that of homogeneous ones in social networks [11]. To
achieve stable synchronized networks, selecting the ensem-
ble of heterogeneous oscillators outperforms choosing the
homogeneous counterparts, which is known as the converse
symmetry breaking [12,13]. The heterogeneous coupling
strength is crucial for circadian rhythms [6], to name only a
few. Such active role played by diversity or disorder in gen-
erating coherent dynamics continue to fascinate researchers
especially in fields of statistical physics and complex systems.

Particularly, in 2006, Tessone and coworkers demonstrated
that compared to the weak collective response in homo-
geneous systems, an intermediate degree of disorder can
significantly enhance the collective response in physical and
neural systems [14]. This phenomenon is called diversity-
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induced resonance (DIR) [15–17] and has served as a testbed
to amplify the weak signal response [16–19], especially.
Since then, great efforts have been devoted to extending such
resonance-like behavior to more diverse and realistic circum-
stances. To the best of our knowledge, these advances are
mainly concentrated on two directions, the first one is about
the sources of diversity, which includes the exogenous and en-
dogenous noise [18], either spatial correlated or uncorrelated
quenched disorder [20,21], heterogeneous topological struc-
ture (quenched spatial disorder) [22,23] or coupling strength
[24–29], time delay in the information transmission [30,31],
uniformly distributed periodic signals in forms of Fourier
series [32] and even the disordered amplitude [33] or phase
delay of the input signal [34,35]. To name one, Liang et al.
revealed that the disordered initial phases can induce double
resonance in globally coupled neurons [34]. The second one
focuses on the application scenarios or models, which ranges
from Brownian motors [36], electronic circuit [37], linear
pendulum [17], chaotic elements [38], threshold devices [39],
excitable neuron or medium [40–45], active rotators [46],
sleep-wake cycle system [47], coupled hepatocytes [48] to
soft matter [49] and social norms [15,50]. For example, Chen
and coworkers clarified that the resonance caused by the struc-
tural diversity is beneficial to the oscillations of intracellular
Ca2+ in coupled hepatocytes [48]. Beyond these studies, some
state-of-the-art researches play complementary roles in this
resonant behavior. For instance, Liang et al. verified that the
DIR can be obtained even for the circumstance where the
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signals are suprathreshold [51]. Liu et al. gave the clue that
the DIR may be extended to diverse situations, in which the di-
versity parameters are either symmetrically or asymmetrically
distributed [52]. So far, the study of extending and utilizing
this resonance-like behavior is an active and expanding field
of research [43–45].

All these advances mentioned above have a simple assump-
tion that the interactions among elements are presumed to be
persistent for all the course of time, in other words, the inter-
actions between any pair of elements are uncorrelated with the
motion of agents in spatial space or physical proximity. How-
ever, in a plethora of realistic scenarios, the physical proximity
at certain points of time not only dominates the interaction but
also influences significantly the collective behavior [53–66].
For example, if the density of desert locusts is above the
critical value, then marching locusts will spontaneously and
suddenly adopt directed collective motion [67]. In vertebrate
somitogenesis, compared to the static cell, dynamic cell move-
ment can not only promote the recovery of synchronization
after external perturbation but also support a wider range of
reaction parameters [68]. Both the theoretical results and the
field observations show that the anti-synchronized choruses
and the position in the actual paddy field of the male Japanese
tree frogs influence each other [69]. Besides these intrigu-
ing biophysical instances, the time-varying interactions in
the form of mobile oscillators also influence significantly the
transmission of disease [61], the communications of robots
[54], the coordination of the traffic [70] and the synchroniza-
tion or chimera state of networked oscillators [71]. The logical
next questions are to ask how the time-varying interactions
induced by the spatial mobile elements influence the collective
response and whether the phenomenon of DIR can be ex-
tended to the mobile oscillators system. The answers to these
two questions are much relevant to realistic applications, i.e.,
the signal propagation in the mobile communication device
and the forming of common interests in opinion dynamics.
Noteworthy, although a few studies have given the clue that
mobility may enhances the signal or epidemic propagation
under the scheme of meta-population framework [72,73], how
spatial mobility influence the resonance-like phenomenon in
the heterogeneous system is rarely reported.

To address these questions, we investigate in this article
the collective signal response of an ensemble of spatial moved
heterogeneous bistable oscillators, in which the interacting
patterns among elements are extracted from the two canonical
and realistic scenarios in the collective motion of natural and
artificial systems. We find that the DIR can be obtained in
both the two interacting schemes. Furthermore, the strength
of DIR behaves a bell-shaped curve with respect to the rising
of moving speeds, and the optimal DIR can be obtained at
an intermediate degree of spatial mobility. We further explore
the optimal DIR versus moving speed in the heterogeneous
FitzHugh-Nagumo model and under a different mechanism
of spatial motion to examine the robustness of such
phenomenon.

II. MODEL AND SIMULATION SETTINGS

The numerical results are executed on a two-dimension
square-shaped plane with linear size L and periodical

boundary. For simplicity, we overlook the influence of the
elements shapes and consider the agents as the mass points
moving randomly in space. The collective dynamics of the
bistable system are composed of the spatial motion of agents
and the signal response (state dynamics) of oscillators. The
movement of the ith oscillators in space is dominated by

xi(t + �t ) = xi(t ) + v cos(θi(t ))�t mod L,

yi(t + �t ) = yi(t ) + v sin(θi(t ))�t mod L,

θi(t + �t ) = θi(t ) +
√

2D1�tξi(t ) mod 2π, (1)

in which xi(t ), yi(t ), and θi(t ) are the position coordinates
in the plane and the direction of motion of the ith agent
at time t , respectively. In this case, if the absolute speed v

equals to zero, then the agents are randomly distributed and
unmoved in the two-dimension space. Otherwise, the agents
behave random-walk-like diffusion in space with uncorrelated
standard Gaussian noise ξi(t ). The mean value and correlation
are 〈ξi(t )〉 = 0 and 〈ξi(t )ξ j (t ′)〉 = δi, jδ(t − t ′), respectively,
and the constant D1 dominates the strength of the noise. The
initial angle of the ith agent’s motion is stochastically chosen
from [0, 2π ] and the �t represents the motion integration
step size.

In present work, the signal response is based on the
heterogeneous bistable model, which is a paradigmatic model
for signal propagation in physical and biological systems
[14,29]. The time evolution of the state of oscillator i is
represented by

ṡi = si − s3
i + c

ni

∑
j∈ni

bi j (s j − si ) + ai + A sin(ωt ),

i = 1, . . . , N, (2)

where si(t ) is the state variable at moment t , and ai

represents the natural heterogeneity of oscillator i. In
general, the diversity parameter ai is drawn from a
Gaussian distribution with mean 〈ai〉 = a0 = 0 and variance
〈(ai − a0)(a j − a0)〉 = δi jσ

2, where the standard deviation σ

measures the degree of diversity among the oscillators. Here,
we apply Euclidean distance di j as the only criteria for judging
whether the interaction between pair of oscillators occurs. The
symbol bi j is the adjacent matrix at time t , bi j = 1 means the
interaction occurring between oscillators i and j, and bi j = 0
indicates the coupling disappearing. As Fig. 1(a) shows,
for the dynamic interacting scheme (also called scheme I
hereafter), agents can only interact with others within a fixed
range rc, i.e., di j =

√
(x j − xi )2 + (y j − yi )2 < rc, called

vision radius. This interacting scheme is extracted from the
natural collective motion, i.e., the migration of birds and the
avoidance of schools of fish, etc. [54,55]. Additionally, the
preset interacting scheme (also called scheme II) constrains
the interaction emerging only when the agents enter the
preset area. For instance, a circular region with the position
(x0, y0) = (10, 10) as the center and rc as the radius, see
Fig. 1(b), when dio =

√
(xi − x0)2 + (yi − y0)2 < rc and

d jo =
√

(x j − x0)2 + (y j − y0)2 < rc, bi j = 1 otherwise bi j =
0, which represents the crowds crossed a preset area like inter-
sections and bridges [56,60,62]. The variable ni measures the
total neighbors of oscillators i at the moment t , and c stands
for the uniform coupling. The sinusoidal function A sin(ωt )
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FIG. 1. Graphical illustration of the two canonical interacting
schemes. (a) Dynamic interacting region: at every moment, elements
can only interact with others within a fixed visual radius rc. As
the oscillators behave random walks in the two-dimension space,
the interacting region is moving all the time. (b) Preset interact-
ing region: interactions among elements emerge only when these
oscillators enter into a preset circular area with radius rc.

represents the weak stimulus adding into the ith oscillators
with amplitude A and frequency ω, respectively. Some
parameters are considered as N = 1000, c = 1.0, A = 0.2,
ω = 2π/50, which are same as the configuration considered
in Ref. [14]. The intensity of the noise is fixed to D1 = 0.05.
Noteworthy, the collective dynamics are integrated with two
distinct time steps: one is for the spatial motion �t of Eq. (1)
and the other is for the state variation �τ of Eq. (2). Here
we consider the two time scales are equal, i.e., �t = �τ

in Ref. [55]. Conventionally, if the variations of the spatial
locations of the agents are much slower than their states, i.e.,
�t � �τ , then the interactions among oscillators can be
modeled by a static network. On the contrary, if the topology
induced by the motions of agents changes fast enough, such
as �t � �τ , then the effect of the spatial motions of agents
is averaged out since one oscillator can interact randomly
with any other oscillators. Such a consideration is to avoid
these two situations.

The collective response with respect to the weak stimula-
tion can be measured by the spectral amplification ηS [14,29],
which is defined as

ηS = 4

A2
|〈eiωt S(t )〉|2, (3)

where the average activity of the system is described by
S(t ) = N−1 ∑N

j=1 s j (t ) and the symbol 〈...〉 is time average.
The numerical integration of Eqs. (1) and (2) are performed
by the Euler method with the integration step size �t = �τ =
0.01 and in each run, the first 50 ∗ T/�t steps are deserted
and the rest of 50 ∗ T/�t steps are utilized to avoid the
transient effect. The initial states of oscillator i are chosen
randomly from [−1, 1] and the spectral amplification ηS is
averaged over 100 independent realizations for each diversity
parameter σ .

III. RESULTS AND ANALYSIS

As Fig. 2(a) shows, for the circumstance of static agents,
i.e., v = 0.0, which can be seen as the nonlocal coupling, as
the diversity parameter σ rises, a bell-shaped signal amplifica-
tion curve where the optimal signal response is ηoptimal = 2.5

FIG. 2. The spectral amplification factor ηS of Eq. (2) versus the
diversity parameters σ under the two interacting schemes for dif-
ferent speeds. The vision radiuses are (a) rc = 1.0 and (b) rc = 8.0,
respectively. The optimal collective responses ηoptimal with respect to
diverse absolute speeds of the agents motion are shown in insets. For
each absolute speed, we perform σ increases from 0 to 2.0 for one
circle and average them for 100 independent circles to calculate the
optimal response.

can be viewed. This result verifies that the DIR can be ex-
tended to the nonlocally coupled system. For an intermediate
degree of the absolute speed of the agents motion, such as
v = 1.0, a significantly enlarged signal response curve can
be seen and the optimal signal response rises to 17.7. It
demonstrates that the time-varying interaction induced by the
spatial motion of the agents has a positive role in improving
the DIR phenomenon. For a high level of the speed, say
v = 10.0, compared to the static situation (the intermediate
speed situation), a relatively stronger (weaker) signal am-
plification curve can be obtained. It suggests that one can
acquire an optimal DIR for an intermediate degree of spatial
moving speed. A comprehensive description for the influence
of the absolute speed on the DIR behavior can be seen in
the inset. As the absolute speed increases, the optimal sig-
nal response rises rapidly and then declines slowly, which
behaves a nonmonotonic enhancement of DIR. These results
further confirm that the DIR phenomenon can be promoted
by an intermediate degree of motion speeds of the agents.
Similar results and conclusions can be observed in the preset
situation in Fig. 2(b). Noteworthy, this mobility-optimized
DIR phenomenon is robust to the vision radius, noise in-
tensity, particle density, the period of external signal, and
even the state-dependent amplitude in which the relationship
between the amplitude of external stimulus and the state of
oscillator can be either linear or nonlinear functions [76]; see
Appendix A.

To address why these distinct magnitudes of resonance
phenomenon emerge for different motion speeds, we further
consider the individual spectral amplification as

ηi = 4

A2
|〈eiωt si(t )〉|2, (4)

to investigate the individual signal response of the oscillator i
versus the spatial motion of agents.
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FIG. 3. Spatial distribution of the individual signal response ηi

for different absolute speeds under the dynamic scheme. The diver-
sity parameter are (a), (d), (g) σ = 0.2, (b), (e), (h) σ = 0.6, and
(c), (f), (i) σ = 1.5, respectively. The gray squares denote the os-
cillators whose signal response is below 1.0. These maps are the
snapshots of spatial distribution of ηi at t = 100T .

A. Dynamic interacting region

For the circumstance of static oscillators, like v = 0.0,
if the diversity is small, say σ = 0.2, as Fig. 3(a) shows,
then only a few elements (6.4 percent of the population
size), lie in the top right and bottom left of the cell, re-
spectively, behave enlarged oscillations estimated by whether
ηi > 1.0 [25,29]. For an intermediate degree of diversity, i,e.,
σ = 0.6, the number of the enlarged oscillators increases to
39.3 percent of N , these oscillators mainly locate in the top
left, top right and bottom left of the square, respectively, see in
Fig. 3(b). For a large diversity, σ = 1.5, not only the number
of enlarged oscillators reduces to 27.7 percent of the total
oscillators size, but also the amplitude of the individual signal
response is reduced; see Fig. 3(c). Although there are a few
largely oscillating elements for different σ , i.e., η805 = 28.8
for σ = 0.2, η209 = 30.7 for σ = 0.6, and η853 = 26.2 for
σ = 1.5, as the total number of the enlarged oscillators are
small, the phenomenon of DIR is thus weak. Nevertheless, for
an intermediate speed, i.e., v = 1.0, if the diversity is a small
value, as Fig. 3(d) shows, then only four oscillators are slightly
enlarged. If the diversity is an intermediate value, then a huge
number of oscillators, about 99.4 percent of the size of the
total oscillators, are amplified and these oscillators distribute
uniformly in the cell, see in Fig. 3(e). Reduced amplitude of
the individual oscillation as well as the number of amplified
oscillators can be seen for large diversity, σ = 1.5, see in
Fig. 3(f). Additionally, similar results can be founded in the
situation of large absolute speed, i.e., v = 10.0, where the
amplitude of the individual oscillation is slightly weaker than
that of the corresponding situation for v = 1.0, as shown in
Figs. 3(g)–3(i). These results further disclose that compared
to the locally coupled situation, the time-varying coupling
in the form of mobile oscillators can significantly enhance
the DIR.

FIG. 4. The individual signal response ηi distributions with re-
spect to the diversity parameter ai for different absolute speeds under
the (a) dynamic and (c) preset schemes, respectively. For the dynamic
scheme, the diversity for the optimal signal response is equal to 0.6
for the three speeds, and the corresponding frequency distributions of
the individual signal responses are shown in panel (b). Whereas for
the preset scheme, the optimal diversity configurations are 0.7, 0.5,
and 0.4 for v = 0.0, v = 1.0, and v = 10.0, respectively. The corre-
sponding frequency distribution of the individual signal response are
shown in panel (d). For clarity, 200 oscillators that chosen randomly
from the oscillators pool are in our consideration. Similar results can
be found for the sampling of all oscillators.

For comparison, we also give the individual signal re-
sponse distribution with respect to the diversity parameter
and the corresponding frequency distributions at the optimal
diversity for different moving speeds. As Fig. 4(a) shows, for
v = 0.0, the individual signal responses mainly concentrate
in low extent region and a few individual responses dispers-
edly distribute in the strong response area. For v = 10.0, the
individual responses behave a bell-shaped strip region and
compactly spread over the area of η = 0.0 ∼ η = 28.7. For
v = 1.0, similar bell-shaped yet more dispersed distribution
with a higher individual response compared to the situation
of v = 10.0 can be seen. Specifically, see Fig. 4(b), for static
oscillators, although a few of the oscillators behave enlarged
response, the remaining oscillators are weak-enlarged, thus
the ensemble response represents a weak resonance. For a
large moving speed, the frequency distribution showcases two
peaks, the low one lying in a weak-amplified region and the
other high one locates near η = 27. However, for an interme-
diate speed, while the frequency distribution resembles that of
the large moving speed, the scene that a relative higher ratio
of the strong-amplified oscillators can be seen. As a conse-
quence, the optimal DIR can be obtained at an intermediate
moving speed.

Now we recall the microscopic mechanism of the diversity-
induced resonance. If there are none of oscillators in the
vision radius, i.e., ni = 0, then the potential of Eq. (2) is read
as V (si ) = −0.5s2

i + 0.25s4
i − aisi − Asi sin(ωt ). Without the

addition of diversity and external stimulus, say ai = 0 and
A = 0, all oscillators will get absorbed in one of the two
steady states, s∗

1 = 1 or s∗
2 = −1, which correspond to the two
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minima of V (s). For the situation of a homogeneous system
with a weak stimulus, i.e., ai = 0 and A < Ath = √

4/27, the
potential of Eq. (2) tilts periodically with the external force
but the barrier that forbids the interwells oscillation remains.
Consequently, the oscillators jiggle slightly near one of the
bottoms of V (s), and no resonance-like behavior will be ob-
served. Particularly, for a heterogeneous system, the potential
is no longer symmetrical due to the natural diversity, i.e.,
if the diversity parameter of an oscillator is a1 = 0.5, then
the left potential is deeper than the right one during the first
half period. Because the tilt induced respectively by diver-
sity and external signal is superimposed, the oscillator can
overcome the barrier occasionally. But for the subsequent
half period, the inclines evoked by the diversity and external
signal are conflicted and canceled, the oscillators cannot go
back to the original potential well if there are absence of
coupling inputs. Nevertheless, thanks to the coupling pull
of the oscillators (whose diversity parameters are negative,
i.e., a2 = −0.5), both the positive and negative oscillators
can overcome the barrier and the obvious resonance can be
detected [29]. For the circumstance of v = 0, as the oscillators
randomly distribute in the 2D space, the oscillators can only
interact with a few oscillators, πr2

c N/L2 ≈ 7, consequently,
the successful resonance match of the oscillators is infrequent,
the collective signal response is thus weak. For spatial mobile
oscillators, during the detecting periods, the number of the os-
cillators that inject the coupling input to the target oscillator is
significantly promoted, such resonance match rises and conse-
quently the DIR can be improved by the spatial motion of the
particles.

We now describe the mechanism mentioned above
analytically. The dynamics of Eqs. (1) and (2) can be
translated into the form ṡi = F (si) − c

∑N
j=1 gi j (t )s j , in

which F (s) represents the individual dynamic of every single
oscillator, gi j (t ) are the elements of a time-varying matrix
G(t ) which defines the neighborhood of each oscillator at a
given moment t , gi j (t ) = g ji(t ) = −1 if the oscillators ith and
jth are neighbors at time t . On the basis of the fast switching
theory, where the entries of the time-varying connectivity
matrix can be replaced by the probability that two agents are
within the coupling range, as if the time-varying topology
changes fast enough. Namely, the time averaged matrix
G = 1

T

∫ t+T
t G(τ )dτ can be replaced by G = pAGA + p0G0,

in which GA and G0 represent the static connectivity matrices
within and without nonzero elements, respectively [55,65].
For the sake of simplicity, here we consider two oscillators
situation. At each moment t , only four network configurations
are observed: (i) None of interaction between the two
oscillators exist. (ii) An unidirectional coupling from
node 2 to node 1 can be observed. (iii) An unidirectional
interaction from node 1 to node 2 exists. (iv) A bidirectional
interaction between the two nodes is shown. If we consider
the symbols p00, p12, p21, and pglobal as the link probabilities

for the four situations and G00 = [0 0
0 0], G12 = [1 −1

0 0 ],

G21 = [ 0 0
−1 1], and Gglobal = [ 1 −1

−1 1 ] are the corresponding
Laplacian matrices, then the time averaged matrix read as
G = p00G00 + p12G12 + p21G21 + pglobalGglobal. Since p12 =
p21, G = pAGglobal = pAGA, in which pA = p12 + pglobal can
be viewed as the probability that the two nodes are neighbors.

FIG. 5. (a) The timeseries of ten oscillators chosen randomly
from the oscillators pool of Eq. (2) for v = 1.0 and σ = 0.6.
(b) The corresponding ten timeseries under the noisy coupling
scheme of Eq. (5) for D2 = 0.03 and σ = 0.6. The serial num-
bers of oscillators are the same as in panel (a). (c) The average
dynamics of Eqs. (2) and (5) for σ = 0.6. (d) The spectral am-
plification factor ηS versus diversity parameter σ for distinct
situations.

As the initial positions of the two agents are randomly
distributed in the 2D space, under the static conditions, say
v = 0, the probability that agent 2 is within the version radius
rc is given by pA = πr2

c /L2. These results can be extended to
the large size system in which the oscillator size N � 2, but
the diagonal and nondiagonal elements of the corresponding
matrix GA are N − 1 and −1, respectively. Taking into account
the density of the particles, one can obtain pA = πr2

c ρ/N
and G = πr2

c ρGA/N . These results demonstrate that as the
moving speed rises to a large value, the time-varying network
approaches to a rescaled all-to-all network. As a consequence,
the DIR can be significantly enhanced via mobile oscillators.

On the one hand, depending on such analysis, we can
find that as the moving speed rises, the coupling scheme
undergoes the transition process from local to nonlocal and
subsequently to global. However, for a purely static network,
the optimal DIR emerges in the all-to-all network configura-
tion since as the coupling range (distance) rises to N/2, the
optimal DIR monotonically increases to the maximum; see
Appendix B. On the other hand, for the spatial static oscilla-
tors, the coupling inputs for every oscillator are determinate,
but for the mobile oscillators, such coupling inputs are noisy,
see Fig. 5(a), and the intensity of fluctuation decreases as
the moving speed rises [55]. One can further confirm the
noisy coupling from two aspects: first, at each moment, the
coupling function of Eq. (2) can be seen as a local mean-
field c(Scluster − si ), Scluster = 1

ni

∑ni
j=1 s j , where the oscillators

within the vision radius are random on the basis of the Eq. (1),
the coupling input thus is noisy. Second, as the diversity is a
source of static disorder, which could not induce the fluctu-
ating dynamics, the noisy timeseries shown in Fig. 5(a) are
purely evoked by the fluctuating coupling input. We thus spec-
ulate that the noisy coupling input, especially for intermediate
value of moving speeds, plays a positive role in inducing the
nonmonotonic behavior.

To verify such speculate, we consider a globally coupled
bistable system with every element has an additional inde-
pendent noisy coupling injection. For the mobile oscillators
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system, at every moment which oscillator interacts with the
target oscillator is not determined, but the coupling injection
on the target oscillator is noisy all the time. Consequently,
we consider a noisy injection accompanied with the target
oscillator to represent the randomness of coupling, namely,
the subscript of independent noise equals the one of the target
oscillator. Such equation describes the scene where the mov-
ing speed is an intermediate value, i.e., the coupling range is
large the coupling injections however are still noisy although
the intensity is weak, which can be represented by

ṡi = si − s3
i + c

N

N∑
j=1

(s j − si + ζi(t )) + ai + A sin(ωt ),

i = 1, . . . , N, (5)

in which ζi is uncorrelated Gaussian white noise with
zero mean and autocorrelation 〈ζi(t )ζ j (t ′)〉 = 2D2δi, jδ(t −
t ′), where D2 is the noise intensity. As Fig. 5(d) shows,
compared to the nonnoisy situation which corresponds to
the globally coupled system, a weak noisy coupling can
significantly enlarge the DIR. Furthermore, the resonance
phenomenon in mobile oscillators, v = 1.0, can be reasonably
reproduced by the noisy coupling model Eq. (5), say D2 =
0.03, both in the ensemble signal response, average oscillation
and the specific dynamics of the corresponding oscillators, see
Figs. 5(a)–5(c).

For further analysis, Eq. (5) can be reduced to

ṡi = si − s3
i + c(S − si + ζi(t )) + ai + A sin(ωt ). (6)

Summing first the N terms of Eq. (6) and then averaging them,
one can obtain the collective dynamics

Ṡ = S − S3 − 3S2〈δi〉N − 3S
〈
δ2

i

〉
N − 〈

δ3
i

〉
N ,

+
√

2c2D2

N
ξ (t ) + A sin(ωt ), (7)

in which δi(t ) = si(t ) − S(t ) denotes the deviation of ith os-
cillator from the collective dynamics, the sign ξ (t ) is the
Gaussian white noise having the same properties as ζi(t ), and
the symbol 〈...〉N is the oscillators average. A conventional
approach in reducing the Eq. (7) in statistical mechanics is
Gaussian approximation [74,75], in which δi can be treated as
independent Gaussian variables with zero mean and variance
M = 〈δ2

i 〉N . Consequently, the odd moments, i.e., 〈δi〉N , 〈δ3
i 〉N

can be neglected and Eq. (7) can be reduced to

Ṡ = (1 − 3M )S − S3 +
√

2c2D2

N
ξ (t ) + A sin(ωt ). (8)

Furthermore, taking the correlation W = δiai into consid-
eration, one can obtain the closed ordinary differential
equation with truncation in third order

Ṡ = (1 − 3M )S − S3 +
√

2c2D2

N
ξ (t ) + A sin(ωt ),

Ṁ = 2M(1 − 3S2 − c − 3M ) + 2D2 + 2W,

Ẇ = W (1 − 3S2 − c − 3M ) + σ 2. (9)

The major differences between Eq. (9) and the reduced
equations in Ref. [74] are the items of diversity and the

FIG. 6. Spatial distribution of the individual signal response ηi

for different absolute speeds under the preset scheme. The diversity
parameters are (a), (d), (g) σ = 0.2, (b) σ = 0.7, (e) σ = 0.5, (h)
σ = 0.4, and (c), (f), (i) σ = 1.5, respectively. The gray squares
denote the oscillators whose signal response is below 1.0. These
maps are the snapshots of spatial distribution of ηi at t = 100T .

coupling-dependent noise. For a homogeneous system, Eq. (9)
is equal to the reduced equations in Ref. [74] for c = 1.0.
For a heterogeneous system, significant differences between
the two schemes can be found, as shown in Appendix C. For
instance, without coupling one can still obtain an enlarged
signal response because stochastic resonance can emerge in
the isolated oscillators for the reduced equations in Ref. [74].
Nevertheless, only a weak and constant signal response can be
viewed in Eq. (9) since noise vanishes and DIR cannot occur
in isolated oscillators. Inserting Eq. (9) into Eq. (3), one can
get a semianalytic signal response curve. As Fig. 5(d) shows,
the bell-shaped curve of Eq. (9) reasonably captures the reso-
nance behavior in Eq. (5), and further demonstrate that a weak
noisy coupling adding in the mean-field form can enhance the
DIR. As a consequence, for an intermediate degree of moving
speed, analytically, there is a higher resonant response than
that of the high speed situation. Further analyses of Eq. (9) for
strong coupling situations are shown in Appendix D.

B. Preset interacting region

For the scheme of preset interacting region, if the moving
speed is absent, as Figs. 6(a)–6(c) show, then a weak hetero-
geneity can only evoke a few oscillators, about 0.8% of the
system size, to oscillate in the form of slight enhancement.
But an intermediate degree of diversity can induce a large
number of elements, nearly 46%, to oscillate sharply. Since
the coupling are restricted in the circle region, all enlarged
oscillators distributed in this coupling region. As the strong
heterogeneity can weaken the resonance, compared to the
situation of σ = 0.7, the scene that weak individual response
oscillators distributed in the coupling region can be found,
in which not only the individual signal responses are weaker
but also the number of the enlarged oscillators is decreased.
Nevertheless, for an intermediate level moving speed, i.e.,

054209-6



NONMONOTONIC ENHANCEMENT OF DIVERSITY-INDUCED … PHYSICAL REVIEW E 108, 054209 (2023)

v = 1.0, the oscillators of which the signal responses are
enlarged are no longer restricted in the circle coupling region,
see Figs. 6(d)–6(f), these oscillators homogeneously scatter
in the 2D plane. The reason for such status is that when
the resonant oscillators leave from the coupling region to
the coupling blind area, the coupling inputs vanish imme-
diately, and their oscillations, however, still continue. Since
the individual signal response ηi is a longstanding average
quantity, it will not decrease to a small value instantly (a
similar delayed result can be found when the oscillators leave
from the coupling blind area to the coupling region). Con-
sequently, the distinct signal responses can be viewed in the
whole space rather than only in the coupling region in the
snapshots. Especially, for σ = 0.5, a mass of oscillators, about
83% of the total number of the system, are enlarged, which
reveals a stronger DIR can be viewed compared to the static
oscillators. Additionally, for a high moving speed, compared
to the circumstance of v = 1.0, an obvious reduction of the
enlarged oscillators can be seen for all the range of diversity
parameters.

We also give the individual signal response distribution
and frequency distribution under the optimal diversity for
distinct moving speeds to compare the resonance explicitly.
As Fig. 4(c) shows, for v = 0.0, the individual signal response
split into two different strip areas in the ai − ηi space: a bell-
shaped strip and a horizontal band, which corresponds to the
resonant behavior in coupling region and the weak oscillations
in coupling blind areas, respectively. For v = 1.0, canopy-
like individual signal response distribution with higher peak
and more crowded heap can be viewed. For v = 10.0, not
only the peak of the distribution decreases, but also the den-
sity of the enlarged signal response reduces. Additionally, as
Fig. 4(d) shows, for the situations of v = 0.0 and v = 10.0,
the vast majority of the oscillators have slightly oscillations
with ηi < 2.0, and only a small fraction of the oscillators be-
have drastically oscillations with 18.0 < ηi < 25.0. However,
for an intermediate degree of moving speed, the fraction of
weak individual signal response significantly decreases, and
not only the ratio of strong signal response rises obviously, but
also the maximum signal response rises to 33. These results
further support that spatial motion can significantly enhance
the DIR for the preset coupling scheme, and an intermedi-
ate level of moving speed can evoke the optimal resonant
behavior.

The mechanism behind the mobility-optimized DIR is that
compared to weak resonance in restricted coupling region,
due to the spatial motion, the oscillators that originally lie in
the coupling blind areas can enter into the coupling region
and be enlarged. As a consequence, an enhanced resonance
can be found. Nevertheless, when the moving speed is large,
during every half of the oscillation period, the agents across
the coupling region over and over again, each stay in the
coupling region is brief, the coupling is flickering. The in-
terwell oscillations need time windows, the fast-disappearing
coupling thus weakens the resonance.

IV. ROBUSTNESS DETECTION

To examine the robustness of the nonmonotonic enhance-
ment of DIR in mobile oscillators, we first consider the other

FIG. 7. The optimal collective response ηoptimal with respect to
the absolute speeds of agents motion for different spatial motion
and state evolution. The dynamics of agents motion in 2D space for
(a) dynamic and (b) preset schemes are dominated by Eq. (10), nev-
ertheless the state evolution still follows Eq. (2). The state dynamics
of oscillators for (c) dynamic and (d) preset schemes are followed by
Eq. (11), whereas the spatial motions are based on Eq. (1). The inset
in panel (c) is the zoom-in of the same figure for v = 0 to v = 100.

conventional model of mobile oscillators, in which the direc-
tions of ith agent ϕi at each moment are randomly selected
with uniform probability in the interval [−π, π ] [55,61,65].
The spatial motion can be described as

xi(t + �t ) = xi(t ) + v cos(θi(t ))�t mod L,

yi(t + �t ) = yi(t ) + v sin(θi(t ))�t mod L,

θi(t + �t ) = ϕi(t + �t ), (10)

and the state dynamics of the oscillators are same as Eq. (2).
As Figs. 7(a) and 7(b) show, although the region of mov-
ing speed extends to a relative high level, the nonmonotonic
resonance enhancement can still be viewed for both the two
coupling schemes.

Second, we translate the bistable oscillators into more
complicated and biologically relevant excitable elements: the
archetypical FitzHugh-Nagumo model [7,14,43,44], of which
the dynamics can be represented by

εṡi = si − 1

3
s3

i − ui + c

ni

∑
j∈ni

bi j (s j − si ),

u̇i = si + ai + A sin(ωt ), i = 1, . . . , N, (11)

where si and ui are the fast membrane potential and the slow
potassium gating variable of the ith element, respectively.
The spatial motions of excitable elements are still follow
the Eq. (1). The parameter ε = 0.01 characterizes the
timescale separation between the fast and slow variables.
The diversity parameters are randomly chosen from the
Gaussian distribution of mean 〈ai〉 = a0 and correlations
〈(ai − a0)(a j − a0)〉 = δi jσ

2. Here, we consider the param-
eters configuration as Ref. [14] chose: a0 = 1.12, c = 1.0,
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A = 0.05, and T = 5.0. In Fig. 7(c), a multi-peaks-like
optimal signal response enhancement can be viewed through
increasing the speed of the spatial motion under the dynamic
coupling scheme as a relative strong noise which corresponds
to the situation of a small moving speed can also weaken
the DIR. Furthermore, under the preset coupling scheme, the
optimal signal response increases first and then decreases,
which represents a single-peak resonance enhancement; see
Fig. 7(d). All these results demonstrate that compared to the
static situation, the spatial motion of agent can evoke the
nonmonotonic enhancement of diversity-induced resonance.

V. CONCLUSIONS

In conclusion, we have systematically investigated the
celebrated phenomenon: diversity-induced resonance in mo-
bile oscillators through two realistic and conventional spatial
motion schemes: the dynamic coupling area in the form
of vision radius and the static preset coupling region. We
found that compared to the resonance in static oscillators, the
spatial motion can significantly enhance the resonance magni-
tude. Besides, an optimal diversity-induced resonance can be
obtained by an intermediate degree of moving speed. Further-
more, such nonmonotonic enhancement of diversity-induced
resonance is robust to the different spatial random motion
mechanisms of agents and the dynamical models of states.

Noteworthy, although the DIR has been extended to di-
verse situations and been investigated in more profound
ways, at least one important issue remains hard to address:
whether natural systems have taken advantage or not from
this diversity-induced collective effect. To our knowledge, one
origin of the difficulty is the unrealistic coupling assumption.
Although the DIR can be viewed as a particular case of
stochastic resonance (SR) [14], SR can be obtained in the
single-particle system, while the interaction among distinct
particles is necessary for the emergence of DIR. Up to this
day, most numerical experiments and theoretical predictions
on DIR are based on the static coupling assumption where
the coupling function is uncorrelated with the spatial motion
of agents. Since one signature of realistic systems is that the
interactions among elements are dominated by the physical
proximity of agents. Our results, although they are still about
the numerical experiments and theoretical predictions, reveal
for the first time that the time-varying coupling in the form
of mobile oscillators may plays a significant role in DIR, and
consequently may provide a new clue to answer the question
that whether natural systems can utilize the diversity-induced
resonance.
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FIG. 8. The phenomenon of mobility-optimized DIR for (a) high
and (d) low particle densities, the oscillators size is fixed to 1000,
thus one can obtain a high (low) particle density for a short (long)
boundary, (b) strong and (e) weak noise strengths, (c) big and (f)
small vision radiuses under the dynamic scheme.

APPENDIX A: ROBUSTNESS EXAMINATION
FOR DIFFERENT VISION RADIUS, NOISE INTENSITY,

PARTICLE DENSITY, AMPLITUDES OR PERIODS
OF THE EXTERNAL SIGNALS

As Fig. 8 shows, under the dynamic coupling scheme, for
the situation of a relative high particle density, the moving
speed strengthens the DIR, although the optimal resonance
magnitudes at intermediate and high speed level are approx-
imative, one can still find that the optimal DIR occurs at the
intermediate moving speeds; see Fig. 8(a). For a low particle
density, if the moving speed is zero, then the phenomenon of

FIG. 9. The phenomenon of mobility-optimized DIR for (a) high
and (d) low particle densities, the oscillators size is fixed to 1000,
thus one can obtain a high (low) particle density for a short (long)
boundary, (b) strong and (e) weak noise strengths, (c) big and (f)
small vision radiuses under the preset scheme.
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FIG. 10. The collective signal response ηS with respect to di-
versity under (a) the dynamic coupling scheme and (c) the preset
coupling scheme for different moving speeds. The optimal signal
response versus the period of the external driving force for different
moving speeds under (b) the dynamic coupling scheme and (d) the
preset coupling scheme.

DIR nearly disappears, and consequently the strengthening
influence of spatial motion on DIR is remarkable; see
Fig. 8(d). These results of high and low particle densities
resemble those of big and small vision radius, respectively;
see Figs. 8(c) and 8(f). Furthermore, we can find that the
influence of the noise intensity of the motion’s direction on
the mobility-optimized DIR is weak; see Figs. 8(b) and 8(e).
These results demonstrate that such mobility-optimized DIR
is robust for diverse vision radius, noise intensity, and particle
density under the dynamic scheme (also under preset scheme,
see Fig. 9). We further explore the influence of the period of
the external signal on the behavior of mobility-optimized DIR.
Following the avenue of Ref. [14], we first consider the DIR
within different moving speeds for a large period signal, i.e.,
T = 1000, under both the dynamic and preset schemes. As
Fig. 10(a) shows, compared to the signal response in the static
situation, the mobility of agents can significantly enhance
the resonance. Furthermore, the optimal DIR can be found
under the situation of the intermediate degree of moving
speeds. Similar results can be found for the preset scheme
as well, see Fig. 10(c). It is worth noting that although the
strength of DIR for speed v = 10.0 is no longer weaker than
that of v = 1.0, for a sufficient large speed, the magnitude of
DIR is weaker again than that of v = 10.0; consequently, the
phenomenon of the nonmonotonic enhancement of DIR is
still robust.

Second, since resonance-like behavior is strongly related
to the frequency of the driving signal [76], i.e., when the fre-
quency of the external driving force approaches to the natural
oscillation frequency the maximum amplitude of oscillation
can be viewed. We thus explore the magnitude of the DIR (in
form of ηoptimal) versus the period of the external driving force
for different moving speeds. For the dynamic scheme, see
Fig. 10(b), the magnitude of DIR rises in a S-shape as the in-
crease of the period, which is coincide with the corresponding

FIG. 11. The collective signal response ηS with respect to
diversity for different moving speeds with the state-dependent am-
plitude of the external driving force. The dynamic coupling scheme
with (a) linear function f (si ) = si, (b) nonlinear function f (si ) =
0.5[1 + tanh(si )]. The preset coupling scheme with same (c) lin-
ear and (d) nonlinear functions. The period of the external driving
force is T = 50.

results in Fig. 1 of Ref. [14]. Furthermore, one can find that the
optimal DIR curve corresponds to the situation of the interme-
diate moving speed, i.e., v = 1.0. Additionally, similar results
for the preset scheme can be found in Fig. 10(d). These results
demonstrate that the phenomenon of mobility-optimized DIR
is robust for the period (frequency) of the external driving
force. Noteworthy, for the small period signals, since the
oscillator cannot jump from one well to the other during the
small time window that the potential barrier disappears and
recovers, thus the amplitude of the oscillation remains small
for all ranges of diversity. Additionally, since the amplitude of
the external signal is not always fixed and homogeneous, we
further investigate the influence of the heterogeneous external
driving forces in the form of the state-dependent amplitude
on the phenomenon of mobility-optimized DIR. The state
evolution of bistable oscillators thus can be represented by

ṡi = si − s3
i + c

ni

∑
j∈ni

bi j (s j − si ) + ai + A f (si ) sin(ωt ),

i = 1, . . . , N. (A1)

The spatial motion is still a random-walk-like diffusion as
considered in the main text. To reveal the universality (arbi-
trariness) of the selected function f (·), we consider two typ-
ical functional forms: the linear function, i.e., f (si ) = si, and
the nonlinear function, say, f (si) = 0.5[1 + tanh(gsi)] [76].

As Fig. 11 shows, although the resonance is weak com-
pared to the situation where the amplitudes of the external
driving forces are homogeneous, one can still observe that
the optimal DIR emerges in an intermediate moving speed for
both the linear and nonlinear functions. These results further
demonstrate that the phenomenon of the mobility-optimized
DIR is robust.
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FIG. 12. The dependence of the DIR on the coupling range in (a)
one-dimension ring and (b) two-dimension square, respectively.

APPENDIX B: DIR VERSUS THE COUPLING
RANGE IN 1D AND 2D SPACE

To clarify the dependence of DIR on the coupling range,
we first consider a one-dimension ring, the dynamics of which
can be read as

ṡi = si − s3
i + c

2R

j=i+R∑
j=i−R

(s j − si ) + ai + A sin(ωt ),

i = 1, . . . , N, (B1)

in which R represents the coupling range; see the inset of
Fig. 12(a). The parameters configuration is the same as that
chosen in the main text. As Fig. 12(a) shows, with the in-
creasing of coupling range, the strength of DIR rises, and
the optimal DIR corresponds to the global coupling situation.
Moreover, for the two-dimension square, we continue to use
the dynamic coupling scheme but without spatial motion of
agent. As the inset of Fig. 12(b) shows, if the vision radius
rc is vanishing, then all the oscillators are isolated. As rc

increases, the coupling range rises as well. If rc > 20
√

2,
then no matter where the agent lies in the space, it can
interact with all other agents, which can be viewed as the
global coupling situation. As Fig. 12(b) shows, the optimal
DIR sill occurs in the global coupling situation. These results
further sustain the conclusion in the main text that for a purely
static network, the optimal DIR emerges in the all-to-all
network configuration since as the coupling range (dis-
tance) rises to N/2, the optimal DIR monotonically increase
to maximum.

APPENDIX C: THE DIFFERENCES AND SIMILARITIES
BETWEEN EQ. (9) AND THE DESAI-ZWANZIG MODEL

In this Appendix, we give the similarities and differ-
ences between the reduced equations (i.e., the model used by
Pikovsky and coworkers in Ref. [74], since such a model is
a standard model used in statistical physics and commonly
referred to as Desai-Zwanzig model, for convenience, we call
them Desai-Zwanzig model) and the order parameter equa-
tion [Eqs. (7), (8), or (9) in the main text]. The order parameter

FIG. 13. The differences and similarities between the Desai-
Zwanzig model and the order parameter equation for different
periods of the external signals. (a) The optimal signal response
versus coupling for small-period signal (T = 50). Three couplings
(b) c = 0.0, (c) c = 1.0, and (d) c = 5.0 are considered in detail
to reveal the differences and similarities. The same objectives un-
der the situation of large-period signal (T = 1000) are shown in
panels (e)–(h).

equation can be reduced to the Desai-Zwanzig model if the
diversity is vanished. Besides, the major differences of these
two models are whether the white noise terms are coupling-
dependent for a heterogeneous system, consequently, we pay
more attention to explore the optimal signal response versus
the coupling strength. As Fig. 13(a) shows, when c = 1.0,
the optimal signal responses for the two models are equal.
However, if c < 1.0, then the optimal signal response of the
Desai-Zwanzig model is significantly larger than that of the
order parameter equation in the main text. Especially, for a
vanishing coupling, one can still observe the enlarged signal
response, i.e., ηoptimal = 6.4, because of the stochastic reso-
nance effect. Whereas the optimal signal response of the order
parameter equation is weak, say ηoptimal = 0.26, since the
noise term disappears and DIR cannot emerge in the isolated
oscillators system. Furthermore, when c > 1.0, the optimal
signal response of the order parameter equation is slightly
larger than that of the Desai-Zwanzig model. To investigate
the signal response ηS versus the diversity detailedly, there
couplings, i.e., c = 0.0, c = 1.0, and c = 5.0 are in our con-
sideration. As Fig. 13(b) shows, for c = 0.0, despite no DIR
emerges under both the two models, the signal response of the
Desai-Zwanzig model is larger than that of the order param-
eter equation, especially for a small diversity. For c = 1.0, as
Fig. 13(c) shows, the two signal responses are equal for all
the diversity parameters. Furthermore, when c = 5.0, on the
one hand, the magnitude of the DIR for the order parameter
equation is slightly larger than that of the Desai-Zwanzig
model. On the other hand, the optimal diversity parameter
which corresponds to the optimal signal response is smaller
than that of the Desai-Zwanzig model; see Fig. 13(d). Sim-
ilar results can be obtained for the situation of large period
signal; see Figs. 13(e)–13(h). These results demonstrate that
the order parameter equation can be reduced to the reduced
equation used by Pikovsky and coworkers in Ref. [74] for a
homogeneous system for c = 1.0. For a heterogeneous sys-
tem, the signal response has significant differences between
these two models.
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FIG. 14. (a) The phase transition process of Eq. (D1). The red
and blue regions denote s∗ = 0 and s∗ = 1, respectively. (b) The
order parameter versus coupling for fixed noisy intensity. (c) The
order parameter with respect to noise intensity for fixed coupling.
(d) The dependence of the order parameter S∗ = 〈S〉t of Eq. (D7)
on diversity. (e) The signal response of Eq. (D9) for c = 3.0. (f)
The coefficients of the linear and cubic terms of Eq. (D9) versus the
diversity.

APPENDIX D: FURTHER ANALYSIS
FOR THE COLLECTIVE SIGNAL RESPONSE

In this Appendix, we give the reduction analysis and linear
response (used by Pikvosky and coworkers in Ref. [74]) for
the collective signal response of Eq. (9) [Eq. (9) in the main
text], and we discuss the feasibility through which to obtain
the analytical expression of the signal response ηS .

We first recall the analysis processes used in Ref. [74].
The globally coupled bistable oscillators with noise and weak
external driving force is read as

ṡi = si − s3
i + c

N

N∑
j=1

(s j − si ) +
√

2Dξi + A sin(ωt ),

i = 1, . . . , N. (D1)

If we consider s∗ = 〈S〉t in which S = 1
N �si as the order

parameter, as Fig. 14(a) shows, then we can find an Ising-type
phase transition because of the competition between noise-
induced disorder and coupling-evoked order. More detailed,
for a fixed noise intensity, i.e., D = 1.0, if the coupling is
less than the critical value, then the order parameter fluctuates
around the s∗ = 0 as the noise-induced disorder outperform
the coupling-caused order, whereas when the coupling over-
comes the critical coupling, since the order forming of the
elements, the order parameter approaches to s∗ = ±1; see
Fig. 14(b). For a fixed coupling, the opposite effect can be
viewed as the noise increases; see Fig. 14(c).

For the disorder phase, the potential function of the order
parameter has only one stable fixed point s∗ = 0, while for
the order phase, three fixed points with one unstable s∗ = 0
and two stable s∗ = ±1 exist. If one selects the parameter
configuration in the order phase, i.e., c = 5.5 and D = 1.0
(the configuration considered in Ref. [74]), then since the

effective noise decreases as the system size rises, the situation
of three fixed points thus always exists. For instance, the order
parameter evolution

Ṡ = (1 − 3M )S − S3 +
√

2D

N
ξ (t ) + A sin(ωt ),

Ṁ = 2M(1 − 3S2 − c − 3M ) + 2D, (D2)

in which δi = si − S and M = 1
N

∑
δ2

i , has three fixed

points with two stable S∗2 = [2 − c +
√

(2 + c)2 − 24D]/4
and one unstable S∗

0 = 0, in which M∗
12 = [2 + c −√

(2 + c)2 − 24D]/12 and M∗
0 = [1 − c +

√
(1 − c)2 − 12D]/

6. Near the bifurcation point, utilizing the slaving principle,
i.e., Ṁ = 0, one can obtain the one-dimensional equation in
form of the standard noise-driven bistable system

Ṡ = aS − bS3 +
√

2D

N
ξ (t ) + A sin(ωt ), (D3)

where a = 0.5(c + 1) − 0.5
√

(c − 1)2 + 12D and b =
−0.5 + 1.5(c − 1)/

√
(c − 1)2 + 12D. Taking advantage of

the linear response formula obtained in stochastic resonance
with the normal form of double-well potential, one can obtain
the analytical collective response

R = NS∗2

2Da

(
D−3/2(−√

X )

D−1/2(−√
X )

)2[
1 + π2ω2

2a2
exp(X )

]−1

, (D4)

where X = aNS∗2/2D, and D are the parabolic cylinder func-
tions. Since

D−n− 1
2

(
− 1√

2D

)
≈

√
2π

�
(
n + 1

2

) exp

(
1

8D

)
2D

1
4 − 1

2 n, (D5)

in which �(3/2) = √
π/2 and �(1/2) = √

π . As a conse-
quence,

R = NS∗2

D2a

[
1 + π2ω2

2a2
exp(X )

]−1

. (D6)

Now we consider the situation of the noisy coupling assisted
DIR, i.e., the collective signal response in form of the three-
dimensional order parameter equation in main text,

Ṡ = (1 − 3M )S − S3 +
√

2c2D2

N
ξ (t ) + A sin(ωt ),

Ṁ = 2M(1 − 3S2 − c − 3M ) + 2D2 + 2W,

Ẇ = W (1 − 3S2 − c − 3M ) + σ 2. (D7)

On the basis of the adiabatic elimination, one can assume
Ẇ = 0, and thereby obtain W = σ 2/ − (1 − 3S2 − c − 3M ).
For a rough simplification, say W = σ 2, we can further reduce
Eq. (D7) as

Ṡ = (1 − 3M )S − S3 +
√

2c2D2

N
ξ (t ) + A sin(ωt ),

Ṁ = 2M(1 − 3S2 − c − 3M ) + 2D2 + 2σ 2. (D8)

To obtain the fixed points, we consider Ṡ = 0 and
Ṁ = 0 and then have S∗

trivial = 0, S∗2
untrivial = 1 − 3M∗

untrivial,
M∗

trivial = (1 − c +
√

(1 − c)2 + 12(D + σ 2))/6 and M∗
untrival
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= (1 − c − 3S2 +
√

(1 − c − 3S)2 + 12(D + σ 2))/6. Utiliz-
ing S∗2

untrivial = 1 − 3M∗
untrivial, we can obtain M∗

untrival =
(c + 2 −

√
(c + 2)2 − 24(D + σ 2))/12 and S∗2

untrivial = (2 −
c +

√
(c + 2)2 − 24(D + σ 2))/4. Near the bifurcation point,

following the slaving principle, we can obtain the one-
dimensional equation in form of the standard noise-driven
bistable system as well,

Ṡ = a′S − b′S3 +
√

2c2D2

N
ξ (t ) + A sin(ωt ), (D9)

in which a′ = 0.5(c + 1) − 0.5
√

(c − 1)2 + 12(D + σ 2) and
b′ = −0.5 + 1.5(c − 1)/

√
(c − 1)2 + 12(D + σ 2). The sig-

nal response of Eq. (D9) are shown in Fig. 14(e). Noteworthy,
as we mentioned earlier, the reduction analysis is on the basis
of the order phase, in which the potential function of the
order parameter has three fixed points. However, as Fig. 14(d)
shows, when diversity parameter rises, the situation where

three fixed points coexist translates into the the case in which
only one stable fixed point exists. Furthermore, a larger cou-
pling causes a wider scope of diversity for using the reduction
methods. Consequently, Eq. (D9) is reasonable at large cou-
pling strength.

Following the linear response, one can obtain the analytical
signal response as

ηS = NS∗2
untrivial

(D + σ 2)2a′

[
1 + π2ω2

2a′2 exp(X ′)
]−1

, (D10)

in which X ′ = a′NS∗2
untrivial/2(D + σ 2). Nevertheless, the

analytical signal response Eq. (D10) is not proper, be-
cause of the coefficients of the first and third terms in
Eq. (D9) are not the constants, furthermore, these coef-
ficients can be negative values as diversity increases, see
Fig. 14(f).
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