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Desynchrony induced by higher-order interactions in triplex metapopulations
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In a predator-prey metapopulation, two traits are adversely related: synchronization and persistence. A
decrease in synchrony apparently leads to an increase in persistence and, therefore, necessitates the study of
desynchrony in a metapopulation. In this article, we study predator-prey patches that communicate with one
another while being interconnected through distinct dispersal structures in the layers of a three-layer multiplex
network. We investigate the synchronization phenomenon among the patches of the outer layers by introducing
higher-order interactions (specifically three-body interactions) in the middle layer. We observe a decrease in the
synchronous behavior or, alternatively, an increase in desynchrony due to the inclusion of group interactions
among the patches of the middle layer. The advancement of desynchrony becomes more prominent with
increasing strength and numbers of three-way interactions in the middle layer. We analytically validate our
numerical results by performing a stability analysis of the referred synchronous solution using the master stability
function approach. Additionally, we verify our findings by taking into account two distinct predator-prey models
and dispersal topologies, which ultimately supports that the findings are generalizable across various models and
dispersal structures.
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I. INTRODUCTION

The study of predator-prey systems has received a great
deal of attention in the field of ecology because of their impor-
tance in different complicated biological processes [1,2]. In
ecology, metapopulation dynamics [3] describes the behavior
of an ensemble of geographically dispersed populations of
identical species that have some degree of mutual dependence.
The metapopulation hypothesis highlights the significance of
connectedness among the populations since multiple popu-
lations working together instead of an isolated population
can aid in the survivability of a group of species [4,5]. In
light of this, it is essential to address geographically dis-
tributed population dynamics through the lens of network
theory [6,7]. This interpretation makes sense if the nodes
of the network stand in for ecological patches and the con-
nections among them represent migration routes. However,
due to the increasing intricacy of the ecological systems,
including geographical separation, risky environments, and
lack or overavailability of resources, species from one spatial
location can interact with other species from different spatial
locations in various ways throughout the year [8–10] or, the
movement of species from a patch can be affected by the
simultaneous presence of other species from different patches
[11–13]. For these reasons, the framework of metapopulation
schematized by classical networks has been generalized in
various ways, including multilayer networks that can handle
a wide variety of interactions via numerous layers [14,15],
and higher-order networks (simplicial complex, or hyper-
graphs) that take into consideration simultaneous interactions
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comprising three or even more nodes [16–18]. These higher-
order structures have been proved to produce novel features in
various dynamical processes [19,20]. Multilayer [21,22] and
higher-order [11–13,23] networks thus provide the necessary
structure for expressing the increasing ecological complex-
ities. In our present study, we will be analyzing a specific
type of multilayer design called multiplex networks [24,25],
where identical sets of interacting nodes are replicated across
the layers while maintaining one-to-one correlation among the
counterpart nodes that are responsible for the interconnection
across the layers.

Synchronization [26–28], wherein the system individu-
als evolve in unison, is one of the fascinating phenomena
observed in multiplex networks, which have captured a lot
of attention in the area of network research. There are nu-
merous types of synchronization phenomena that occur in
multiplex networks, such as cluster synchronization [29], an-
tiphase synchronization [30], explosive synchronization [31],
chimera states [32,33], intralayer synchronization [34–36],
interlayer synchronization [37–39], and relay interlayer syn-
chronization [40–43]. This synchronization phenomenon also
has widespread interest in ecological populations, where the
species display identical fluctuations in time [44–47]. In
ecology, specifically in predator-prey metapopulations, the
synchronous phenomenon is of particular importance since it
has been observed and theoretically predicted that synchro-
nization and persistence are negatively correlated with each
other in metapopulations [48,49]. There would not be any
migrants to act as rescuers if all synchronous species suddenly
and catastrophically declined at the same time. In other words,
if the patches are all in a synchronized state and a disturbance
occurs in one of them, it quickly spreads throughout the en-
tire population, whereas in a desynchronized population the
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disturbance is contained within a smaller number of patches.
This necessitates the study of desynchronization or, al-
ternatively, abatement of synchronization in predator-prey
populations, as it apparently leads to an increasing persis-
tence. Motivated by this, here we perform a theoretical study
to find a way to hinder synchrony on the predator-prey pop-
ulation network arranged in a multiplex framework, where
species are subjected to higher-order interactions. The consid-
eration of higher-order interactions in ecological populations
is not new [23,50,51]; however, their role in the reduction of
synchronization in multiplex metapopulation structure is yet
to be investigated.

In this article, we consider a three-layered framework
where the layers stand for different geographical regions con-
taining several patches of the same predator-prey species. The
connectivity patterns among the patches in the outer layers are
subjected to only pairwise diffusive interactions, i.e., species
movement from one patch to another depends only on the
patches that are connected through pairwise links. The patches
within the middle layer interact with one another through both
pairwise and three-way interactions, i.e., species movement
from one patch to another depends not only on the patches
that are connected through pairwise links but also on the
patches connected through 2-simplices (triangles). Again, the
species within a layer may be motivated to go to adjacent ge-
ographical locations (i.e., adjacent layers) based on resource
availability, which is exemplified by interlayer migration. To
reduce the intricacy, we assume species from any patch in
one layer can migrate only to its replica-positioned patches
in the adjacent layers. In this three-layer multiplex (triplex)
framework, we scrutinize the synchronous behavior among
the patches in the outer layers, called relay interlayer syn-
chronization [40,41,43]. Our analysis shows a decrease in
synchrony among patches of the outer layers, and, as a result,
a sufficiently wider region of desynchronization is achieved
when we introduce three-way interactions among the patches
in the middle layer. We verify our findings analytically by
executing the stability analysis of the synchronous solution
in terms of the master stability function approach for two dif-
ferent three-dimensional chaotic predator-prey populations.

The remaining parts of this article are structured as fol-
lows. In Sec. II, we develop the mathematical framework for
predator-prey metapopulation organized on a three-layer mul-
tiplex network. Section III elaborately details the results for
two different three-species chaotic food chain models. Finally,
we sum up all our results and conclude in Sec. IV.

II. FRAMEWORK FOR TRIPLEX METAPOPULATION

We concentrate on the scenario of a multiplex network with
three layers (schematized in Fig. 1), each of which contains
N number of predator-prey patches amalgamated with one
another through dispersal topology. Every patch in a layer
is interconnected to its replica patches in adjacent layers. In
this way, all the patches from the middle layer are intercon-
nected to their replicas in the two outer layers, and those
in the outer layers are intertwined only with their twins in
the middle layer. Consequently, the middle layer acts as a
relay layer to the indirectly connected outer layers. The pair-
wise connections among the patches within and between the

FIG. 1. Schematic diagram of our proposed triplex network ar-
chitecture. Each layer is composed of eight patches, schematized
by solid black circles. Layer (0) in the middle (colored in grey)
acts as a relay layer in which the triangles shaded in blue indicate
three-way interactions between the patches, and solid black lines
represent the pairwise connections between the patches. The outer
two layers [layer (1) and layer (−1), colored in red) are subjected to
only pairwise interactions depicted by solid black lines. The dashed
black lines between two adjacent layers indicate the pathway for
species migration from one layer to another.

layers signify species’ movement across the patches through
diffusive coupling. Furthermore, we assume that the species
movement from a patch in the middle layer is not only depen-
dent on its adjacent patches connected through pairwise links
but also on the patches that are connected through three-way
interactions. In other words, the nodes (patches) in the middle
layer are interconnected with each other via both two and
three-body interactions simultaneously. However, the patches
within the outer layers are interconnected only through pair-
wise links. Consideration of such three-body interactions,
along with pairwise ones, is very much relevant in predator-
prey metapopulation dynamics. For instance, a predator can
change its targeted prey because of the availability of other
prey [11]. In this example, the two preys do not engage with
one another directly; rather, they participate in a three-body
interaction, which would be overlooked if just pairwise inter-
actions are considered. Taking all these aspects together, the
dynamics of the three-layered metapopulation is given by the
following sets of differential equations,

Ẋ−1,i = f (X−1,i ) + ε1

N∑
j=1

A [−1]
i j G(1)[X−1, j − X−1,i]

+ηH[X0,i − X−1,i], (1a)

Ẋ0,i = f (X0,i ) + ε1

N∑
j=1

A [0]
i j G(1)[X0, j − X0,i]

+ε2

N∑
j,k=1

A [h]
i jk G(2)(X0,i, X0, j, X0,k )

+ηH[X1,i + X−1,i − 2X0,i], (1b)

Ẋ1,i = f (X1,i ) + ε1

N∑
j=1

A [1]
i j G(1)[X1, j − X1,i]

+ηH[X0,i − X1,i], i = 1, 2, . . . , N, (1c)
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where Xk,i indicates the d-dimensional state vector of the ith
patch in layer k with k = −1, 1 representing the outer layers
and k = 0 corresponding to the middle layer. The intrinsic
dynamics of each patch are given by f (Xk,i ). The real-valued
parameters ε1 and ε2 represent the strength of pairwise and
three-way interactions within the layers, respectively, while
η indicates the migration strength of populations across the
layers. G(1) : R(d ) → Rd and H : R(d ) → Rd are the inner-
coupling matrices associated with the pairwise interactions
within and across the layers, respectively, indicating which
species will migrate from one patch to another. The second
term in the evolution equation of all the layers indicates
the pairwise diffusive interaction between different patches
of a particular layer. A [k] (k = −1, 0, 1) is the adjacency
matrix of layer k, whose entries are defined as A [k]

i j = 1 if
movement of species can be observed between ith and jth
patches through the pairwise links while A [k]

i j = 0 if no such
movement is observed. The third term in the dynamics of
the middle layer defines the three-way interactions between
the species of the patches characterized by the adjacency
tensor A [h] and the interaction function G(2)(X0, j, X0,k, X0,i ),
which can be either linear or nonlinear. The entries of the
associated adjacency A [h] are defined as A [h]

i jk = 1 if a three-
way interactions between the patches i, j, and k occur, and
A [h]

i jk = 0 otherwise. Finally, the last term in the dynamics of
all the layers represents the migration of species from one
layer to its adjacent layers by means of diffusive coupling.
The outer layers are symmetric with respect to the middle
layers, i.e., the adjacencies A [−1] and A [1] have the same
structure. In addition to this, we assume that, similarly to
the pairwise interactions, the three-way interactions are also
characterized by a diffusive-like coupling function. There-
fore, when the interaction function G(2) is linear it takes
the form G(2)(X0, j, X0,k, X0,i ) = H (2)[X0, j + X0,k − 2X0,i],
where H (2) : R(d ) → R(d ) is the corresponding inner coupling
matrix. These three-way interactions thus characterize the
dispersal of species between three different patches simul-
taneously, governed by a linear diffusion scheme. In other
words, the movement of species from one patch is dependent
on more than one patch concurrently. On the other hand, when
the three-way interactions are nonlinear diffusive, then there
exists a function g(2) : R(2d ) → R(d ) such that G(2) can be
represented as

G(2)(X0, j, X0,k, X0,i ) = g(2)(X0, j, X0,k ) − g(2)(X0,i, X0,i ).
(2)

Intuitively, one may interpret this as a generalization of the
typical diffusion process on metapopulations, which tends
to homogenize the regional variations and, as a result, to
disappear in the situation of equal system states (i.e., in
synchronized state). Consequently, in the context of nonlin-
ear three-way interactions, the higher-order coupling function
adopts specific forms. For instance, the second-order coupling
function could be expressed as g(2)(X0, j, X0,k ) = X0, jX0,k and
g(2)(X0, j, X0,k ) = X(2)

0, jX0,k , and is referred to as quadratic
and cubic diffusion, respectively [52]. Let us observe that
the nonlinear diffusion process has been studied in ecology,
but mostly when the system dynamics are governed by par-
tial differential equations (PDEs) [53–55]. Here, we extend

the study of nonlinear diffusion processes on the networked
systems governed by ordinary differential equations (ODEs).
Throughout the main text, we specifically consider the cubic
diffusion process to represent the three-way interactions. The
results with linear and quadratic diffusive couplings are dis-
cussed in Appendix C.

We further presume that the dispersal among the patches in
the three layers happens randomly with a probability p, i.e.,
species are moving from one patch to another with the prob-
ability p. Here, we consider N = 100 patches in each layer
interacting with one another through random dispersal topol-
ogy having probability p = 0.1. In this way, species from each
patch can move randomly to approximately (N − 1)p number
of other patches within a particular layer. Using the net-
work theory concept, one can generate this type of dispersal
topology using the Erdős-Rényi random network algorithm
[56]. Now, the three-way interactions between the species of
the patches in the middle layer are generated by consider-
ing all the 2-simplices (triangles) formed during the creation
of random dispersal topology. Our premise for constructing
this three-way interaction structure is not exclusive. One can
choose any other way to generate these interactions; for ex-
ample, the species from different patches interact with each
other only through three-body connections but not through
direct pairwise connections, or there may be a probability to
generate a three-way interaction between the species of any
three patches. We here consider the simplest way to construct
the topology for three-way interactions, that is by considering
the 2-simplices in the random dispersal topology. In other
words, here we are assuming that if three patches i, j, and k
are connected with each other in such a way that both j and k
are neighbors of i, and also j and k are neighbors of each other,
then in addition to the pairwise dispersal process among them,
there also exists a nonlinear (linear) diffusion process between
them. We contemplate the significance of these three-way
interactions as a representation of the fact that the migration
of species between patches is influenced by more than just
pairwise connections. In fact, the movement could rely on
multiple neighboring patches concurrently, introducing a layer
of complexity beyond linear relationships.

III. RESULTS

Throughout this section, we investigate a particular syn-
chronization phenomenon called relay interlayer synchroniza-
tion (RIS) in our proposed triplex metapopulation framework
(1). Relay synchronization indicates the synchrony between
the patches of two layers indirectly connected via a middle
(relay) layer. More precisely, relay synchrony occurs when
the replica patches in the outer layers display identical oscil-
lations over time, i.e., X1, j (t ) = X−1, j (t ) ( j = 1, 2, . . . , N ).
It should be noted that relay synchronization does not ne-
cessitate that the patches within each layer oscillate in
unison, nor that the patches between the outer and middle
layer exhibit identical fluctuation over time [43]. This im-
plies that the relay synchronous solution can be achieved
even if Xk, j (t ) �= Xk,i(t ) (k = −1, 0, 1; i, j = 1, 2, . . . , N )
and Xk, j (t ) �= X0, j (t ) (k = 1,−1). In this regard, the invari-
ance of the relay synchronous solution is guaranteed in our
considered multiplex metapopulation (1) due to the choice of
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diffusive dispersal coupling between the replica patches of the
adjacent layers [40].

To quantify the relay synchronization state, we in-
troduce the instantaneous synchronization error ERIS(t ) =
1
N

∑N
j=1 ‖x1, j (t ) − x−1, j (t )‖, which is zero when the replica

patches of the outer layers fluctuate in unison and nonzero
finite when the oscillation of the replica patches in the outer
layers is asynchronous. In the following, we will typically
consider the time average of the synchronization error to
better estimate the transition between the synchronous and
asynchronous states. The multiplex network (1) is therefore
evaluated for a period of 3 × 105 time steps with integration
strep size δt = 0.01 and the last 105 time units are taken for
calculating the average synchronization error. To better un-
derstand the impact of higher-order interactions, specifically
three-way interactions, on the emergence of synchronous os-
cillation among the patches in outer layers, we assume the
dispersal topology of each layer to be identical so that the
three-way interactions will only play the role of a difference-
maker in our investigation.

In the following subsections, we scrutinize the relay in-
terlayer synchronization behavior by taking into account two
distinct three-species chaotic food chain models as the in-
trinsic dynamics of individual patches. We employ chaotic
models as dynamical units since this choice can be instructive
for studying synchronization in a more broad scenario where
species do not inevitably converge to an equilibrium state [57].

A. Hastings-Powell model

We start our investigation by considering the Hastings-
Powell (HP) three-species chaotic food chain model [57] with
one prey, one predator, and one superpredator species in ev-
ery patch. The interaction among these three species occurs
through a Holling type-II functional response. Here, the in-
trinsic evolution of the patches is given by

f (X) =

⎛
⎜⎜⎝

f1(x, y, z)

f2(x, y, z)

f2(x, y, z)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x(1 − x) − a1xy
1+b1x

a1xy
1+b1x − a2yz

1+b2y − d1y
a2yz

1+b2y − d2z

⎞
⎟⎟⎠, (3)

where x corresponds to the species at the lowest food chain
level, y is associated with the species that preys upon x,
and z accounts for the species that preys upon y. The sys-
tem parameter values are kept fixed at a1 = 5.0, b1 = 3.0,
a2 = 0.1, b2 = 2.0, d1 = 0.4, d2 = 0.01 so that each patch
exhibits chaotic dynamics when uncoupled. We assume that
only the prey species move from one patch to another within
each layer, i.e., all the entries except the first entry of the
inner-coupling matrix G(1) are zero. More precisely, only the
prey species take part in pairwise interactions among the
patches within each layer. Similarly, only the prey species
take part in the three-way interactions within the middle layer.
Thus, we consider the three-way interaction function G(2),
characterized by cubic diffusion as G(2)(X0,i, X0, j, X0,k ) =
[x2

0, jx0,k − x3
0,i, 0, 0], i.e., the three-way interaction between

the prey species of any three patches i, j, and k is not realized
by linear diffusive coupling. Rather, we choose a nonlinear
diffusive coupling form. This particular coupling form, for

FIG. 2. Synchronization between the patches of the outer layers
of the multiplex metapopulation with the HP model in each patch.
(a) Synchronization error ERIS as a function of interlayer migra-
tion strength η for three different values of three-way interaction
strength: ε2 = 0 (red curve), ε2 = 0.1 (blue curve), and ε2 = 0.5
(magenta curve). The inset depicts the synchronization error between
the middle (k = 0) and the outer (k = 1) layers defined as E0,1(t ) =
1
N

∑N
j=1 ‖x0, j (t ) − x1, j (t )‖. (b) The maximum Lyapunov exponent

�max evaluated from the variational Eq. (A4) (in Appendix A) as
a function of η for the same set of values of ε2 as in (a). The
pairwise intralayer dispersal strength is kept fixed at ε1 = 0.2 in all
the subplots.

instance, represents the combined effect of prey species from
patch j and k on the prey species of patch i, with patch j
being more effective than patch k. However, we assume that
all three species can migrate from one layer to its adjacent
layer via pairwise interlayer links, i.e., all the entries of the
coupling matrix H are zero except the diagonal ones. Here,
we consider that, within the layers, only one species (in our
case, prey species) can move from one patch to another, but
all three species can move from one layer to another layer.
Intuitively, this can be considered as the scenario that under
normal circumstances one or more species moves within local
regions (i.e., between the patches of a particular layer), and
when the circumstances are extreme, like natural hazards or
risky environment, then all the species migrate from their
location to an adequately farthest location (i.e., migration to
different layers). Nonetheless, our findings remain robust even
when introducing alternative scenarios. This encompasses sit-
uations where all three species are permitted to traverse both
within and between the layers, as well as cases where either
one or two species are granted this mobility within and across
layers. The results with some of these alternative scenarios are
discussed in Appendix C.

In order to study the emergence of relay interlayer syn-
chronization phenomena in the multiplex framework (1), we
start by evaluating the synchronization error ERIS by varying
the strength of migration η between the layers, for different
three-way interaction strengths ε2 and a fixed value of in-
tralayer dispersal strength ε1 = 0.2. The corresponding results
are depicted in Fig. 2(a). The intralayer coupling strengths ε1

and ε2 are taken in such a way that the patches within a partic-
ular layer do not display any identical fluctuations over time
(synchrony). For ε2 = 0, i.e., when there is no three-way inter-
action between the species of the patches in the middle layer,
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the replica patches of the indirectly connected layers (outer
layers) achieve a synchronous state for a critical value of
interlayer migration strength η ≈ 0.01 [red curve in Fig. 2(a)].
In addition to that, the middle (relay) layer also displays
identical fluctuation with the outer layers, as shown in the red
curve in the inset of Fig. 2(a) where the synchronization error
E0,1 between the middle and the outer layers becomes zero
at approximately same critical interlayer migration strength.
These two synchronous behaviors are obvious when there
are no three-way interactions in the middle layer, because in
this particular scenario all three layers are identical. Now, to
investigate the impact of three-way interactions in the emer-
gence of a relay synchronous state, we gradually increase the
value of ε2. For ε2 = 0.1 (shown in the blue curve), one can
perceive that a comparably larger critical interlayer migration
strength η is needed for the achievement of relay synchronous
state. The occurrence of the synchronous solution is delayed
further with the increasing three-way coupling strength. For
ε2 = 0.5, a synchronous oscillation between the patches of
outer layers is achieved at η ≈ 0.014. Moreover, we observe
that, with the introduction of three-way interactions between
the patches of the middle layer, the patches in the middle
(relay) layer start displaying asynchronous fluctuation with
that of the outer layers (shown in the inset where E0,1 > 0).
Therefore, the inclusion of higher-order interactions in the
relay layer of a triplex metapopulation delays the occurrence
of synchronous oscillation between the patches of outer layers
when compared with the triplex metapopulation having only
pairwise interactions among the patches. In other words, the
group interactions between the patches of the middle layer
induce desynchronization between the outer layers.

To validate the acquired result, we proceed through the
stability of the relay synchronous solution using the master
stability function approach [58]. Evaluating the maximum
Lyapunov exponent �max transverse to the synchronous man-
ifold X1,i = X−1,i gives the necessary condition for stable
synchronous oscillation (detailed in Appendix A). The nega-
tive value of �max with varying coupling strengths indicates
its stability. In Fig. 2(b), we plot the transverse maximum
Lyapunov exponent �max as a function of interlayer migration
strength η for the same set of intralayer coupling strengths ε1

and ε2 as in Fig. 2(a). One can observe that the �max curves
become negative at the same critical values of η for which
the value of synchronization error ERIS is zero, indicated by
the dashed vertical lines. Thus, our observation regarding the
delay in the occurrence of synchrony among the patches of
outer layers with the introduction of three-way interactions
in the relay layer is validated analytically using the master
stability approach.

Thereafter, to scrutinize the complete scenario of relay syn-
chronization in a wider range of parameter values, we evaluate
the synchronization error ERIS by simultaneously varying the
interlayer migration strength η and pairwise dispersal strength
ε1 for different values of three-way interaction strength ε2.
Figure 3 delineates the corresponding results. The solid white
lines in each subfigure define the boundary between the
synchronous (blue region) and asynchronous (red region) os-
cillation, obtained by solving the transverse error dynamics
for the calculation of maximum Lyapunov exponent �max. In
particular, these curves correspond to �max(ε1, η) = 0. While

FIG. 3. Region of synchronization and desynchronization in the
(ε1, η) parameter plane for the three values of three-body interaction
coupling strength: (a) ε2 = 0.0, (b) ε2 = 0.05, (c) ε2 = 0.5. The color
bar represents the variation of synchronization error ERIS. The solid
white curves immersed on each parameter space denote the boundary
which divides the regions of synchrony and desynchrony, and is
obtained by solving the variational equation (A4) for �max(ε1, η) =
0.0. (d) The boundary curves corresponding to the three values of
ε2 (see legend) are plotted separately, supporting the increase in
desynchrony region with increasing ε2.

investigating the relay synchronization phenomenon for dif-
ferent values of ε2, it can be observed from Fig. 3(a) that
the triplex network with solely pairwise connections (ε2 = 0)
exhibits relay synchronous behavior even in the absence of
any pairwise interaction ε1. The critical value of η for the
emergence of synchronous oscillation decreases with increas-
ing value of ε1 and attains the lowest value η ≈ 0.0032 at
ε1 ≈ 0.0175. Beyond that, further increment of ε1 shifts the
threshold for achieving synchrony again toward higher values
of η until the intralayer dispersal strength ε1 is reached at
ε1 ≈ 0.105. If we increase the value of ε1 further, the replica
patches in outer layers display identical fluctuation for η �
0.0085 independently of the value of ε1. A similar scenario
is observed in Fig. 3(b), where we introduce three-way inter-
actions in the middle layer with coupling strength ε2 = 0.05.
However, in this case, we perceive that the critical threshold
to achieve the synchronous fluctuation is relatively higher
than in the solely pairwise situation. This results in a reduced
synchronization region and an enhanced desynchrony region.
This behavior becomes more prominent when we increase
the three-way coupling strength to ε2 = 0.5, as depicted in
Fig. 3(c). Therefore, rigorously plotting the regions of syn-
chrony and desynchrony, we can well differentiate the relay
synchronous behavior for the cases of pairwise and three-way
interactions, supporting our remark that the three-way inter-
action in the relay layer delays the occurrence of synchrony
between the replica patches of the outer layers, or, saying
differently, induces desynchrony among those patches.

Until now, the results we have discussed are associated
with fixed random probability p. But p is one of the most
important parameters in our study as it controls the species’
movement from one patch to another. When p = 0, no species
movement occurs among the patches. The species from one
patch can move to more patches with increasing p, and
when p = 1 the species can move from one patch to every
other patch. Consequently, with increasing p, the number of
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FIG. 4. Critical interlayer migration strength η with varying
probability p for generating random dispersal topology. Three curves
represent the critical values of η where the synchronous state occurs
for three different values of three-way interaction strength ε2: the
black curve corresponds to the thresholds for ε2 = 0.0, while blue
and red account for ε2 = 0.05 and ε2 = 0.5, respectively. The regions
on the left of these critical curves are the regions of asynchronous
oscillation, while the regions beyond these curves correspond to the
regions of synchronous oscillation. The figure reflects the result that,
with increasing p and ε2, the synchronous oscillation emerges for
relatively larger values of η, i.e., an increase in desynchrony is ob-
served. The intralayer pairwise coupling strength is fixed at ε1 = 0.2
for the calculation of all the critical points.

three-way interactions also increases in the middle layer.
Therefore, to elucidate the effect of probability p on the oc-
currence of relay synchrony, we calculate the critical value of
interlayer migration strength η with varying probability p. The
corresponding result is portrayed in Fig. 4. The black curve
corresponds to the completely pairwise scenario (ε2 = 0),
while the blue and red ones represent the critical curve for
ε2 = 0.05 and ε2 = 0.5, where the three-way interactions are
present in the relay layer. The domains on the left of these
critical curves are the domains of asynchronous oscillation,
while the domains beyond these curves (i.e., on the right)
correspond to the region of synchronous oscillation. As ob-
served, for ε2 = 0, the critical coupling for the emergence of
synchronous oscillation is more or less similar with increas-
ing; i.e., when there is no three-way diffusion in the middle
layer, due to the presence of only pairwise diffusion the oc-
currence of synchronous oscillation between the patches of
the outer layers is not greatly affected by the number of pair-
wise diffusions, rather we can observe a slight enhancement
on the occurrence of synchronous oscillation with increasing
connection probability in the regime of large p. However,
when the three-body diffusion process comes into play (i.e.,
ε2 > 0), an interesting phenomenon can be observed. For a
minute fraction of three-way interaction strength (ε2 = 0.05),
we observe that with the increasing value of p, i.e., with the
increasing number of three-body diffusions, the synchronous
oscillation emerges at relatively higher values of interlayer
migration strength η. This eventually leads to a larger re-
gion of asynchronous oscillation as compared to the scenario
where three-body diffusions are absent. The emergence of
synchronous oscillation is further delayed with the increment
in the three-way coupling strength value ε2, as delineated for
ε2 = 0.5. Therefore, higher-order interactions serve as crucial

FIG. 5. Synchronization between the patches of the outer layers
of the multiplex metapopulation with the Gakkhar-Naji model in
each patch. (a) Synchronization error ERIS as a function of interlayer
migration strength η for four distinct values of three-way interaction
strength: ε2 = 0.0 (black curve), ε2 = 1.0 (red curve), ε2 = 1.0 (blue
curve), and ε2 = 1.0 (magenta curve). (b) Maximum Lyapunov expo-
nent �max evaluated from the variational equation (A1) as a function
of η for the same set of values of ε2 as in (a). The pairwise intralayer
dispersal strength is kept fixed at ε1 = 0.012 in all the subplots.

contributors to the attenuation of synchronous oscillations,
playing a pivotal role in shaping the outcome. Particularly, the
higher number of three-way interactions and larger value of
three-way coupling strength together result in a larger desyn-
chronization region and subsequently delay the emergence of
synchronous oscillation between the patches of outer layers
up to a large value of interlayer migration strength.

B. Gakkhar-Naji model

To provide further evidence that the results obtained due to
the introduction of higher-order interaction in the relay layer
of the triplex metapopulation are not model dependent, here
we conduct the analysis while taking into account another
three-species predator-prey model proposed by Gakkhar and
Naji [59]. Here, the interaction among the species occurs
through a Holling type-II functional response, and the corre-
sponding evolution equations are given by

f (X) =

⎛
⎜⎜⎜⎜⎝

x
[
1 − x − y

1+w1x − z
1+w2x+w3y

]

y
[

w4x
1+w1x − w5 − w6z

1+w2x+w3y

]

z
[

w7x+w8y
1+w2x+w3y − w9

]

⎞
⎟⎟⎟⎟⎠, (4)

where x corresponds to the species at the lowest food
chain level, y is associated with the species that preys
upon x, and z accounts for the species that prey upon both
x and y. The system parameter values are kept fixed at
w1 = 1.44,w2 = 5.0,w3 = 8.0,w4 = 1.0,w5 = 0.1,w6 =
0.1,w7 = 0.1,w8 = 0.1,w9 = 0.01, so that each patch
exhibits chaotic dynamics when uncoupled.

We evaluate the synchronization error ERIS and plot them
as a function of interlayer migration strength η in Fig. 5(a)
for four different values of three-way interaction strength ε2,
keeping the intralayer pairwise interaction strength fixed at
ε1 = 0.012. For ε2 = 0.0, i.e., when the triplex metapopu-
lation is subjected to only pairwise interactions, the replica
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FIG. 6. Region of synchronization and desynchronization in
(ε1, η) parameter plane for two distinct values of three-body in-
teraction coupling strength: (a) ε2 = 0.0, (b) ε2 = 1.0. The color
bar represents the variation of synchronization error ERIS. The
solid white curves superimposed on each parameter space denote
the boundary that divides the regions of synchrony and desyn-
chrony and is obtained by solving the variational equation (A1) for
�max(ε1, η) = 0.0.

patches of two outer layers start oscillating identically (ERIS =
0) beyond η ≈ 0.0037, displayed by the black curve. On
the other hand, for ε2 = 0.1, 0.5, 1.0, i.e., when the middle
layer is subjected to both pairwise and three-way interactions,
the relay synchronization emerges beyond relatively higher
interlayer migration strengths η ≈ 0.0037, 0.0042, 0.0048
successively, which are depicted in the red, blue, and magenta
curves, respectively. The obtained results are accompanied by
plotting the curves of maximum Lyapunov exponent �max in
Fig. 5(b), where the curve of �max crosses the zero line and
becomes negative exactly at the same critical coupling η for
which ERIS is zero, as indicated by the vertical dashed lines. In
addition to that, we also evaluate the region of synchrony and
desynchrony by simultaneously varying the intralayer pair-
wise coupling strength ε1 and interlayer migration strength
η for two different values of three-way interaction strength
ε2 = 0 [Fig. 6(a)] and ε2 = 1.0 [Fig. 7(b)]. One can observe

FIG. 7. Synchronization between the patches of the outer layers
of the multiplex metapopulation with small-world dispersal topology
in each layer with average degree 〈k〉 = 8 and rewiring probability
psw = 0.15. Synchronization error ERIS is shown as a function of
interlayer migration strength η for three distinct values of three-way
interaction strength: ε2 = 0 (black curve), ε2 = 0.05 (red curve), and
ε2 = 0.5 (magenta curve). The pairwise intralayer dispersal strength
is kept fixed at ε1 = 0.1. By increasing the three-way interaction
strength ε2, a decrease in synchronization is observed.

that the region of synchrony (desynchrony) decreases (in-
creases) adequately as we introduce the three-way interaction
in the middle layer. Therefore, from the above results, we can
conclude that our observed phenomenon regarding the dimin-
ishment of synchronous fluctuation between the patches of
outer layers due to the introduction of three-way interactions
in the middle layer is not specific to a particular model, rather,
it follows in general.

IV. DISCUSSION

Because of its importance to the notion of species migra-
tion and persistence, metapopulation dynamics has been the
subject of research in a wide range of subdisciplines within
ecology. In many cases, the identical fluctuations of species
(synchrony) within a large community of organisms hinder the
metapopulation persistence, apparently leading to extinction
[48]. That means if all the patches experienced declines in
an enormous amount at the same time, there would not be
any migrants who act as rescue agents. This necessitates the
study of asynchrony (desynchrony) within the metapopulation
dynamics, as it plays a vital role in increasing metapop-
ulation persistence [60]. Our present study aims to find a
way to decrease (increase) synchrony (asynchrony) within the
metapopulation dynamics.

To effectively capture ecological complexity, it is neces-
sary to take into account a wide range of related aspects,
including dynamical, functional, and structural characteris-
tics. Species in one area may be compelled to go to another
depending on factors including geographic isolation, envi-
ronmental hazards, and resource scarcity, or the movement
of species from one patch to another may be affected by
a group of species from different patches simultaneously.
This forces us to think about two different ways of species
interaction: first, the species from various patches interact
with each other through many-body interactions, and second,
the species interact with one another via different dispersal
patterns schematized by multilayer frameworks. We have an-
alyzed the metapopulation model, where species are spread
out across a three-layered multiplex patchwork, with predator
and prey species interacting with one another. Furthermore,
the species in the middle layer are subjected to three-body
interactions. Our study reflects that the synchronous fluc-
tuations among patches in the outer layers are delayed by
the presence of three-way interactions in the middle layer.
The abatement (improvement) of synchrony (desynchrony) is
greatly dependent on the strength and number of three-way in-
teractions among the species. The desynchrony becomes more
prominent with increasing strength and numbers of three-way
interactions in the middle layer. We validated our findings
analytically by performing the stability of the synchronous so-
lution using the master stability function approach. Moreover,
we demonstrate that our obtained results are generalizable
beyond a specific model. We have also verified that, apart from
random dispersal topology, our findings are valid with other
dispersal topologies between the patches of the layers. For
example, the result with small-world dispersal topology is il-
lustrated in Appendix B. We believe that our study can provide
a better theoretical understanding of the impact of many-body
interactions on the dynamics of ecological systems and pave
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the way for further research on the persistence of species. A
natural extension of our work would be to study the effect of
higher-order interactions on the synchronization phenomenon
in a generic multilayer ecological framework where the move-
ment of species across various layers of patches would not
be confined to a rigid one-to-one correspondence, as typically
observed in a multiplex framework.

APPENDIX A: STABILITY ANALYSIS OF RELAY
INTERLAYER SYNCHRONIZATION STATE

IN TRIPLEX METAPOPULATION

By inspecting the facts that the interlayer interactions be-
tween the patches are subjected to diffusive coupling, and
the structures of the outer layers are identical (i.e., A [−1] =
A [1]), one can immediately conclude that the relay syn-
chronous solution X1,i = X−1,i (i = 1, 2, . . . , N ) is a trivial
solution of Eq. (1). Now, the question is whether the solution
can become unstable (or, alternatively, maintain its stability)
when triggered by a modest perturbation. To investigate this,
we introduce small deviations from the synchronous solution,
denoted by δXi = δX1,i − δX−1,i, and linearize Eq. (1) using
Taylor series expansion up to first order. This eventually gives
us the variational equation as follows:

δẊi = [J f (Xi ) − ηH]δXi + ε1

N∑
j=1

A [1]
i j G(1)[δX j − δXi],

(A1)

where J f denotes the Jacobian matrix of f and Xi signifies
the synchronous solution X1,i = X−1,i that satisfies

Ẋi = f (Xi ) + ε1

N∑
j=1

A [1]
i j G(1)[X j − Xi] + ηH[X0,i − Xi].

(A2)

In the preceding equation, X0,i represents the state variable
of the ith patch in the middle layer while the outer layers
are synchronized with one another and satisfy the following
evolution equation:

Ẋ0,i = f (X0,i ) + ε1

N∑
j=1

A [0]
i j G(1)[X0, j − X0,i]

+ ε2

N∑
j,k=1

A [h]
i jk G(2)(X0,i, X0, j, X0,k )

+ 2ηH[Xi − X0,i]. (A3)

The stake variables δXi in the variational equation (A1) evolve
transverse to the referenced synchronous solution, and there-
fore, to have a stable synchronization state, it is necessary that
these transverse modes must die out in time. Hence, evaluating
the maximum Lyapunov exponent �max transverse to the syn-
chronous solution as a function of system parameters will give
the necessary condition for stability. Wherever �max becomes
negative, perturbations transverse to synchronous solution go
to extinction, and, as a result, the referenced solution becomes
stable.

For illustration, the variational equation of the HP model
with our chosen coupling schemes is as follows:

δẋi =
(

1 − 2xi − a1yi

(1 + b1xi )2

)
δxi − a1xi

1 + b1xi
δyi

+ ε1

N∑
j=1

A [1]
i, j (δx j − δxi ) − ηδxi,

δẏi = a1yi

(1 + b1xi )2
δxi

+
(

a1xi

(1 + b1xi )
− a2z1,i

(1 + b2y1,i )2
− d1

)
δyi

− a2yi

(1 + b2yi )
δzi − ηδyi,

δżi = a2zi

(1 + b2yi )2
δyi +

(
a2yi

(1 + b2yi )
− d2

)
δzi − ηδzi,

(A4)

where (δxi, δyi, δzi ) = (x1,i − x−1,i, y1,i − y−1,i, z1,i −
z−1,i ), and (xi, yi, zi ) is the state variable of the synchroniza-
tion manifold. Solving the above equation for the calculation
of maximum Lyapunov exponent �max as the function of
coupling parameters gives the necessary condition for a stable
synchronous state.

APPENDIX B: SMALL-WORLD DISPERSAL TOPOLOGY

We consider another complex dispersal topology, specifi-
cally small-world [61] topology, to elucidate that the results
we obtained are not limited to only random dispersal structure
within the patches in a layer. In the case of animal move-
ment, most of them disperse over relatively short distances
(i.e., to adjacent patches), while only a minority migrate
over substantially large distances, which resembles the small-
world network structure. Here, we consider N = 100 patches
interact with each other through the small-world dispersal
connectivity mechanism with average degree 〈k〉 = 8 and
probability psw = 0.15, i.e., species from each patch can dis-
perse on average to its eight neighboring patches, and from a
few patches species can move to longer distanced patches with
probability psw = 0.15. We assume that the dynamics of each
patch are governed by the Hastings-Powell three-species food
chain model as discussed in Sec. III A with the same coupling
schemes.

To investigate the relay synchronization phenomenon (i.e.,
the synchronous fluctuation among the patches of the outer
layers), we plot the synchronization error ERIS as a function of
interlayer migration strength η for different three-way interac-
tion strengths ε2 in Fig. 7. For ε2 = 0, i.e., in the absence of
three-way interactions in the relay layer, the synchronous fluc-
tuations between the replica patches of the outer layers emerge
at η ≈ 0.009. As the three-way interactions are introduced
in the middle layer, we observe that the critical strength for
achieving the synchrony moves to a relatively larger value. For
ε2 = 0.05, synchrony emerges at η ≈ 0.013. The achievement
of synchrony is delayed further as we increase the three-way
coupling strength to ε2 = 0.5.

In addition to this, in Fig. 8 we evaluate the synchro-
nization error ERIS by simultaneously varying the coupling
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FIG. 8. Regions of synchronization and desynchronization in
(ε1, η) parameter plane for two distinct values of three-body in-
teraction coupling strength: (a) ε2 = 0.0, (b) ε2 = 0.5. The color
bar represents the variation of synchronization error ERIS. A larger
region of desynchrony is obtained by the inclusion of higher-order
interaction in the relay layer.

strengths ε1 and η for two different instances of three-way
coupling strength: ε2 = 0 [Fig. 8(a)] and ε2 = 0.5 [Fig. 8(b)].
As observed, the region of desynchronization (red region)
greatly enhances or, alternatively, the synchrony region (blue
region) shrinks with the inclusion of three-way interactions.
Therefore, our obtained result that the three-way interactions
induce desynchronization among the patches of the outer layer
holds true even for the small-world dispersal topology within
the layers.

APPENDIX C: RESULTS WITH OTHER THREE-WAY
INTERACTION SCHEMES

To provide further evidence that the results obtained due
to the introduction of higher-order interactions in the relay
layer of the triplex metapopulation hold in general, we here in-
vestigate the outcomes with some other three-way interaction
schemes other than the nonlinear (cubic) diffusion interac-
tions, namely linear and quadratic diffusive interactions. In
the preceding analysis, we limited intralayer movement to just
one species, namely the prey. Expanding upon this, here we
explore additional scenarios. This includes instances where
all three species possess the ability to navigate within and
between layers, along with variations where either one or
two species are endowed with the capability for intralayer
and interlayer mobility. To investigate all the results we once
again choose the individual dynamics of the patches gov-
erned by Hastings-Powell’s three-species chaotic food chain
model.

1. Linear diffusive coupling scheme

Here, we assume that the three-way interactions be-
tween the patches of the relay layer are governed by linear
diffusive coupling, i.e., G(2)(X0, j, X0,k, X0,i ) = H (2)[X0, j +
X0,k − 2X0,i]. In this case, we further consider four different
instances of species movements within and across the layers.
The corresponding results are depicted in Fig. 9, where we
plot the variation of average relay synchronization error ERIS

as a function of interlayer coupling η for different values of
higher-order coupling strength ε2 while keeping the pairwise
coupling strength ε1 at a nominal value.

FIG. 9. Synchronization between the patches of the outer layers
of the multiplex metapopulation with linear diffusive three-way in-
teractions. (a) Synchronization error ERIS as a function of interlayer
migration strength η for four distinct values of three-way interaction
strength: ε2 = 0 (black curve), ε2 = 0.05 (magenta curve), ε2 = 0.1
(blue curve), and ε2 = 0.3 (red curve). The pairwise intralayer dis-
persal strength is kept fixed at ε1 = 0.2. Here only the prey species
are allowed to move within the layers; between the layers all three
species’ movement is allowed. (b) ERIS as a function of η for ε2 =
0, 0.001, 0.005, 0.03 with ε1 fixed at ε1 = 0.001, when only the
predator species are allowed to migrate both within and across the
layers. (c) ERIS as a function of η for ε2 = 0, 0.002, 0.003, 0.008 with
ε1 fixed at ε1 = 0.001, when only the predator and superpredator
species are allowed to migrate both within and across the layers. (d)
ERIS as a function of η for ε2 = 0, 0.001, 0.003, 0.008 with ε1 fixed
at ε1 = 0.001, when all three species are allowed to migrate both
within and across the layers. In all the cases it can be observed that,
with the introduction of higher-order interactions, the occurrence of
synchronization is delayed.

At first, we consider the species movement to be the same
as before, i.e., only the prey species are allowed to move
within the layers, and all three species can traverse across
the layers. The only difference is here the three-way interac-
tions in the relay layer are characterized by linear diffusive
coupling. In this case, we plot the ERIS by varying η for
ε2 = 0.0, 0.05, 0.1, and 0.3, keeping ε1 fixed at ε1 = 0.2
[see Fig. 9(a)]. We can observe that, with the introduction of
higher-order interactions (ε2 = 0.05), the critical coupling for
the achievement of synchronization increases compared to the
case of only pairwise interactions (ε2 = 0). The achievement
of synchronization is delayed further as we increase ε2 to
higher values.

In Fig. 9(b), we plot the result by considering the situation
when only the predator species are allowed to move within
and across the layers. Here also, with increasing strength of
three-body interactions, desynchrony can be induced at those
values of η for which relay synchrony occurs with only pair-
wise interactions.

A qualitatively similar behavior can be observed when
(i) both predator and superpredator species are allowed for
intralayer and interlayer migration [see Fig. 9(c)] and (ii)
all three species are permitted to traverse both within and
between the layers [see Fig. 9(d)]. Hence, the significant
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FIG. 10. Synchronization between the patches of the outer layers
of the multiplex metapopulation with quadratic diffusive three-way
interactions. (a) Synchronization error ERIS as a function of interlayer
migration strength η for four distinct values of three-way interaction
strength: ε2 = 0 (magenta curve), ε2 = 0.05 (red curve), ε2 = 0.5
(blue curve), and ε2 = 1 (black curve). The pairwise intralayer dis-
persal strength is kept fixed at ε1 = 0.2. Here only the prey species
are allowed to move within the layers; between the layers, all three
species’ movement is allowed. (b) ERIS as a function of η for ε2 =
0, 0.1, 0.5, 1 with ε1 fixed at ε1 = 0.001, when only the predator
species are allowed to migrate both within and across the layers.

outcome we derived, which showcases how three-way interac-
tions lead to a state of desynchrony among the patches in the
outer layers, remains consistent even when altering the three-
way interaction structure to linear diffusive interactions. This
robustness also holds in the presence of diverse mechanisms
governing species movement.

2. Quadratic diffusion

Here, the three-way interactions are characterized by an-
other nonlinear diffusion scheme, namely quadratic diffusion.
We delve into two distinct scenarios of species movement:
One is when only the prey species are permitted to move
within the layers, and all three species are allowed to traverse
across the layers. The other is when only the predator species
are allowed to migrate both within and between the layers.
The results corresponding to these two instances are delin-
eated in Figs. 10(a) and 10(b), respectively, by plotting ERIS as
a function of η for various higher-order coupling strength ε2.
It can be observed that, with increasing higher-order coupling
strength, the synchronization emerges at relatively higher val-
ues of η. The outcomes thus once again justify our claim
that the introduction of the higher-order interactions induces
desynchrony among the patches of the outer layers of a triplex
metapopulation.
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