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Time-delay-induced spiral chimeras on a spherical surface of globally coupled oscillators
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We consider globally coupled networks of identical oscillators, located on the surface of a sphere with
interaction time delays, and show that the distance-dependent time delays play a key role for the spiral chimeras
to occur as a generic state in different systems of coupled oscillators. For the phase oscillator system, we
analyze the existence and stability of stationary solutions along the Ott-Antonsen invariant manifold to find
the bifurcation structure of the spiral chimera state. We demonstrate via an extensive numerical experiment that
the time-delay-induced spiral chimeras are also present for coupled networks of the Stuart-Landau and Van der
Pol oscillators in the same parameter regime as that of phase oscillators, with a series of evenly spaced band-type
regions. It is found that the spiral chimera state occurs as a consequence of a resonant-type interplay between
the intrinsic period of an individual oscillator and the interaction time delay as a topological structure property.
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I. INTRODUCTION

Collective behaviors in complex networks of coupled
units have attracted great attention in recent years in the
field of nonlinear science. In particular, the synchroniza-
tion in systems of coupled oscillators provides a unifying
framework in many contexts of physical, biological, and
chemical systems [1–5]. The spiral wave is an important
synchronous pattern appearing in continuous media, such as
reaction-diffusion systems. The spiral waves are ubiquitous
in chemical or biological systems [6], e.g., in cardiac mus-
cle during the ventricular fibrillation [7–10] and in brain
tissue [11].

One of the fascinating recent topics in the coupled oscil-
lator system is the phenomenon of chimera states which are
characterized by a hybrid nature of coexisting spatially coher-
ent and incoherent domains [12,13]. As a symmetry-breaking
phenomenon, the chimeras have attracted great interest and
have been intensively studied, as illustrated in Refs. [14–19].

A particularly remarkable chimera state is the spiral
chimera [20–22], which consists of a phase-randomized core
of desynchronized oscillators surrounded by a spiral wave of
synchronized oscillators. The spiral chimera states are known
to occur mainly in discrete media, e.g., two-dimensional
arrays of nonlocally coupled oscillators, and their proper-
ties differ from those of classical spiral wave patterns in
continuous media. Such spiral chimeras were found in var-
ious topologies of networks, including a plane [21,23–25],
a flat torus [26–30], and a spherical surface [30–36]. The
spiral chimera state has been experimentally verified using
the Belousov-Zhabotinsky chemical oscillator system [37,38].
Most of the spiral wave chimeras found so far have been
in oscillator systems with nonlocal coupling, for which the
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coupling strength between oscillators varies with the distance
between them.

Recently, we reported on spiral wave chimeras observed in
the numerical simulations of globally coupled oscillators with
heterogeneous time delays [36]. The heterogeneous delay
times are ubiquitous in physical and biological systems, aris-
ing from finite propagation speeds of signals, finite chemical
reaction times, and finite response times of synapses [39–43].
It is therefore important to identify the origin and nature of
such a spiral chimera state caused by the heterogeneous inter-
action time delays. On the other hand, the spherical surface is
topologically equivalent to the surfaces of different physical
and biological systems, e.g., the human heart and brain, and
the spiral chimeras on the sphere show an intriguing similarity
to patterns of activity displayed by the human heart during
ventricular fibrillation [10].

In this paper, we consider networks of all-to-all coupled
oscillators located on the surface of a sphere with a sim-
ple distance-dependent interaction time delay. We investigate
the existence and stability of different stationary states us-
ing analytical and numerical methods, which reveals that the
time-delay induced spiral chimeras occur as a generic state in
systems of the phase oscillators as well as the amplitude-phase
oscillators. For the phase oscillator system, we analyze the
existence and stability of different stationary states on the
basis of Ott-Antonsen reduction theory [44,45] to find bifur-
cation structures of the spiral chimera patterns. In the coupled
networks of the Stuart-Landau and Van der Pol oscillators, we
provide an extensive numerical scan of the parameter varia-
tions and uncover the stability regions of spiral chimeras. We
find that different networks of oscillators considered here ex-
hibit striking similarities in the stability regions, with a series
of the band-shaped parameter areas. This suggests that the sta-
ble spiral chimeras occur as a consequence of a resonant-type
interplay between the intrinsic period of the respective local
unit and the interaction time delay as a topological structure
property.
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FIG. 1. Stability diagram of Eqs. (1) and (2) in the (τ̄ , ω) plane for ε = 1. Stable spiral chimeras occur in a series of band regions Bn

enclosed by solid black line, determined by direct numerical simulations. Dashed blue lines denote theoretical prediction for Hopf boundaries
of chimera bands, obtained by using the first-order Legendre series approximation. Green regions indicate multistable regime where the stable
spiral chimera and coherent states coexist, while yellow regions correspond to monostable regime of spiral chimera. Red bold lines are stability
boundaries of the coherent state, determined explicitly via Eq. (32). Dash-dotted lines denote the skeleton curves of chimera band Bn, given by
ωτ̄ = (2n − 1)π , where the twist-synchrony state appears. Dotted horizontal line marks the parameter interval, along which stability analyses
are carried out in Figs. 2–4.

II. RESULTS

A. Governing equations

1. Model

We consider a two-dimensional large system of identical
phase oscillators coupled with heterogeneous time delays,
evolving according to

∂ψ (r, t )

∂t
= ω + ε

4π

∫
S2

sin[ψ (r′, t − τ (r, r′)) − ψ (r, t )]dr′,

(1)

where ψ (r, t ) is the phase of the oscillator at position r ∈
S2, ω is the natural frequency, ε characterizes the coupling
strength, and S2 denotes the surface of the unit sphere. The
function τ (r, r′) specifies the distance-dependent interaction
time delays, arising from the finite speed of signal transmis-
sion between two positions r and r′.

To ensure the symmetric coupling structure in Eq. (1),
the delay function τ (r, r′) is assumed to depend only on the
great circle distance between two points r and r′ on the unit
sphere S2, given by γ (r, r′) = arccos(r · r′). In this paper,
we consider the simplest possible form of distance-dependent
time delays given by a step function

τ (r, r′) =
{

0 if 0 < γ (r, r′) � 1
2π

τ̄ if 1
2π < γ (r, r′) � π.

(2)

We note that, in contrast to the case without delays, the
natural frequency ω cannot be eliminated from Eq. (1) by
going to a rotating frame, ψ → ψ + ωt . In this paper, the
frequency ω is considered as a main control parameter of the
model system (1), along with time delay τ̄ .

2. System reduction

To characterize spatial coherence and incoherence of
chimera states, we define a complex order parameter Z ≡
Rei	 as

Z (r, t ) = ε

4π

∫
S2

exp[iψ (r′, t − τ (r, r′))]dr′. (3)

For a large system of phase oscillators, the macroscopic be-
havior can be represented by the probability density function
f (ψ, r, t ), which reflects the probability that the oscillator at
position r and at time t has the phase ψ .

By applying the Ott-Antonsen ansatz theory [44], we find
that the evolution equation for f (ψ, r, t ) is reduced to a low-
dimensional system for a complex-valued function z(r, t ) as
following

∂z(r, t )

∂t
= iωz + 1

2
(Z − z2Z∗), (4a)

Z (r, t ) = ε

4π

∫
S2

z(r′, t − τ (r, r′))dr′, (4b)

where the solutions satisfying |z| � 1 are only physically
meaningful (for detailed derivation, see Appendix A).

B. Main results

In Fig. 1, the results from the numerical simulations of
model system (1) and (2) and analytical investigations of
the reduced system (4) are summarized, showing a stability
diagram for the spiral chimera and coherent states in the (τ̄ , ω)
plane for ε = 1.

Stable coherent state where all the oscillators are locked
at the same phase appears in the white and green regions,
which have been determined via the linear stability analysis
of the reduced system (4), as shown in Sec. IV A. In the white
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FIG. 2. Phase snapshot and longitudinal profile of spiral chimera states obtained by numerical simulations of Eqs. (1) and (2) with 5023
oscillators for ε = 1, ω = 2, and different values of time delay τ̄ . (a) Spiral chimera state for τ̄ = π

2 − 0.5. Upper panel: Phase snapshot on
sphere and its two-dimensional projections viewed from the north and south poles. Arrows indicate the rotation of spiral arms. Lower panel:
Longitudinal profile of order parameter Z (open circles) and value of 
 (dashed bold line), calculated from spatiotemporal data of upper panel.
Solid blue and magenta lines correspond to theoretical predictions for R(θ ) and 
, respectively, resulting from the first-order approximation
given by Eq. (21). Gray boxes in the lower panels of Fig. 2 denote the incoherent domain. (b) Twist state with beach-ball pattern for τ̄ = π

2 .
Spiral arms coincide with longitudinal lines, while incoherent-core region as well as value of 
 vanish. (c) Spiral chimera for τ̄ = π

2 + 0.5.
Spiral arms are in reversed directions with respect to longitudinal lines and 
 takes opposite sign, as compared to those of (a).

regions, one or more stable coherent states with different
collective frequencies could exist (see Sec. III B) but the spiral
chimera state is unstable. While in the green region, one or
more stable coherent states coexist with stable spiral chimeras.
The stability boundaries for the coherent state, marked by red
bold lines in Fig. 1, are explicitly given by Eq. (32).

The parameter regions for the stable spiral chimera state
(yellow- and green-colored areas) have been obtained by
direct numerical simulations of the discretized version of
Eqs. (1) and (2),

ψ̇ j = ω + ε

N

N∑
k=1

sin[ψk (t − τ (r j, rk )) − ψ j], (5)

using the fourth-order Runge-Kutta method with a time step
of 0.02s. To distribute an arbitrary number of points uniformly
on the spherical surface, we take off the surface of a sphere
in the form of a narrow spiral band that runs from the north
pole to south pole, similar to paring an apple. Along the spiral
band, we select the evenly spaced points at every interval
equal to the width of the band, and then assign numbers to
the points by one-dimensional index, i = 1, 2, . . . , N . Given
the number N , the spacing of points along the spiral equal
to the width of the band is identified and one obtains nearly
uniformly distributed points on S2 (see MATLAB codes for
uniform distribution of points on the spheric surface in the
Supplemental Material [46]). The slight nonuniformity in the
density of points occurs mainly around two poles, which be-
comes weak as N increases.

Stable spiral chimeras were found to occur in a series
of band regions Bn, enclosed by solid black lines. The
dashed blue lines indicate the Hopf boundaries for the spiral
chimeras, obtained by the first-order Legendre series approx-
imation to the coupling kernel function, see Sec. IV C. This
theoretical result shows good agreement with that of numer-
ical simulations marked by solid lines. The green regions in
Fig. 1 denote the bistable regime where either the coherent
or spiral chimera states could occur, depending on the initial
conditions: the former and latter ones are achieved when we
start the system from a nearly in-phase state and a spiral wave
with two phase defects, respectively. In the yellow regions,
only the spiral chimera state occurs, independent of the initial
conditions. The skeleton curves inside the chimera bands Bn,
marked by dash-dotted lines, are given by Eq. (20), which
correspond to the twist synchrony state with a beach-ball
pattern, as illustrated in Fig. 2(b).

Figure 2 shows typical examples of spiral chimeras and
twist-synchrony state, obtained by numerically integrating
Eqs. (5). Figure 2(b) corresponds to the parameter values
located on the skeleton curve of the chimera band B1, which
shows the twist-synchrony state with the beach-ball pattern.
The parameter values of Figs. 2(a) and 2(c) lie, respectively,
to the left and right of those of Fig. 2(b) on the horizontal
parameter interval in Fig. 1, for which the spiral arms of syn-
chronized oscillators are in opposite directions with respect to
the meridian lines, as seen in the phase snapshots of the upper
panels. One observes in Figs. 2(a) and 2(c) that the spiral arms
near the drifting cores rotate inward and outward, respectively,
and thus the corresponding chimera states can be considered
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to be antispiral and spiral chimeras [47,48]. The transition
from spiral chimera to antispiral chimera occurs on the skele-
ton curves of chimera band Bn, given by ωτ̄ = (2n − 1)π .

In the lower panels of Fig. 2, the longitudinal profiles
R(θ ) of order parameter and the corresponding phase velocity
mismatch 
, as defined in Eqs. (6), are displayed in the open
circles and dashed lines, respectively. Numerically, the order
parameter was quantified by Eq. (3), while the 
 value was
evaluated by using the phase velocity of oscillators in the
coherent domain. One can see that the values of 
 become
negative, zero, and positive in Figs. 2(a)–2(c), respectively.
The theoretical results from the first-order approximation to
the order parameter Z , given by Eq. (21), are drawn with solid
lines, which shows good agreement with the result from direct
numerical simulations.

III. STATISTICALLY STATIONARY STATES

A. Self-consistency equation

Many dynamical regimes of interest occur as a stationary
pattern in a rotating coordinate frame with a (yet un-
known) collective frequency �. Applying the transformations
z → zei�t and Z → Zei�t , Eqs. (4) can be written by

∂z(r, t )

∂t
= i
z + 1

2
(Z − z2Z∗), (6a)

Z (r, t ) = ε

4π

∫
S2

e−i�τ (r,r′ )z(r′, t − τ (r, r′))dr′, (6b)

where 
 ≡ ω − �.
The stationary spatial profiles of the rotating waves corre-

spond to the fixed points of Eqs. (6):

z0(r) = ih(r)Z (r), (7)

where h(r) = 1
R2(r) (
 −

√

2 − R2(r)) and R(r) ≡ |Z (r)|.

Inserting Eq. (7) into Eq. (6b), one obtains the self-
consistency equation for the complex order parameter Z (r)
as

Z (r) = iε

4π

∫
S2

G(r, r′)h(r′)Z (r′)dr′, (8)

where the kernel G(r, r′) is given by

G(r, r′) = exp[−i�τ (r, r′)]. (9)

We note that the function h(r) depends on the absolute
value of Z (r) and thus Eq. (8) describes a nonlinear eigen-
value problem for the complex eigenfunction Z (r) and the
real eigenvalue 
. If Z satisfies Eq. (8), so does Zei	0 for
any constant angle 	0. Thereby, we can arbitrarily specify the
value of 	(r) at any point r we like.

For the chimera states, the spatial regions satisfying R(r) �
|
| and R(r) < |
| correspond to the coherent and incoherent
domains, respectively.

B. Coherent state

For the spatially uniform state given by Z =R=const,
Eq. (8) can be explicitly solved. Taking into account
that 1

4π

∫
S2 e−i�τ (r,r′ )dr′ = 1

2 (1 + e−i�τ̄ ), we separate the
self-consistency Eq. (8) into the real and imaginary parts and

find that the solutions for the coherent state are implicitly
given by

� = ω − ε

2
sin(�τ̄ ), (10a)

R = ε| cos(�τ̄/2)|, (10b)

z0 = ei�τ̄/2. (10c)

Figure 3(a) shows the solutions of � and |Z| for the coher-
ent state according to Eqs. (10a) and (10b) in dependence
on the time delay τ̄ for parameter values ε = 1 and ω = 2.
The collective frequency � is distributed around the intrinsic
frequency ω, where multiple solutions are obtained with in-
creasing time delay τ̄ . The collective amplitude R also exhibits
a multivalued behavior. The unstable branches of multivalued
solutions are denoted as dashed curves. There is an interval
of time delay τ̄ , marked by shaded region, where no stable
coherent states exist. Such a stability result follows from the
eigenvalue analysis of the characteristic Eq. (31), shown in
Fig. 3(b). This specifies the parameter region for the monos-
table spiral chimera state shown in Fig. 1.

C. Spiral chimera state

1. Expansion of coupling kernel

The distance-dependent kernel G given by Eq. (9) can be
expanded via the Legendre polynomials of cos γ as

G(r, r′) =
∞∑

=0

κP(cos γ ), (11)

where P is the Legendre polynomial of order  and the co-
efficients κ are given by κ = 2+1

2

∫ 1
−1 G(x)P(x)dx. For the

time-delay function τ (r, r′) given by Eq. (2), we obtain the
expression for the coefficients κ as follows:

κ =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (1 + e−i�τ̄ ) for  = 0

0 for even 

1
2 (2 + 1)p(1 − e−i�τ̄ ) for odd ,

(12)

where p =∫ 1
0 P(x)dx, e.g., p1 = 1

2 , p3 = −1
8 , p5 = 1

16 , ....
Finding solutions of Eq. (8) for spatially inhomogeneous

states is a difficult task, because the coupling kernel G is
inseparable in r and r′. To search for the chimera solutions
approximately, we use a finite Lth-order approximation ob-
tained from truncating the Legendre series (11) as follows:

GL(r, r′) =
L∑

=0

κP(cos γ ). (13)

The Legendre sum (13) can be described in the form of
separable kernel by applying the spherical harmonic addi-
tion theorem P(cos γ ) = 4π

2+1

∑
m=− Y m

 (r)[Y m
 (r′)]∗, where

Y m
 (r) is the spherical harmonics of degree  and order m, de-

fined by Y m
 (θ, φ) = (−1)m

√
(2+1)

4π

(−m)!
(+m)! P

m
 (cos θ )eimφ , and

Pm
 denotes the associated Legendre polynomials with the

azimuthal angle φ ∈ [0, 2π ) and the polar angle θ ∈ [0, π ] in
spherical polar coordinates.
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FIG. 3. Existence and stability of coherent states. (a) Collective frequency � and amplitude of Z for coherent states vs time delay τ̄ , given
by Eqs. (10). Dashed lines denote the unstable branches of multivalued solutions. (b) Real and imaginary parts of the rightmost eigenvalue
for the coherent states vs time delay τ̄ , determined by solving Eq. (31). Solid and dashed lines of both (a) and (b) correspond to each other.
In the shaded region, no stable coherent states exist, which specify the monostable chimera region in Fig. 1. Parameters: ε = 1 and ω = 2,
corresponding to the dotted horizontal line shown in Fig. 1.

2. Spiral chimera solutions

Substitution of Eqs. (13) into Eq. (8) and applying the
spherical harmonic addition theorem yield a general expres-
sion of the order parameter as

Z (r) =
L∑

=0

∑
m=−

cmY m
 (r), (14)

where the unknown coefficients are given by cm =
iεκ

2+1

∫
S2 h(r′)[Y m

 (r′)]∗Z (r′)dr′.
For the spiral wave ansatz given by

Z (r) = Ẑ (θ )eiφ with Ẑ (θ ) ≡ R(θ )ei�(θ ), (15)

it holds that cm = 0 for all m �= 1, and thus Eq. (14) is
simplified to

ZL(r) = eiφ
L∑

=1

aP1
 (cos θ ), (16)

where

a = iεκ

2( + 1)

∫ π

0
h(θ ′)P1

 (cos θ ′)Ẑ (θ ′) sin θ ′dθ ′. (17)

Note that a = 0 for even  since κ = 0.
Substituting Eq. (16) into Eq. (17), we obtain the reduced

self-consistency equations for a as follows:

a = iεκ

( + 1)

L∑
n=1

an
〈
h(x)P1

 (x)P1
n (x)

〉
, (18)

where h(x) = 1


+
√


2−|∑L
n=1 anP1

n (x)|2
and the angular bracket

denotes a spatial average defined by 〈 f 〉 ≡ 1
2

∫ 1
−1 f (x)dx. The

function h(x) involves the L unknown quantities a as well
as a real 
, and thus one has to solve L complex Eq. (18)
for the L + 1 unknowns a ∈ C and 
 ∈ R. By using the
arbitrariness of choice of arg (Z ) ≡ 	0, one of the L complex
quantities a can be set to be real, without loss of generality.
This makes it possible to determine all the unknowns in terms
of parameters τ̄ , ω and ε in a closed form.

3. Twist-synchrony state

For the special case of 
 = 0, Eq. (7) reduces to

z0(r) = ei[φ+�(θ )],

which represents a modulated coherent state. Furthermore,
one can show that �(θ ) = 0 for the spiral chimera ansatz
(15). For proving this, we exploit the fact that for 
 = 0, i.e.
ω = �, Eq. (17) leads to

a = εκ

2( + 1)

∫ π

0
P1

 (cos θ ′)ei�(θ ′ ) sin θ ′dθ ′,

where one of a can be set to be purely real from the rotational
invariance of Z (r). This is possible only when the quantities
ei�(θ ) as well as κ for odd , given by Eq. (12), become simul-
taneously real. Hence, it holds that �(θ ) = 0 and ωτ̄ = nπ

for n ∈ Z. For κ to be nonzero, the integers n should be odd.
As a result, we find that the φ-twist synchrony state, given by

z0(r) = eiφ and Z (r) = R(θ )eiφ, (19)

occurs for the parameter values that satisfy

ωτ̄ = (2n − 1)π, (20)

irrespective of the coupling strength ε. The twist synchrony
state described by Eq. (19) shows a beach-ball pattern without
incoherent domain. Such a beach-ball pattern is illustrated in
Fig. 2(b), which corresponds to the parameter values ω = 2
and τ̄ = π

2 such that ωτ̄ = π .
Equation (20) for positive integers n specifies the skeleton

curves of the chimera band Bn shown in Fig. 1. Note that the
skeleton curve in the chimera band Bn is expressed by

τ̄ = 1
2 (2n − 1)T,

where T ≡ 2π
ω

denotes the intrinsic period of oscillator.

4. First-order approximation

We consider a particular example of the coupling kernel
with L = 1, which has only two nonvanishing coefficients:
G1(r, r′) = κ0 + κ1 cos γ . Then the order parameter (16) re-
duces to

Z1 = a1 sin θeiφ, (21)
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FIG. 4. Existence and stability of spiral chimera states. (a) Spiral chimera solutions to Eq. (23) vs time delay τ̄ . Upper panel shows values
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, respectively, determined by
direct numerical simulations of Eqs. (1) and (2). Lower panel depicts the fraction of drifting oscillators, given by Eq. (24). (b) Real and
imaginary parts of the rightmost point spectrums for chimera solutions of (a), determined by numerically solving Eq. (46). Shaded regions in
both (a) and (b) indicate the stable regime of spiral chimeras. There occur Hopf-like bifurcations at the boundaries labeled HB±

n (see the text),
which specify the Hopf boundaries, marked by dashed lines in Fig. 1. Parameters: Same as Fig. 3.

where a1 can be assumed to be real by requiring arg(Z1) =
0 at the point (θ, φ) = ( π

2 , 0). Then the self-consistency
Eq. (18) is simplified to

2a2
1 = iεκ1

〈

 −

√

2 − a2

1(1 − x2)
〉
. (22)

We note that the coefficient κ1 is given by κ1 = 3
4 (1 − e−i�τ̄ ),

containing the unknown �. The integrations on the right-hand
side of Eq. (22) can be calculated, which leads to

4a2
1 = iεκ1

{

 − a2

1 − 
2

2a1

(
ln

a1 − 


a1 + 

+ iπ

)}
. (23)

Two real unknowns a1 and 
 (or equivalently �) for the
chimera solution (21) are determined by solving Eq. (22) or,
equivalently Eq. (23), in terms of parameters τ̄ , ω, and ε. In
the lower panels of Fig. 2, the solid lines indicate the lon-
gitudinal profile R(θ ) ≡ a1 sin θ and the corresponding value
of 
, determined by solving Eq. (23). One can see that for
the first-order approximation, the theoretical result already
exhibits good agreement with direct numerical simulations of
the model system (1) and (2).

The coherence-incoherence boundary θc is determined by
the intersection of two lines R(θ ) and 
 (see Fig. 2, bottom
panels), which yields θc = arcsin |
|

a1
. Therefore, the fraction

of drifting oscillators is given by

fdrift = 1 −
√

1 − 
2

a2
1

. (24)

To search for the existence region of the spiral chimeras,
we carried out numerical continuations of Eq. (22) by starting
from the chimera states shown in Fig. 2 and varying the
parameter values of τ̄ , ω, and ε. The numerical continuations
using the MATLAB root-finder “fsolve” reveal that the chimera
solutions described by Eqs. (21) and (22) exist for the whole
parameter region. Furthermore, due to the delayed coupling,
multiple solutions with different amplitudes and locking fre-
quencies become possible.

A typical result of numerically continuing the solutions
as time delay τ̄ varies is shown in Fig. 4(a). The solutions
to Eq. (22) and the fraction of drifting oscillators given by
Eq. (24) are displayed with solid lines in the upper and
lower panels, respectively. One can see that a1 = 3π

16 and 
 =
fdrift = 0 when τ̄ = 1

2 (2n − 1)π , with n ∈ Z, corresponding
to parameter values located on the skeleton curve of chimera
band Bn in Fig. 1. This leads to the twist-synchrony state with
a beach-ball pattern, as shown in Fig. 2(b). When τ̄ = (n −
1)π for n ∈ Z, there exist solutions that satisfy a1 = 
 = 0
and fdrift = 1, which correspond to the fully incoherent state.
One observes multiple solutions near τ̄ = 2π and this behav-
ior becomes more pronounced with increasing time delay τ̄ .

Shaded regions of Fig. 4(a) indicate the stable parts of
chimera solutions, which are identified by the stability anal-
ysis of the spiral chimeras [see Fig. 4(b)], studied in the next
section. The open circles in Fig. 4(a) indicate the result from
the direct numerical simulations of model systems (1) and (2),
which are in good agreement with theoretical values repre-
sented by solid lines. One can observe that there are small
discrepancies between the stability boundaries determined
from the direct simulations and the first-order approximate
scheme, which become more distinct for larger τ̄ .

IV. STABILITY ANALYSIS

Substituting the ansatz z(r, t ) = z0(r) + ξ (r, t ) with a
small perturbation ξ into Eqs. (6) and linearizing the result
with respect to ξ , we obtain the linear partial integrodifferen-
tial equation for ξ ∈ C as follows:

∂ξ (r, t )

∂t
= η(r)ξ + ε

2

(
Gξ − z2

0(r)[Gξ ]∗
)
, (25)

where η(r) = i
 − z0(r)Z∗(r) and G denotes a convolution
operator defined by

(Gξ )(r, t ) = 1

4π

∫
S2

G(r, r′)ξ (r′, t − τ (r, r′))dr′.
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According to Eq. (7), we obtain

η(r) = i
√


2 − R2(r). (26)

Note that Eq. (25) includes complex conjugated terms and
hence cannot be treated as a regular complex equation. In-
stead, we consider an extended system by incorporating the
complex conjugate counterpart of Eq. (25). These two equa-
tions form a closed system for the linear stability analysis, of
which the right-hand side defines a linear operator L,

∂

∂t
p = Lp, (27)

where p = (ξ, ξ ∗)T .
Analytical treatment of time-delay equations like Eq. (27)

is known to be difficult task in general. However, for the
spatially uniform states, the stability analysis via Eq. (27) can
be conducted rigorously, as shown in the next two subsections.

A. Stability of coherent state

We expand the perturbations ξ and ξ ∗ in terms of spherical
harmonics as follows:

ξ (r, t ) =
∞∑

k=0

k∑
m=−k

akm(t )Y m
k (r),

ξ ∗(r, t ) =
∞∑

k=0

k∑
m=−k

bkm(t )Y m
k (r).

Applying the convolution operator gives

(Gξ )(r, t ) =
∞∑

k=0

k∑
m=−k

akm(t )
〈
�+(r, r′)Y m

k (r′)
〉
r′ ,

(Gξ )∗(r, t ) =
∞∑

k=0

k∑
m=−k

bkm(t )
〈
�−(r, r′)Y m

k (r′)
〉
r′ ,

where

�±(r, r′) ≡ exp [−(λ ± i�)τ (r, r′)]

and the angular bracket with index r′ represents a spa-
tial average over the surface of the sphere: 〈 f (r, r′)〉r′ ≡

1
4π

∫
S2 f (r, r′)dr′ = 1

4π

∫ π

0 sin θ
∫ 2π

0 f (θ, φ; θ ′, φ′)dφ′dθ ′.
Expanding the kernels �± via the Legendre polynomials,

one obtains

�±(r, r′) =
∞∑

k=0

χ±
 P(cos γ ), (28)

where the coefficients are given by

χ±
 (λ)=

⎧⎪⎨
⎪⎩

1
2 [1 + e−(λ±i�)τ̄ ] for  = 0

0 for even 

1
2 p(2 + 1)[1 − e−(λ±i�)τ̄ ] for odd .

(29)

Applying the spherical harmonic addition theorem
gives the convolution expressions as (Gξ )(r, t ) =∑∞

=0

∑
m=−

χ+


(λ)
2+1 am(t )Y m

 (r) and (Gξ )∗(r, t ) =∑∞
=0

∑
m=−

χ−
 (λ)

2+1 bm(t )Y m
 (r). Hence, for the spatially

uniform functions η and z0, Eq. (27) reduces to

(
ȧm

ḃm

)
=
⎛
⎝η + εχ+



2(2+1)
−εz2

0χ
−


2(2+1)

−εz∗
0

2χ+


2(2+1) η + εχ−


2(2+1)

⎞
⎠(am

bm

)
.

Letting am(t ) = âmeλt and bm(t ) = b̂meλt , we find implic-
itly the eigenvalues for the coherent state as

λ(1) = η and λ
(2)
 = η + ε[χ+

 (λ) + χ−
 (λ)]

2(2 + 1)
. (30)

Taking into account that χ = 0 for even  and η = −ε
2 (1 +

cos �τ̄ ), one obtains nonpositive eigenvalues for even :

λ(1) = λ
(2)
 = −ε

2
(1 + cos �τ̄ ) � 0.

Equation (30) for  = 0 reads

λ = ε

2
(e−λτ̄ − 1) cos �τ̄,

for which λ = 0 obviously becomes a solution. This zero
eigenvalue reflects that perturbations along a direction tangent
to the synchronization manifold neither grow nor decay.

The eigenvalues for odd  satisfy the equation

λ = ε

2
[p − 1 − (pe−λτ̄ + 1) cos �τ̄ ]. (31)

The coherent state becomes stable when the real parts of
eigenvalues that obey Eq. (31) are all negative.

Figure 3(b) depicts the dependence of the real and imag-
inary parts of the leading eigenvalue λ upon the time delay
τ̄ according to Eq. (31) for  = 1, where the � values deter-
mined in Fig. 3(a) are used. The shaded region indicates the
interval of τ̄ where no stable coherent states exist. Both end
points of the τ̄ interval determine the stability boundaries for
the monostable chimera state, as shown with red bold lines
in Fig. 1. A pair of stability boundaries for the monostable
chimera, existing inside the chimera band Bn, can be deter-
mined by putting λ = 0 and  = 1 in Eq. (31), which results
in

τ̄+ = 1

�+

[
2(n − 1)π + arccos

p1 − 1

p1 + 1

]
, (32a)

τ̄− = 1

�−

[
2nπ − arccos

p1 − 1

p1 + 1

]
, (32b)

where p1 = 1/2 and the subindices + and − denote the upper
and lower boundaries, respectively. According to Eq. (10a),
�+ and �− are given by �± = ω ∓ ε

√
p1

p1+1 . The intersec-
tion of two boundaries occurs when τ̄+ equals τ̄−, and thus
the crossing point (τ̄c, ωc) is determined as τ̄c = p1+1

ε
√

p1
[π −

arccos p1−1
p1+1 ] and ωc =

√
p1

p1+1
(2n−1)πε

π−arccos p1−1
p1+1

. One can see imme-

diately that

ωcτ̄c = (2n − 1)π,

irrespective of parameter ε. Taking into account Eq. (20), this
implies that the intersection point of the stability boundaries
for the monostable chimeras lies on the skeleton curve of the
chimera band Bn, which is clearly visible in Fig. 1.
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B. Stability of incoherent states

We recall that the trivial solution z(r, t ) = 0 of Eqs. (4)
denotes the completely incoherent state, for which the
perturbative equation becomes simply

∂ξ (r, t )

∂t
= iωξ (r, t ) + ε

2
Ĝξ, (33)

where Ĝξ = 1
4π

∫
S2 Ĝ(r, r′)ξ (r′, t )dr′ and Ĝ(r, r′) ≡

exp (−λτ (r, r′)). We expand the perturbation ξ and
convolution Ĝξ in terms of spherical harmonics
as ξ (r, t ) =∑∞

=0

∑
m=− âm(t )Y m

 (r) and Ĝξ =∑∞
=0

∑
m=− âm(t )〈Ĝ(r, r′)Y m

 (r′)〉r′ .
Expanding kernel Ĝ via the Legendre series as Ĝ(r, r′) =∑∞
k=0 χ̂P(cos γ ) and applying the spherical harmonic addi-

tion theorem into Eq. (33), one obtains

˙̂am = iωâm + εχ̂(λ)
2(2+1) âm,

where

χ̂(λ) =

⎧⎪⎨
⎪⎩

1
2 (1 + e−λτ̄ ) for  = 0

0 for even 

1
2 p(2 + 1)(1 − e−λτ̄ ) for odd .

Using the ansatz âm(t ) = āmeλt , we find the characteristic
equations for the incoherent state as follows:

λ = iω + εχ̂(λ)

2(2 + 1)
, (34)

which yields λ = iω for even  and λ = iω + ε
4 p(1 − e−λτ̄ )

for odd . The leading eigenvalues are determined by Eq. (34)
for  = 0, which reads

λ = iω + ε

4
(1 + e−λτ̄ ). (35)

One can prove that all roots of Eq. (35) lie in the right half-
plane Re(λ) > 0 for any ε > 0. The eigenvalue λ depends
continuously on the time delay τ̄ . For zero delay, it is obvious
that Re(λ) > 0. For the change of stability to occur, we need
the eigenvalues to cross into the left half-plane through the
imaginary axis as τ̄ varies, and the critical values of τ̄ must
correspond to a pure imaginary eigenvalue λ = iσ with σ ∈
R. Since Eq. (35) does not allow for such solutions, we can
conclude that all the eigenvalues stay in the right half-plane
forever, which implies that the incoherent state never becomes
stable.

C. Stability of spiral chimera state

For the finite-order approximation to the coupling kernel
G, the perturbative equation (25) can be written by

∂ξ (r, t )

∂t
= η(r)ξ + ε

2

(
GLξ − z2

0(r)[GLξ ]∗
)
, (36)

where the convolution operator GL is defined by

(GLξ )(r, t ) = 1

4π

∫
S2

GL(r, r′)ξ (r′, t − τ (r, r′))dr′,

with the kernel function GL given by Eq. (13). Since Eq. (36)
includes only separable kernels, the linear stability analy-
sis for the spiral chimera states, which was described in
Secs. III C 2–III C 4, can be performed.

We substitute the ansatz in the form of(
ξ

ξ ∗

)
=
(

q1(r)
q2(r)

)
eλt

into the perturbative system consisting of Eq. (36) and its
complex conjugate to obtain

λq1 = ηq1 + ε
2 〈�+

L (r, r′)q1(r′)−[z0(r)]2�−
L (r, r′)q2(r′)〉r′ ,

λq2 = η∗q2+ ε
2 〈�−

L (r, r′)q2(r′)−[z∗
0 (r)]2�+

L (r, r′)q1(r′)〉r′ ,

where �±
L denotes the Lth-rank approximation of �± given

by Eq. (28): �±
L (r, r′) =∑L

=0 χ±
 (λ)P(cos γ ). Applying the

spherical harmonic addition theorem and integrating with re-
spect to r′ leads to

λq(r) = J (r)q(r) +
L∑

=0

∑
m=−

Y m
 (r)Q(r; λ)cm, (37)

where q(r) =
(

q1(r)
q2(r)

)
, J (r) =

(
η(r) 0

0 η∗(r)

)
,

Q(r; λ) = 2πε

2 + 1

(
χ+

 (λ) −z2
0(r)χ−

 (λ)

−z∗2
0 (r)χ+

 (λ) χ−
 (λ)

)
, (38)

and the constant vectors cm are given by

cm = 〈[Y m
 (r′)

]∗
q(r′)

〉
r′ . (39)

1. Point spectrum

Now we assume that det[λI2 − J (r)] �= 0, where I2 denotes
the 2 × 2 identity matrix. Solving Eq. (37) for q(r) and substi-
tuting it into Eq. (39), we obtain homogeneous equations for
the (L + 1)2 constant vectors cm as follows:

cm =
L∑

k=1

k∑
n=−k

〈[
Y m

 (r)
]∗

Y n
k (r)E (r; λ)Qk (r; λ)

〉
rckn, (40)

where

E (r; λ) = [λI2 − J (r)]−1. (41)

Renumbering the (L + 1)2 functions Y m
 and cm so

(Y1,Y2, . . . ,Y(L+1)2 )T := (Y 0
0 ,Y −1

1 ,Y 0
1 ,Y 1

1 , . . . ,Y −L
L ,Y −L+1

L ,

. . . ,Y L
L )T and (c1, c2, . . . , c(L+1)2 )T := (c00, c1,−1, c10, c11,

. . . , cL,−L, cL,−L+1, . . . , cLL )T , and also introducing the
(L + 1)2 functions Q̄ j such that (Q̄1, Q̄2, . . . , Q̄(L+1)2 )T :=
(Q0, Q1, Q1, Q1, Q2, . . . , QL )T , then Eq. (40) can be rewritten
in the form of

c j =
(L+1)2∑

k=1

Bjk (λ)ck, j = 1, . . . , (L + 1)2,

where Bjk is a two-dimensional matrix given by

Bjk (λ) = 〈Y ∗
j (r)Yk (r)E (r; λ)Q̄k (r; λ)〉r.

As a result, we obtain the characteristic equation for the
point spectra λ of the Lth-order approximate chimera solu-
tions as follows:

det[B(λ) − I] = 0, (42)

where B denotes the matrix defined by {Bjk} and I is the 2(L +
1)2-dimensional identity matrix.

054204-8



TIME-DELAY-INDUCED SPIRAL CHIMERAS ON A … PHYSICAL REVIEW E 108, 054204 (2023)

2. Continuous spectrum

Another part of spectra of the operator L satisfies det[λI2 −
J (r)] = 0, which gives continuous spectra

λ = η(r) and λ = η∗(r).

Taking into account Eq. (26), one obtains the continuous spec-
trum for the coherent domain as

λcoh = −
√

R2(r) − 
2 (43)

and for the incoherent domain as

λincoh = ±i
√


2 − R2(r). (44)

Thus, the spiral wave chimera state has a T -shaped continuous
spectrum that consists of two intervals along the negative real
and pure imaginary axes, which correspond to the coherent
and incoherent domains, respectively.

3. First-order stability analysis

In the first-order approximation to the kernel function,
given by G1, the matrix B(λ) consists of 4 × 4 matrix blocks
as follows:

B(λ) =

⎛
⎜⎜⎝

B11(λ) B12(λ) B13(λ) B14(λ)
B21(λ) B22(λ) B23(λ) B24(λ)
B31(λ) B32(λ) B33(λ) B34(λ)
B41(λ) B42(λ) B43(λ) B44(λ)

⎞
⎟⎟⎠, (45)

where B11 = 〈|Y 0
0 |2EQ0〉r, B12 = 〈Y 0

0 Y −1
1 EQ1〉r, B13 =

〈Y 0
0 Y 0

1 EQ1〉r, B14 = 〈Y 0
0 Y 1

1 EQ1〉r, B21 =〈Y−1
1

∗
Y 0

0EQ0〉r, B22 =
〈|Y−1

1 |2EQ1〉r, B23 =〈Y−1
1

∗
Y 0

1EQ1〉r, B24 = 〈Y −1
1

∗
Y 1

1 EQ1〉r,
B31 = 〈Y 0

1
∗
Y 0

0 EQ0〉r, B32 = 〈Y 0
1

∗
Y−1

1 EQ1〉r, B33 =
〈|Y 0

1 |2EQ1〉r, B34 = 〈Y 0
1

∗
Y 1

1 EQ1〉r, B41 = 〈Y 1
1

∗
Y 0

0 EQ0〉r,
B42 = 〈Y 1

1
∗
Y −1

1 EQ1〉r, B43 = 〈Y 1
1

∗
Y 0

1 EQ1〉r, and B44 =
〈|Y 1

1 |2EQ1〉r.
Employing the symmetries of the spiral chimera solution

given by Eq. (21), one can find that all the elements of matrix
(45) are zero except for the following six blocks: B24, B42, and
Bj j for j = 1, . . . , 4 (see Appendix B). Thus the characteristic
Eq. (42) factorizes into two subsystems as follows:

0 = det [B11(λ) − I2], (46a)

0 = det

⎡
⎣
⎛
⎝B22(λ) 0 B24(λ)

0 B33(λ) 0
B42(λ) 0 B44(λ)

⎞
⎠− I6

⎤
⎦. (46b)

Each matrix block in Eq. (46) includes double integrals. For
the spiral chimera represented by Eq. (21), the integrals with
respect to the azimuthal angle φ ∈ [0, 2π ) can be calculated,
reducing the double integral calculations into a simple in-
tegration with respect to the polar angle θ , as outlined in
Appendix B. This allows us to increase the speed and accuracy
of all numerical calculations of the characteristic Eq. (46).

Solving numerically Eq. (46) for the spiral chimera state
given by Eq. (21), we determined the point spectra. Fig-
ure 4(b) shows a typical result of numerically continuing the
solutions of characteristic Eq. (46) as the time delay τ̄ varies.
The parameters correspond to the parameter interval marked
with the dotted horizontal line in Fig. 1. Three branches of the
rightmost point spectra are sorted out with different colors.

31 62 93 1241

4.2

3.7

oscillator index j

ψ
j

〈  
〉

(b)

.

Ω

Ω
1

4

FIG. 5. (a) Phase snapshot of quasiperiodic (breathing) spiral
chimera, obtained by integrating Eqs. (1) and (2) with 5023 oscil-
lators for ε = 1, ω = 4, and τ̄ = 1.1. (b) Mean phase velocities of
124 oscillators, located on a longitudinal thin slice of the spherical
surface (see the text).

The blue and red lines are determined by Eq. (46a), while the
green lines correspond to the result from Eq. (46b). One can
observe that the point spectra, represented by blue and green
lines, could emerge from and be absorbed into the T -shaped
continuous spectra described by Eqs. (43) and (44) when τ̄

varies. Such behavior is known to be typical of the chimera
states [34–36].

We see the τ̄ intervals with shaded backgrounds, for which
the real parts of λ are all negative so the spiral chimera
state becomes stable. With increasing τ̄ , a pair of complex
conjugate eigenvalues, denoted by blue lines, emerges sud-
denly from the imaginary axis of complex λ plane at the
boundaries HB+

1,2 and they move further into the right-half
plane, destabilizing the chimera state. When a pair of unstable
complex conjugate eigenvalues protrudes from the neutrally
stable T -shaped continuous spectra, we call the bifurcation
scenario the Hopf-like bifurcation. When passing through the
boundaries HB−

1,2, the chimera state becomes stable via an
inverse Hopf-like bifurcation. The boundaries HB±

n of such
Hopf-like bifurcations provide theoretical prediction for the
stability boundaries of spiral chimera states and specify the
Hopf boundaries, marked by dashed lines in Fig. 1.

The stability analysis using the first-order approximation
suggests that the spiral chimera state actually undergoes desta-
bilization via the Hopf-like bifurcation when passing beyond
the boundaries of the chimera bands Bn.

4. Breathing spiral chimera state

Through the numerical simulations of Eqs. (1) and (2)
for parameter values close to the stability boundaries of the
chimera bands, we observed breathing spiral chimeras that ex-
hibit a quasiperiodic behavior. Figure 5(a) depicts an example
of the breathing spiral chimera state observed for the param-
eter values of ε = 1, ω = 4, and τ̄ = 1.1. Such a breathing
spiral chimera state is characterized by the appearance of a
secondary coherent domain around the north and south poles.
The incoherent oscillators are located in a narrow annular
band outside the secondary coherence domains, as shown in
Fig. 5(a).

Figure 5(b) displays averaged phase velocities, 〈ψ̇ j〉, of
oscillators located on a longitudinal slice of the spherical
surface. The index j of oscillators on a longitudinal slice
is chosen to start from an equatorial point and return back
via the north pole, opposite the equatorial point, and south
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FIG. 6. Spiral chimera states in Stuart-Landau oscillators coupled with heterogeneous delays. [(a), (b)] Snapshots of the phase and
amplitude of Wj , obtained by numerical integration of Eqs. (47) and (48) for N = 5023, σ = 0.4, ω = 2, and τ̄ = 2.1. (c) Stability diagram
in the (τ̄ , ω) plane for σ = 0.4, drawn in the same format as Fig. 1. All the stability boundaries are determined via extensive numerical
simulations of Eqs. (47) and (48). Dash-dotted lines denote the skeleton curves of chimera band Bn, given by ω = (2n − 1)π/τ̄ .

pole. Thus the oscillators for j = 31, 62 and 93 are located
near north pole, equatorial point and south pole, respectively.
The phase velocities were averaged over 200 units of time
after cutting off the transients of t = 200. In Fig. 5(b), one
can see that the oscillators located on the secondary coherent
domain changes with a new frequency �1 that differs from the
collective frequency � of the primary coherent domain.

V. AMPLITUDE-PHASE OSCILLATORS WITH
HETEROGENEOUS DELAY COUPLING

So far, we analyzed the chimeric behaviors in the system of
coupled phase oscillators on the basis of the Ott-Antonsen re-
duction method. To examine whether the spiral chimera states
could occur in networks of oscillators described by more than
one variable, we now consider the amplitude-phase oscillator
systems in which the reduction to phase oscillators cannot be
performed.

A. Delay coupled Stuart-Landau oscillators

As a local system, we choose the Stuart-Landau oscillator
described by a complex variables, which includes not only the
phase but also amplitude dynamics. It is known that, in the
system of Stuart-Landau oscillators with time-delay coupling,
different behaviors from that seen in networks of phase oscil-
lators, such as the amplitude death [49], could occur.

Consider a globally coupled network of N delay-coupled
Stuart-Landau oscillators located on the surface of the unit
sphere, whose dynamics is described by

Ẇj = (1+iω−|Wj |2)Wj + σ

N

N∑
n=1

[Wn(t −τjn)−Wj (t )], (47)

with Wj ∈ C for j = 1, . . . , N . Here ω is the natural fre-
quency, σ ∈ R is the coupling strength, and τ jn denotes the
interaction time delays. The time delays τ jn are assumed to
depend on the distance γ jn between two oscillators j and n on
the unit sphere, given by γ jn = arccos(r j · rn). Like in Eq. (2),
we choose a simple form of a distance-dependent time delay

function given by

τ jn =
{

0 if 0 < γ jn � 1
2π

τ̄ if 1
2π < γ jn � π.

(48)

Our numerical simulations of Eqs. (47) and (48) reveal
that the spiral chimeras induced by distance-dependent delays
appear as a generic state in the Stuart-Landau system as well.

A representative spiral chimera state is depicted in Fig. 6.
One can see that Stuart-Landau oscillators coupled with
distance-dependent delays show chimeric behavior for both
phases and amplitudes. In analogy with the pure phase os-
cillators system, the phases of complex variables Wj display
the spiral wave chimera pattern, as seen in Fig. 6(a). While
a spot-type chimera pattern is observed in the snapshot of
amplitudes of Wj , as shown in Fig. 6(b), where the coherent
and incoherent domains are clearly distinguished.

We explored extensively the parameter regions for the
different types of the stationary states through numerical sim-
ulations of Eqs. (47) and (48). Figure 6(c) shows the stability
regimes for the spiral chimera and coherent states in the (τ̄ , ω)
plane, whose format is the same as in Fig. 1. All the stability
boundaries were determined by numerically continuing the in-
tegrations of Eqs. (47) and (48) with 5023 oscillators. One can
see that there exist parameter regions for the spiral chimera
state coexisting with coherent state (green region) as well
as for those emerging as a unique attractor (yellow region).
The incoherent state as well as the amplitude death were not
observed in our numerical experiments, which implies they
are unstable.

Remarkably, we see in Fig. 6(c) a complete resemblance
in the shape of stability regions for the spiral chimera and
coherent states, as compared to Fig. 1. The spiral chimeras oc-
cur in a series of band-shaped regions and, furthermore, their
skeleton curves marked by dash-dotted lines obey exactly the
same form as Eq. (20), i.e.,

ωτ̄ = (2n − 1)π.

This implies that the spiral chimeras occur dominantly when
the interaction time delay τ̄ is near to a half the odd number
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FIG. 7. Spiral chimera states in delay-coupled Van der Pol oscillators. (a) Limit cycles of a single Van der Pol oscillator for ω = 2 and
different values of μ. [(b), (c)] Snapshots of the geometric phases φ j and amplitudes r j , obtained by numerical integration of Eqs. (49) and (48)
for N = 5023, K = 0.5, μ = 3, ω = 2, and τ̄ = 2. (d) Stability diagram in the (τ̄ , ω̃) plane for μ = 3 and K = 0.5, where ω̃ ≡ 2π/T (μ,ω)
denotes the intrinsic frequency of uncoupled relaxation oscillator. All the stability regions are determined via numerical simulations, drawn in
the same format as Figs. 1 and 6(c). Dash-dotted line inside the primary chimera band is given by ω̃ = π/τ̄ .

times the intrinsic period T ≡ 2π
ω

of decoupled oscillators as

τ̄ ≈
(

n − 1

2

)
T .

We note that the parameter regions of coherent states are
distributed around the time delay values near to the integer
times of the intrinsic period of oscillators:

τ̄ ≈ nT .

B. Delay-coupled Van der Pol oscillators

To show the universal occurrence of spiral wave chimeras
owing to heterogeneous time delays, we now consider a sys-
tem of N identical delay-coupled Van der Pol oscillators x j ∈
R, given by

ẍ j − (μ − x2
j

)
ẋ j + ω2x j = K

N

N∑
n=1

[ẋn(t − τ jn) − ẋ j]. (49)

Here the parameter μ > 0 determines the rate of attraction
to the limit cycle of an individual oscillator with the natural
frequency ω. The oscillators are arranged on the unit sphere
with all-to-all coupling strength K and distance-dependent
time delays τ jn given by Eq. (48).

For sufficiently small μ, each uncoupled oscillator exhibits
a periodic orbit on a circular limit cycle, whose period given
by T = T (μ,ω) reduces approximately to T0 ≡ 2π

ω
. While,

for large μ, the limit cycle is not a circle and the waveform
exhibits a strong nonlinear relaxation oscillation. Moreover,
the dependence of intrinsic period T on parameter μ becomes
pronounced. In Fig. 7(a), the intrinsic periods and shapes
of the limit cycles of a decoupled Van der Pol oscillator
are depicted for different values of μ. Larger values of μ

result in an increasing amplitude of the limit cycle as well
as an increasing period T . Below we deliberately choose
the case of relaxation-type oscillations and fix the parameter
μ at μ = 3.

Our extensive numerical simulations of Eq. (49) with in-
teraction time delays τ jn given by Eq. (48) reveal that the

spiral chimeras occur in a wide region of parameter space.
Figures 7(b) and 7(c) illustrate the representative snapshots of
the geometric phase φ j and amplitude r j , respectively, defined
by

r j (t )eiφ j (t ) ≡ x j (t ) + iẋ j (t ).

Similar to the Stuart-Landau oscillator system, the Van der Pol
oscillators coupled with distance-dependent delays provide
chimeric behaviors in both the phases and amplitudes. The
main difference is that, as shown in Figs. 7(c), the rotating
spiral arms are observed in the coherent domain of amplitudes
r j as well.

Figure 7(d) summarizes the results obtained from the nu-
merical simulations of Eq. (49), which shows the stability
diagram in the (τ̄ , ω̃) plane with the intrinsic frequency ω̃

of uncoupled relaxation oscillator, given by ω̃ ≡ 2π/T (μ,ω).
One observes again a close resemblance in the shape of sta-
bility regions with a series of evenly spaced chimera bands,
as compared to Figs. 1 and 6. The parameter regions for the
monostable spiral chimera states, denoted by yellow-colored
area, are considerably enlarged for the delay-coupled Van der
Pol oscillator system, in comparison with systems of phase
oscillators and Stuart-Landau oscillators.

Furthermore, we see that the dash-dotted line, determined
by ω̃τ̄ = π , might serve as a skeleton of the primary chimera
band. This strongly suggests that it is universal for networks
of oscillators with sinusoidal as well as nonsinusoidal limit
cycles that the spiral chimeras appear to be stable, primar-
ily for the interaction time delay near to half the period of
individual oscillators, i.e., τ̄ ≈ 1

2 T . Meanwhile, the coherent
state becomes stable near the time delays given by τ̄ = nT for
integers n. These could be explained within the framework of
the delayed feedback control (DFC) [50] to stabilize unstable
periodic orbits (UPOs). The DFC uses the difference of the
current and the delayed state, where the time delay τ is chosen
to be the period T of the UPO, τ = T . The DFC scheme
applies to a single oscillator [51] as well as networks of
coupled oscillators [52], where the latter case corresponds to
the emergence of a coherent state of stabilized UPOs. For the
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case of τ �= T , e.g., τ ≈ 1
2 T , the DFC does not work and leads

to desynchronization of UPOs, which could be interpreted as
a counterpart of the spiral chimera state occurring close to
τ̄ = 1

2 T .

VI. CONCLUSIONS AND OUTLOOK

In this paper, we considered globally coupled networks of
identical oscillators, distributed on a sphere with interaction
time delay. It is demonstrated that in different systems of
coupled oscillators, the distance-dependent time delay plays
a key role for the spiral chimeras to occur as a generic state.
We found that the spiral chimeras occur as a consequence of
a resonant-type interplay between the intrinsic period of local
unit and the interaction time delay as a topological structure
property.

For the phase oscillator system, we have explored rigorous
analyses for the existence and stability of different stationary
states along the Ott-Antonsen invariant manifold to find the
parameter regions of stable spiral chimera patterns. It has
been found that the spiral chimeras occur stably in a series of
the band-shaped parameter regions Bn, for which the skeleton
curves obey an explicit relation between the intrinsic period
T of uncoupled oscillator and the interaction time delay τ̄ , as
τ̄ = 1

2 (2n − 1)T , irrespective of the coupling strength ε. We
determined analytically the stability regions where the spiral
chimeras appear as a self-emerging state, irrespective of initial
conditions.

We have provided an extensive numerical experiment for
the delay-coupled networks of Stuart-Landau and Van der
Pol oscillators, which reveals that the spiral chimera states in
the phase-amplitude oscillator systems occur in very similar
parameter regions to those of phase oscillator systems. In
particular, the spiral chimera states appear to be stable when
there is a strong correlation between the intrinsic period T
of individual oscillator and the interaction time delay τ̄ , re-
gardless of the unit of network exhibiting oscillations on a
sinusoidal or nonsinusoidal (relaxation-type) limit cycle. For
example, the stable spiral chimera states, appearing inside
the primary chimera band B1, correspond to the resonance
condition τ̄ = 1

2 T .
In this paper, we chose the stepwise delay form (2) as a

distance-dependent delay function, the main virtues of which
were two: to diminish the massive computations in direct nu-
merical simulations of model systems, owing to the otherwise
overmany delay times, and to make the analytical description
of spiral chimera states possible. However, in realistic systems
such as laser networks or neural tissue, the interaction time
delays appear to be proportional to the distance between two
oscillators,

τ (r, r′) = γ (r, r′)
v

, (50)

where v is the signal propagation speed. Through the direct
numerical simulations of Eqs. (1) and (50), we verified the sta-
ble spiral chimera states in wide parameter regions, as shown
in Fig. 8(a). In contrast to the case of the stepwise time delays
(2), for the interaction-delay function given by Eq. (50), there
occurs not only the two-core spiral chimera but also higher-
order spiral chimeras such as the four- and eight-core spiral

0
0

1

2

3

4

5

ω

Coherence

Higher−order Spiral Chimera

Two−core
Spiral Chimera

π/2 π 3π/2
τmax

(a)

FIG. 8. Spiral chimeras for the distance-dependent delay func-
tion (50). (a) Stability diagram in the (τmax, ω) plane with τmax ≡
π/v, obtained by numerical integrations of Eqs. (1) and (50) for
N = 5023 and ε = 1. (b) Phase snapshot of four-core spiral chimera
for τmax = 0.6π and ω = 4, corresponding to the diamond displayed
in (a). (c) Eight-core spiral chimera for τmax = 0.8π and ω = 3,
corresponding to the asterisk in (a).

chimeras, which are illustrated in Figs. 8(b) and 8(c), respec-
tively. Furthermore, the two-core spiral chimera state occurs
in the band-shaped green region in the (τmax, ω) parameter
plane, where τmax ≡ π

v
, which bears striking resemblance to

the primary chimera band B1 shown in Fig. 1. We can thus
conclude that the distance-dependent time delays provide an
essential and universal driving mechanism for the emergence
of spiral chimera states.

The distance-dependent interaction time delays are om-
nipresent in nature and engineering systems, like semiconduc-
tor laser networks and neuroscience. We conjecture that the
time-delay induced spiral chimeras could occur in many real-
istic systems of oscillators coupled with distance-dependent
time delays. In particular, the resonance structure between
the intrinsic period of local unit and the interaction time
delay for the stable spiral chimera states might provide an
important insight into the mechanisms that underlie the activ-
ity patterns displayed by the human heart during ventricular
fibrillation.

APPENDIX A: DERIVATION OF REDUCED SYSTEM

By using the order parameter defined by Eq. (3), the model
Eq. (1) can be rewritten in a decoupled form as follows:

∂ψ (r, t )

∂t
= ω + Im

[
Z (r, t )e−iψ (r,t )]. (A1)
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The large system of the phase oscillators can be treated by
the probability density function f (ψ, r, t ), which satisfies the
continuity equation

∂ f

∂t
+ ∂

∂ψ
( f v) = 0, (A2)

where v = v(ψ, r, t ) is given, using Eq. (A1), as

v=ω+ ε

4π
Im

[
e−iψ

∫
S2

∫ 2π

0
f (ψ ′, r′, t −τr,r′ )eiψ ′

dψ ′dr′
]
.

(A3)

Following the Ott-Antonsen ansatz theory [44,45], we expand
f (ψ, r, t ) in a Fourier series with respect to ψ and restrict our
analysis to a particular low-dimensional manifold defined by
cn = cn, where cn is the nth Fourier coefficient. Thus, we write

f (ψ, r, t )= 1

2π

{
1 +

∞∑
n=1

([z∗(r, t )eiψ ]n + c.c.)

}
, (A4)

where the asterisk denotes complex conjugate and c.c. stands
for the complex conjugate of the preceding term.

Substituting Eqs. (A3) and (A4) into (A2), we obtain the
Ott-Antonsen ansatz equation for the complex variable z(r, t )
in the form of Eqs. (4). To avoid a divergence of the series
(A4), it should be assumed that |z(r, t )| � 1.

APPENDIX B: REDUCTION OF DOUBLE INTEGRALS
IN MATRIX B(λ)

Multiplying the matrices (38) and (41) leads to

EQ = 2πε

2 + 1

⎛
⎝ χ+


(λ)

λ−η

−z2
0χ

−


(λ)
λ−η

−z∗
0

2χ+
 (λ)

λ−η∗
χ−

 (λ)
λ−η∗

⎞
⎠.

For the spiral chimera states determined by Eqs. (21) and (22),
the functions η and z0 are given by

η(θ ) = i
√


2 − a2
1 sin2 θ,

z0(θ, φ) = ih(θ )a sin θeiφ.

Then, the elements of matrix EQ could only depend on the
azimuthal angle φ as a function of e2iφ , which yields integral
equalities

∫ 2π

0 EQe±iφdφ = 0. Thus the following eight ma-
trix blocks in the matrix (45) vanish:

B12 = 1

4π

√
3

2
〈EQ1 sin θe−iφ〉r = 0,

B14 = −1

4π

√
3

2
〈EQ1 sin θeiφ〉r = 0,

B21 = 1

4π

√
3

2
〈EQ0 sin θeiφ〉r = 0,

B23 = 3

4π

√
1

2
〈EQ1 sin θ cos θeiφ〉r = 0,

B32 = 3

4π

√
1

2
〈EQ1 sin θ cos θe−iφ〉r = 0,

B34 = −3

4π

√
1

2
〈EQ1 sin θ cos θeiφ〉r = 0,

B41 = −1

4π

√
3

2
〈EQ0 sin θe−iφ〉r = 0,

B43 = −3

4π

√
1

2
〈EQ1 sin θ cos θe−iφ〉r = 0.

Taking into account that the elements of matrix
EQ present a dependence on the polar angle θ in
the function of sin2 θ , one obtains integral expression∫ π

0 EQ cos θ sin θdθ = 0. Therefore, the following two ma-
trix blocks in matrix (45) are zero:

B13 =
√

3

4π
〈EQ1 cos θ〉r = 0,

B31 =
√

3

4π
〈EQ0 cos θ〉r = 0.

The double integrals involved in each matrix block in the
characteristic Eq. (46) can be calculated with respect to the
variable φ, reducing them into simple integrations with re-
spect to θ . For example, the calculation of matrix block B11

can be performed as the following:

B11 = 1

4π
〈EQ0〉r

= ε

2

⎛
⎜⎝ χ+

0

〈
1

λ−η

〉
r

−χ−
0

〈
z2

0
λ−η

〉
r

−χ+
0

〈
z∗

0
2

λ−η∗

〉
r

χ−
0

〈
1

λ−η∗

〉
r

⎞
⎟⎠

= ε

4

(
χ+

0

∫ π

0
sin θ
λ−η

dθ 0
0 χ−

0

∫ π

0
sin θ
λ−η∗ dθ

)

= ε

4

(
χ+

0

∫ 1
−1

dx
λ−η

0

0 χ−
0

∫ 1
−1

dx
λ−η∗

)
.

All other components Bjk can be calculated similarly,
which yields

B22 = 3

8π
〈EQ1 sin2 θ〉r

= ε

8

⎛
⎝χ+

1

∫ 1
−1

1−x2

λ−η
dx 0

0 χ−
1

∫ 1
−1

1−x2

λ−η∗ dx

⎞
⎠,

B24 = − 3

8π
〈EQ1 sin2 θe2iφ〉r

= −ε

8

(
0 0

χ+
1

∫ 1
−1

(1−x2 )h∗2R2

λ−η∗ dx 0

)
,

B33 = 3

4π
〈EQ1 cos2 θ〉r

= ε

4

⎛
⎝χ+

1

∫ 1
−1

x2dx
λ−η

0

0 χ−
1

∫ 1
−1

x2dx
λ−η∗

⎞
⎠,

B42 = − 3

8π
〈EQ1 sin2 θe−2iφ〉r

= −ε

8

(
0 χ−

1

∫ 1
−1

(1−x2 )h2R2

λ−η
dx

0 0

)
,
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and

B44 = B22.

Here, the functions R = R(x), η = η(x), and h = h(x) are to
be taken as the following:

R(x) = a1

√
1 − x2,

η(x) = i
√


2 − a2
1(1 − x2),

h(x) = 1


 +
√


2 − a2
1(1 − x2)

.

We note that the functions χ±
 for  = 0, 1 are given by

χ±
0 (λ) = 1

2

[
1 + e−(λ±i�)τ

]
,

χ±
1 (λ) = 3

4

[
1 − e−(λ±i�)τ

]
.
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