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Synchronization is a critical phenomenon that displays a pivotal role in a wealth of dynamical processes rang-
ing from natural to artificial systems. Here, we untangle the synchronization optimization in a system of globally
coupled phase oscillators incorporating heterogeneous interactions encoded by the deterministic-random cou-
pling. We uncover that, within the given restriction, the added deterministic correlations can profoundly enhance
the synchronizability in comparison with the uncorrelated scenario. The critical points manifesting the onset of
synchronization and desynchronization transitions, as well as the level of phase coherence, are significantly
shaped by the increment of deterministic correlations. In particular, we provide an analytical treatment to
properly ground the mechanism underlying synchronization enhancement and substantiate that the analytical
predictions are in fair agreement with the numerical simulations. This study is a step forward in highlighting the
importance of heterogeneous coupling among dynamical agents, which provides insights for control strategies
of synchronization in complex systems.
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I. INTRODUCTION

The emergence of spontaneous synchronization is a col-
lective phenomenon that is pivotal in a wide range of
physical, biological, chemical and engineered systems [1,2].
It represents a self-organizing dynamical process in which a
population of interacting agents adjust their motion through
the dissipative interactions, thereby achieving the coherence.

Coupled phase oscillator models, e.g., the Winfree and
Kuramoto model, have proven to be useful tools for capturing
and understanding synchronization during the last decades.
In particular, these mathematical models elucidate synchro-
nization at the onset of a nonequilibrium phase transition by
reducing complex dynamics of limit cycles to phase equa-
tions of oscillators under the assumption of weak coupling [3].

In general, the interactions among dynamical units are
assumed to be homogeneous, in which synchronization tran-
sitions are found to be continuous (second-order), i.e., the
macroscopic order parameter characterizing the phase co-
herence of the system undergoes a supercritical bifurcation
from the disordered (incoherent) state to an ordered (coherent)
state, when the coupling strength exceeds a critical threshold
[4–6].

However, recent studies have highlighted the importance
of heterogeneous coupling, i.e., the interactions among oscil-
lators are inhomogeneous (nonuniform). Beyond the uniform
coupling, the heterogeneity underlies a number of realistic
systems ranging from brain dynamics to social networks that
has attracted ample attention [7–11]. Physically, it is more
suitable to model dynamical systems by introducing the in-
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homogeneity into the coupling, where the responses of a unit
to the interactions depend on the external or intrinsic diverse
characteristics.

The systems of coupled oscillators incorporating the het-
erogeneity in the connection strength between interacting
elements have revealed a plethora of dynamical phenomena.
For instance, the networked heterogeneity with frequency-
degree correlation triggers the onset of explosive synchro-
nization [12–16], the quenched disorder of positive-negative
coupling gives rise to a number of fascinating rhythmical
states [17–22], the nonlocal coupling with long-range inter-
actions leads to various chimera patterns [23–27], etc.

Most of the existing literature on the Kuramoto-like models
has focused on exploring the effects of heterogeneous cou-
pling on the emergence of various collective states. However,
little attention has been paid to the synchronization capability
itself. Namely, we are curious to see if the synchronizability
gets affected by different arrangements of the heterogeneous
coupling structures [28–31].

In this paper, we investigate synchronization dynamics
in a system of heterogeneously coupled phase oscillators
incorporating deterministic-random interactions. Specifically,
we propose a strategy consisting of uniformly distributed
couplings with different assignments, where a fraction of in-
teractions are chosen to correlate with the oscillators’ intrinsic
frequencies while the remaining fraction remains random.
The main issue addressed here is which type of coupling
structure maximizes the synchronization capability of oscil-
lators given a certain restriction. Intriguingly, we uncover
that the introduced deterministic correlations can significantly
enhance synchronization compared to the uncorrelated case.
In particular, we reveal that there exists an optimal correlation
in the subcritical regime, where the critical threshold corre-
sponding to the onset of synchronization attains a minimum.
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Moreover, we demonstrate that, after the onset, the increasing
deterministic correlations are prone to favor synchronization,
both by efficiently improving the degree of phase coherence
and by prolonging its existing region. More importantly, we
furnish an analytical treatment to comprehend the underlying
mechanism behind synchronization optimization induced by
the deterministic-random coupling.

The rest of this paper is organized as follows. In
Sec. II, we introduce the dynamical model incorporating the
deterministic-random coupling. In Sec. III, using the linear
stability analysis, we obtain the forward critical coupling
strength for the onset of synchronization that is significantly
influenced by the correlation factor. In Sec. IV, we formulate a
detailed self-consistent argument to account for synchroniza-
tion optimization in various regions. Finally, discussion of the
results and the conclusion are presented in Secs. V and VI,
respectively.

II. DYNAMICAL MODEL

We consider a system of globally coupled phase oscillators
that are governed by the following differential equations:

θ̇i = ωi + K

N
αi

N∑
j=1

sin(θ j − θi ), i = 1, . . . , N. (1)

Here, θi is the phase of the ith oscillator. {ωi} are the natural
frequencies of oscillators distributed according to a prescribed
probability density function g(ω). N � 1 is the size of the
system, and K > 0 represents the overall coupling strength of
the system. Unless stated elsewhere, the natural frequencies
are assumed to be evenly spaced over the interval [−1, 1], i.e.,
g(ω) takes the uniform distribution of the form

g(ω) =
{

1
2 |ω| � 1,

0 otherwise.
(2)

As noted, the index-dependent factors {αi} account for the
inhomogeneous couplings among phase oscillators. Typically,
there are several ways to endow the coupled system with the
heterogeneity. One popular manner is to consider the factor
αi to be of the nonlocal coupling [32–35], where the coupling
strength between a pair of oscillators decays over the distance.
The most notable feature induced by the nonlocal coupling
is the emergence of the chimera states [36–39], in which
the identical oscillators separate into two distinct groups, one
is phase-locked (synchronized) and the other is incoherent
(desynchronized). Such remarkable phenomena occurring in
systems of nonlocal coupling have attracted a great deal of
theoretical and experimental interests over the past decades
[40].

The nonlocal coupling arsing in diverse applications de-
scribes the interactions between the local (nearest-neighbor)
and global (mean-field). Motivated by such a consideration,
we here realize the set {αi} by randomly extracting from the
interval [0, 1] and then rearrange them according to their nat-
ural frequencies. Specifically, we set αi = |ωi| for |ωi| � C,
otherwise, {αi} distribute uniformly in the range (C, 1],C ∈
[0, 1] serves as a tunable parameter reflecting the coupling-
frequency correlation.

FIG. 1. The sketch maps of the coupling scheme DRC with dif-
ferent C. The vertical axis represents the index-depended factor αi,
and the horizontal axis is the absolute value of natural frequency |ωi|.
Typically, the oscillator number is N = 1000.

Remarkably, when C = 0, {αi} distribute uniformly in
the interval [0, 1] that are totally uncorrelated with {ωi}. It
represents a sort of quenched disorder of the system [41].
On the contrary, for the case C = 1, the two sets are com-
pletely correlated in a way such that αi = |ωi|,∀i = 1, . . . , N ,
which degenerates to the frequency-weighted coupling widely
studied in previous works [42–46]. In the intermediate case
0 < C < 1, the system is made up of two parts according to
the magnitude of the natural frequencies with regard to C.
Figure 1 illustrates the sketch map of the coupling scheme,
in which different values of C distinguish with the different
arrangements of the set {αi}. We henceforth refer to the dy-
namical model Eq. (1) as the deterministic-random coupling
(DRC).

As stated, the coupling strategy introduced in Eq. (1)
changes the coupling strength depending on the correlation
factor C. Namely, the network is partitioned into two popula-
tions, and a positive correlation between the frequencies and
couplings is set for a fraction of oscillators. We emphasize that
the DRC serving as a peculiar coupling scheme has impor-
tant applications in systems ranging from physics, biology to
neuroscience. In particular, a number of fascinating collective
states as well as a plethora intriguing dynamical phenomena
are identified [47].

Most works have focused on revealing the inner relations
between the structures and functions of the complex systems
with DRC, such as the onset of explosive synchronization and
various rhythm patterns. However, little attention has been
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paid to explore the impacts of DRC on the synchronization
capability. A natural question regarding the DRC is whether
synchronization could be optimized by appropriately choos-
ing the correlation factor C within a given restriction.

It is convenient to use a complex order parameter to moni-
tor the globe coherence of the system, i.e.,

Z (t ) = R(t )ei�(t ) = 1

N

N∑
j=1

eiθ j (t ), (3)

where R(t ) ∈ [0, 1] and �(t ) ∈ [0, 2π ) are, respectively, the
amplitude and argument of the order parameter. Further, we
restrict the analysis with two additional assumptions. First, N
is assumed to be infinite (thermodynamic limit). In this regard,
the joint distribution between α and ω takes the form

P(α,ω) = δ(α − |ω|)H (C − |ω|)

+ 1

1 − C
H (|ω| − C)H (α − C)H (1 − α), (4)

where δ(·) is the Dirac function and H (·) denotes the Heav-
iside function, i.e., H (x) = 1 for x � 0, otherwise H (x) = 0.
Second, we are merely concerned with the stationary behav-
iors of the synchronized dynamics. In other words, R(t ) is
assumed to be a constant in the long term and any nonsta-
tionary behaviors of the order parameter such as the standing
waves are disregarded. In the following, we perform a de-
tailed analysis to comprehend the underlying mechanism for
synchronization optimization induced by the DRC both theo-
retically and numerically.

III. BELOW SYNCHRONIZATION: STABILITY ANALYSIS

To understand how the correlation factor C affects the
critical point for the onset of synchronization, in this section,
we are devoted to preforming a linear stability analysis of
the asynchronous state. As we shall see below, the correlation
factor C displays a nontrivial role in determining the forward
critical point for synchronization transition.

A. Eigenvalue equation

To accomplish the stability analysis, it is convenient to
describe Eq. (1) in the thermodynamic limit N → ∞. In this
representation, the microscopic state described by phase vari-
ables {θi(t )} is replaced by a macroscopic distribution function
ρ(θ, ω, α, t ) that obeys the continuity equation

∂ρ

∂t
+ ∂ (ρv)

∂θ
= 0. (5)

Here, ρ(θ, ω, α, t )dθ accounts for the fraction of oscillators
with the phases lying in the interval (θ, θ + dθ ) at fixed pa-
rameters {ω, α, t}. It satisfies the normalization condition∫ 2π

0
ρ(θ, ω, α, t )dθ = g(ω)P(α,ω). (6)

The velocity field v in Eq. (5) is given by

v(θ, ω, α, t ) = ω + Kα Im(Ze−iθ ), (7)

where Im(·) denotes the imaginary part.

In the continuous limit, the macroscopic order parameter
Z (t ) becomes

Z (t ) =
∫ 1

0
dα

∫ 1

−1
dω

∫ 2π

0
eiθρ(θ, ω, α, t )dθ. (8)

As for the asynchronous state, the oscillators run inde-
pendently according to their natural frequencies. Roughly
speaking, the instantaneous phases are scattered around the
unity circle at time t and Z (t ) = 0. Correspondingly, the dis-
tribution is

ρ0(θ, ω, α) = g(ω)P(α, ω)

2π
, (9)

which is a trivial fixed point of Eq. (5).
Next, we linearize Eq. (5) around the fixed point Eq. (9).

To this end, we introduce a small perturbation to Eq. (9), i.e.,

ρ(θ, ω, α, t ) = ρ0(θ, ω, α) + εη(θ, ω, α, t ), (10)

where 0 < ε � 1 and η(θ, ω, α, t ) denote the perturbed
magnitude and function, respectively. The associated order
parameter under the perturbation now becomes

Z[η] = ε

∫ 1

0
dα

∫ 1

−1
dω

∫ 2π

0
eiθη(θ, ω, α, t )dθ, (11)

which is proportional to the weak magnitude ε. Substituting
Eqs. (9)–(11) into Eq. (5) and keeping the linear term of ε, we
get

∂η

∂t
= −ω

∂η

∂θ
+ g(ω)P(α, ω)

2π
αK Re(e−iθ Z[η]), (12)

where Re(·) denotes the real part.
Recall that η(θ, ω, α, t ) is a 2π -period function with re-

spect to θ , it implies the Fourier series of the form

η(θ, ω, α, t ) =
∞∑

n=−∞
ηn(ω, α, t )einθ . (13)

We remark that η0 = 0 due to the normalized condition Eq. (6)
and η−n = η̄n owing to the real value of ρ(θ, ω, α, t ), and “ ·̄ ”
denotes the complex conjugate. Consequently, the perturbed
order parameter reduces to

Z[η] = ε 2π

∫ 1

0

∫ 1

−1
η−1(ω, α, t )dαdω. (14)

According to Eq. (13), the analysis can be proceeded in
each Fourier subspace independently. In doing so, Eq. (12) in
the first Fourier subspace becomes

∂η1

∂t
= −iωη1 + g(ω)P(α, ω)

2
αK

∫ 1

0

∫ 1

−1
η1(ω, α, t )dαdω.

(15)

Note that Eq. (15) consists in the fact that all the higher
order Fourier terms have been disregarded, since they have no
contribution to the order parameter. Therefore, the stability of
the asynchronous state is determined by the linear evolution
of the first Fourier mode only.
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To proceed, let ∂η1

∂t = λη1 with λ being the eigenvalue of
linearized dynamics, and then the eigenfunction is solved as

η1(ω, α) = Kα

2

g(ω)P(α,ω)

λ + iω

∫ 1

0

∫ 1

−1
η1(ω, α)dαdω. (16)

Further, applying the integrals α and ω to both sides of
Eq. (16), we arrive at the eigenvalue equation for λ yielding

1

K
= 1

2

∫ 1

0
dα

∫ 1

−1
dω

g(ω)P(α,ω)α

λ + iω
. (17)

B. Critical point and balanced equation

As above, the knowledge of the stability of the asyn-
chronous state is controlled by the real parts of λ. Below,
we focus on discussing the eigenvalue equation derived in
Eq. (17) by taking into account the DRC.

Let λ = x + iy, with x, y ∈ R being the real and imaginary
parts, respectively, and Eq. (17) can be transformed into the
Cartesian coordinates as

1

K
= 1

2

∫ 1

0
dα

∫ 1

−1
dω

xg(ω)P(α,ω)α

x2 + (y + ω)2
, (18)

0 = 1

2

∫ 1

0
dα

∫ 1

−1
dω

(y + ω)g(ω)P(α,ω)α

x2 + (y + ω)2
. (19)

On the one hand, for a sufficiently small value of K , there
are no roots to Eqs. (18) and (19). This is because K−1 → ∞,
while the right hand side of Eq. (18) remains bounded for any
values of (x, y). Hence, the eigenvalue λ is absent for small
K[48]. On the other hand, x is always larger than zero due
to K > 0 in Eq. (18). The nonzero roots appear once K ex-
ceeds a threshold implying the instability of the asynchronous
state. Therefore, the critical point Kf corresponding to the
onset of synchronization is obtained by imposing the limits
x → 0+, y → .

Considering the specific forms of g(ω) and P(α, ω),
Eq. (18) reduces to

1

K
= 1

4

∫ 1

0
dα

∫ 1

−1
dω

δ(α − |ω|)αx

x2 + (y + ω)2

+ 1

4(1 − C)

∫ 1

C
dα

∫
C<|ω|<1

dω
αx

x2 + (y + ω)2

= 1

4

∫ C

−C

δ(α − |ω|)x
x2 + (y + ω)2

dω

+ 1 + C

8

∫
C<|ω|<1

x

x2 + (y + ω)2
dω. (20)

At the critical point Kf , we have

1

Kf
= π

4
||H (C − ||) + 1 + C

8
πH (|| − C), (21)

where we have used the identity limit x → 0+,
x

x2 + ( + ω)2
= πδ( + ω). (22)

Therefore, the critical point Kf is obtained as

Kf = 8

2π ||H (C − ||) + (1 + C)πH (|| − C)
, (23)

and the critical frequency  satisfies the balanced equation

0 = P.V.

(∫ C

−C

2|ω|
ω + 

dω + (1 + C)
∫

C<|ω|<1

1

ω + 
dω

)
,

(24)

where P.V. denotes the Cauchy principal value integral.
Equation (23) indicates that the critical point Kf depends

on the critical frequency , as well as the correlation factor
C. To obtain insights for Kf , the balanced equation Eq. (24)
should be discussed in three different scenarios.

Case I, 0 � || < C, the first term at right-hand side of
Eq. (24) diverges that should be integrated in the sense of
principal value. Straightforward calculations yield

0 = −2 ln
C2 − 2

2
+ (1 + C) ln

( + 1)( − C)

( − 1)( + C)
. (25)

Case II, C � || < 1, the second term at right-hand side
of Eq. (24) becomes singular and should be performed in the
principal-valued sense, which is

0 = −2 ln
2 − C2

2
+ (1 + C) ln

( + 1)(C − )

( − 1)( + C)
. (26)

Case III, || � 1, both terms at right-hand side of Eq. (24)
are bounded, and then the integral can be preformed over the
whole interval, which becomes

0 = −2 ln
2 − C2

2
+ (1 + C) ln

( + 1)( − C)

( − 1)( + C)
. (27)

Taken together, the balanced equations, Eqs. (25)–(27), can
be expressed in a unified form, i.e.,

0 = −2 ln
|2 − C2|

2
+ (1 + C) ln

∣∣∣∣ ( + 1)( − C)

( − 1)( + C)

∣∣∣∣.
(28)

Based on the analysis above, we conclude that the corre-
lation factor C determines the critical frequency  in terms
of Eq. (28), which in turn locates the critical point Kf via
Eq. (23). It should be pointed out that there might exist several
roots of  to Eq. (28) implying the multivalues of the critical
point. Physically, Kf takes the minimum value corresponding
to the foremost instability of the incoherent state.

C. Perturbation analysis

In general, it is difficult to get explicit expressions for the
critical frequency  and the forward critical point Kf as a
function of C. Nevertheless, to gain some intuition about the
results obtained above, we next utilize the perturbation theory
to obtain the asymptotic behaviors of  and Kf near C = 0,
i.e., the scaling behaviors of  and Kf near C = 0.

Notice that, for the completely uncorrelated case with
C = 0, it can be easily verified that  = 0 is the only solution
to Eq. (28). To proceed, let

C = 0 + ε(0 < ε � 1), (29)

and we assume that

 = 0 + εβ1(0 < |1| < ∞), (30)
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in which the scaling exponent β as well as the coefficient 1

are yet unknowns to be determined.
Before going further, we stress that if || < C = ε, then

Kf ∼ ||−1, which is singular for ε → 0. Hence, we rule out
this case and assume that || > C. On this backdrop, the
perturbed analysis is based on the balanced equation Eq. (26).

Substituting Eqs. (29) and (30) into Eq. (26), we get the
perturbed balanced equation

0 = S(ε,1) + Q(ε,1), (31)

with

S(ε,1) = −2εβ1 ln

(
1 − ε2(1−β )

2
1

)
(32)

and

Q(ε,1) = (1 + ε) ln
εβ

( − 2
1

) + ε1−β + ε1 − 1

εβ2
1 − ε1−β + ε1 − 1

.

(33)

Observe that S(ε,1) can be expressed in terms of the
Taylor series, that is

S(ε,1) ∼ ε2−β 2

1
. (34)

Since || > C, we must have 0 < β � 1, and Eq. (34) turns
out to be a higher order term of ε. Below, we distinguish with
three different cases of β to discuss the second term Q(ε,1).

Case I, 0 < β < 1
2 , we remark that εβ appearing in

Q(ε,1) is a leading term. As a result, ε1−β and ε become
higher-order terms compared with εβ that should be neglected.
We thus have

Q(ε,1) = (1 + ε) ln
εβ

( − 2
1

) − 1

εβ2
1 − 1

∼ εβ (21) + εβ+1(21). (35)

Case II, 1
2 < β < 1, ε1−β automatically becomes a domi-

nant term compared to εβ and ε, and we have

Q(ε,1) = (1 + ε) ln
ε1−β − 1

−ε1−β − 1

∼ −ε1−β

(
2

1

)
− ε2−β

(
2

1

)
. (36)

Case III, β = 1
2 , εβ = ε1−β and the term ε should be ig-

nored, which leads to

Q(ε,1) = (1 + ε) ln

√
ε(1 − 2

1) − 1√
ε
(
2

1 − 1
) − 1

∼ √
ε

(
− 2

1
+ 21

)
+

√
ε3

(
− 2

1
+ 21

)
.

(37)

The basic idea behind the perturbed analysis demands that
the leading terms of ε in S(ε,1) and Q(ε,1) should can-
cel each other out, which hints that 1 = 0 for case I and
1 = ±∞ for case II. Apparently, this two conditions violate
the presuppositions mentioned in Eq. (30). We claim that only

FIG. 2. The scaling behaviors of the critical points. (a)  vs C,
the blue solid line corresponds to Eq. (38) and the red circles are
solutions to Eq. (30). (b) Kf vs C, the blue solid line is given by
Eq. (38) and the red circles are obtain by numerically simulating
Eq. (1) with N = 50 000.

case III with β = 1
2 is admittable, implying that 1 = ±1.

Therefore, the scaling behaviors for the critical points are

Kf ∼ 8

π (1 + C)
,  ∼ ±

√
C(0 < C � 1), (38)

which are shown in Fig. 2.

D. Discussions

To summarize, Fig. 3 plots the forward critical point Kf as
a function of the correlation factor C, in which the solid line
is the theoretical prediction obtained by Eqs. (23)–(28) and
the circles are corresponding numerical simulations of Eq. (1).
We concisely state the findings as follows:

It can be shown from Fig. 3 that the plot Kf exhibits a
discontinuous parabolic-like shape with respect to C. Specif-
ically, Kf is decreasing for 0 � C < C� ≈ 0.75, after that it
jumps discontinuously to a value and then gradually increases
until C = 1. The mathematical consequence of the disconti-
nuity of Kf at C� can be understood as follows. We emphasize
that it stems from the discontinuity of the Heaviside function
in Eq. (23). First, when 0 � C < C�, numerical solutions

FIG. 3. The forward critical point Kf vs the correlation factor C.
The blue solid line represents the theoretical prediction by Eq. (23)
and the red circles are numerical simulations with N = 50 000.

054203-5



HUAJIAN YU, ZHIGANG ZHENG, AND CAN XU PHYSICAL REVIEW E 108, 054203 (2023)

of Eq. (28) reveal that || > C, and hence only the term
H (|| − C) is valid. In this region, Kf = 8/π (1 + C), which
generalizes the result obtained by the perturbed analysis [see
Eq. (38)]. Second, once C > C�, the solutions of Eq. (28)
indicate that || < C, such as  → ±√

2/2 for C → 1. Thus,
only the term H (C − ||) is effective. For that matter, Kf =
4/π ||. In a addition, the gradual increment of || with
respect to C results in the saturation of Kf for C > C�.

The conclusion we can draw from the stability analysis
is that the correlation factor has a significant influence on
the threshold for synchronization transition. When C = 0, the
frequency and coupling are totally uncorrelated, at which the
critical point corresponding to the onset of synchronization
attains the maximum, i.e., Kf = 8/π . However, if the de-
terministic correlation is introduced (C > 0), then Kf gets
decreased and the deterministic correlation is prone to pro-
mote the onset of synchronization. Strikingly, it is found that
there exists a critical correlation factor, at which Kf attains
the minimum. Finally, for C� < C ≈ 1, Kf tends to a constant,
i.e., Kf ≈ 4

√
2/π . The overall effect of the deterministic cor-

relation is to render the synchronization transition easier.

IV. ABOVE SYNCHRONIZATION: SELF-CONSISTENT
ARGUMENT

In the proceeding section, the forward critical point Kf was
obtained using the linear stability analysis. It was revealed that
deterministic correlations favor synchronization transition. In
this section, we continue to explore the effects of the corre-
lations aiming at uncovering the underlying mechanism for
synchronization optimization induced by DRC. In doing so,
we resort to the self-consistent approach that is capable of
capturing the stationary behaviors of the equilibrium states in
the long-time limit.

A. Self-consistent equations

We first write the mean-field form of Eq. (1) as

θ̇ = ω + αq sin(� − θ ), (39)

where q = KR � 0 is introduced to ease notation, and the
index i has been dropped in the limit N → ∞. By equilibrium
sates, it means that the order parameter tends to a constant and
the average phase rotates uniformly on the unit circle, i.e.,
R(t ) = R and �(t ) = t + 0. Furthermore, the dynamical
system possesses rotational and reflectional symmetries lead-
ing to �(t ) = 0 by shifting initial conditions and going into a
rotating frame. With this, the mean field equation Eq. (39) is
simplified as

θ̇ = ω − αq sin(θ ). (40)

Clearly, the system can be divided into two distinct clusters
according to the relative magnitude |ω|/αq. For the case |ω| <

αq, the velocity v = 0 and the oscillators are phase-locked
with

sin θ� = ω

αq
, cos θ� =

√
1 − ω2

α2q2
. (41)

The distribution formed by the locked oscillators is expressed
as

ρl (θ, ω, α) = g(ω)P(α, ω)δ(θ − θ�). (42)

In contrast, for the case |ω| > αq, the velocity v �= 0 and
the oscillators behave as drifters, which can never be entrained
by the mean field. Correspondingly, the stationary distribution
obtained from Eq. (5) is given by

ρd (θ, ω, α) = g(ω)P(α, ω)

√
ω2 − α2q2

2π |ω − qα sin θ | . (43)

Turning to the order parameter Z (t ), it can be expressed as

Z = 〈eiθ 〉l + 〈eiθ 〉d , (44)

where 〈·〉l,d denote the average over the locked and drifting
populations, respectively. Furthermore, straightforward calcu-
lations yield 〈eiθ 〉d = 〈sin θ�〉l = 0 due to the symmetry of the
system. Keeping all these in mind, the expression for the order
parameter is

R =
∫ 1

0
dα

∫ 1

−1
dωg(ω)P(α, ω)

√
1 − ω2

α2q2
. (45)

Considering the definition g(ω) and P(α, ω), the self-
consistent equation, Eq. (45), can be reformulated into a
simple form

1

K
= F (q), (46)

with the characteristic function being

F (q) = 1

2q

∫ 1

0
dα

∫ 1

−1
dω

[
δ(α − |ω|)H (C − |ω|)

+ 1

1 − C
H (|ω| − C)H (α − C)H (1 − α)

]

×
√

1 − ω2

α2q2
. (47)

The self-consistent equations Eqs. (46) and (47) provide a
general framework for delineating the stationary synchronized
dynamics with DRC. In what follows, we discuss various
scenarios to establish analytic formulas for F (q).

Before proceeding, several symbols are defined to simplify
notation. Namely, � = 1 − ω2/α2q2, Iα,ω denote the integral
intervals of α and ω, respectively. “a ⇒ b” represents the
equivalence between a and b. ∅ denotes the empty set.

B. 0 � q < 1

Notice that the phase-locked condition requires that
|ω| < αq. Since α ∈ [0, 1], for the case 0 � q < 1, we always
have αq ∈ [0, 1). So, the characteristic function F (q) in this
region becomes

Fq<1 = 1

2q

∫ 1

0
dα

∫ αq

−αq
dωP(α, ω)

√
�. (48)

Because P(α, ω) consists of two parts, it is convenient to
discuss Eq. (48) by dividing it into two different terms.
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1. The first term

The first term of Eq. (48) reads

Fq<1,(1) = 1

2q

∫ 1

0
dα

∫ αq

−αq
dωδ(α − |ω|)H (C − |ω|)

√
�

= 1

q

∫ 1

0
dα

∫ αq

0
dωδ(α − |ω|)H (C − ω)

√
�, (49)

where we have used the evenness of the integral function
of ω.

Observe that the Heaviside function H (C − ω) demands
that 0 � ω < C. Hence, we must distinguish with two cases
αq < C and αq > C, respectively. For the first scenario, the
integral Eq. (49) becomes

Fαq<C
q<1,(1) = 1

q

∫ 1

0
dα

∫ αq

0
dωδ(α − ω)

√
�. (50)

Recall that the integral variable ω in Eq. (50) varies from 0
to αq, which is strictly less than α (since 0 � q < 1). Ac-
cordingly, the Dirac function δ(α − ω) is always zero over the
integral range Iω, which results in

Fαq<C
q<1,(1) = 0. (51)

For the second scenario with αq > C, Iω = (0,C) and the
integral Eq. (49) becomes

Fαq>C
q<1,(1) = 1

q

∫ 1

0
dα

∫ C

0
dωδ(α − ω)

√
�. (52)

We note that αq > C ⇒ α > C
q . First, if q < C, then α > 1,

which should be ruled out. Second, if C < q < 1, then the
integral above is

Fαq>C,q>C
q<1,(1) = 1

q

∫ 1

C
q

dα

∫ C

0
dωδ(α − ω)

√
�

= 0. (53)

This is because Iω = (0,C) and Iα = (C
q , 1). Apparently, these

two intervals can never overlap, and thus the Dirac function
δ(α − ω) is always zero.

Taken together, for 0 � q < 1, the first term in the charac-
teristic function F (q) is

Fq<1,(1) ≡ 0. (54)

2. The Second term

As for the second term, the characteristic function F (q)
becomes

Fq<1,(2) = 1

q(1 − C)

∫ 1

C
dα

∫ αq

0
dωH (ω − C)

√
�. (55)

The Heaviside function H (ω − C) requires that ω > C so the
case αq < C should be disregarded, and Eq. (55) degenerates
to

Fαq>C
q<1,(2) = 1

q(1 − C)

∫ 1

C
q

dα

∫ αq

C
dω

√
�. (56)

Note that we have used the fact in Eq. (56) that αq > C ⇒
α > C

q > C. Remarkably, for q < C, the integral range for α

in Eq. (56) vanishes and should be ruled out. Hence, only the
case q > C is admittable, which yields

Fαq>C,q>C
q<1,(2) = 1

q(1 − C)

∫ 1

C
q

dα

∫ αq

C
dω

√
�. (57)

Combining the results above, the characteristic function
F (q) in the region 0 � q < 1 begets

FC<q<1 =
3C

√
−C2 + q2 − (2C2 + q2) arccos C

q

4(−1 + C)q2
. (58)

C. q > 1

We next turn to the case q > 1, in which αq ∈ [0,+∞) and
the discussion about the characteristic function F (q) becomes
more intricate compared to the case q < 1. For convenience,
the integral restricted in this region is rewritten as

Fq>1 = 1

2q

∫ 1

0
dα

∫ 1

−1
dωP(α, ω)

√
�. (59)

To guarantee the positiveness of �, one has Iω = (−αq, αq).
Likewise, we must distinguish with two cases αq < 1 and
αq > 1, respectively. Namely,

Fq>1,αq<1 = 1

q

∫ 1
q

0
dα

∫ αq

0
dωP(α, ω)

√
�, (60)

in which αq < 1 ⇒ α < 1
q < 1, and

Fq>1,αq>1 = 1

q

∫ 1

1
q

dα

∫ 1

0
dωP(α, ω)

√
�. (61)

As before, we proceed with the analysis by dividing the inte-
grals Eqs. (60) and (61) into two terms, respectively.

1. The first term (αq < 1)

The first term with αq < 1 is expressed as

Fq>1,αq<1,(1) = 1

q

∫ 1
q

0
dα

∫ αq

0
dωδ(α − ω)H (C − ω)

√
�.

(62)

First, we suppose that αq < C ⇒ α < C
q < 1

q . In addi-
tion, 0 < ω < αq < C implies that H (C − ω) ≡ 1, and q > 1
means that Iα ⊂ Iω. Therefore, Eq. (62) with αq < C reduces
to

Fαq<C
q>1,αq<1,(1) = 1

q

∫ C
q

0
dα

√
1 − q−2

= Cq−2
√

1 − q−2 (63)

Second, we assume that αq > C ⇒ α > C
q (< 1

q ) and Iω =
(0,C), which satisfies H (C − ω) = 1. Then we have

Fαq>C
q>1,αq<1,(1) = 1

q

∫ 1
q

C
q

dα

∫ C

0
dωδ(α − ω)

√
�. (64)

The next step is to discuss the Dirac function. Observe that
C
q < C. Further, if 1

q < C ⇒ q > 1
C , then we have Iα ⊂ Iω,
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which yields

Fαq>C,q>C−1

q>1,αq<1,(1) = 1

q

∫ 1
q

C
q

dα
√

1 − q−2

= (1 − C)q−2
√

1 − q−2. (65)

If 1
q > C ⇒ q < 1

C , then the integral range for α should be

split into two subintervals, i.e., Iα = (C
q ,C) ∪ (C, 1

q ). Obvi-

ously, Iω ∩ (C, 1
q ) = ∅, we get

Fαq>C,q<C−1

q>1,αq<1,(1) = 1

q

∫ C

C
q

dα
√

1 − q−2

= C(q − 1)q−2
√

1 − q−2. (66)

2. The second term (αq < 1)

The second term with αq < 1 is expressed as

Fq>1,αq<1,(2) = 1

q(1 − C)

∫ 1
q

0
dα

∫ αq

0
dωH (ω − C)

× H (α − C)
√

�. (67)

Notice that, for 1
q < C ⇒ q > 1

C , we must have
H (α − C) ≡ 0 for α ∈ Iα , and which yields

F q>C−1

q>1,αq<1,(2) = 0. (68)

On the contrary, for q < 1
C , we have Iα = (C, 1

q ) to ensure
that H (α − C) = 1. Furthermore, if αq < C ⇒ H (ω − C)
≡ 0 for ω ∈ Iω, then we thus have

F q<C−1,αq<C
q>1,αq<1,(2) = 0. (69)

However, if αq > C, Iω = (C, αq) to ensure H (ω − C) = 1,
then we get (see the Appendix)

F q<C−1,αq>C
q>1,αq<1,(2) = 1

q(1 − C)

∫ 1
q

C
dα

∫ αq

C
dω

√
�. (70)

Up to now, we have finished the first step for the derivation
of F (q) with q > 1 and αq < 1. In the following, we calculate
F (q) with q > 1 and αq > 1.

3. The first term (αq > 1)

In this region, αq > 1 ⇒ α > 1
q ⇒ Iα = ( 1

q , 1). The first
term corresponds to

Fq>1,αq>1,(1) = 1

q

∫ 1

1
q

dα

∫ C

0
dωδ(α − ω)

√
�, (71)

where we have used Iω = (0,C) ⊂ (0, 1) to account for
H (C − ω).

Likewise, if q < C−1, then Iα ∩ Iω = ∅, which implies

F q<C−1

q>1,αq>1,(1) = 0. (72)

In contrast, q > C−1, Iα = ( 1
q ,C) ∪ (C, 1), which results in

( 1
q ,C) ⊂ Iω and Iω ∩ (C, 1) = ∅, we obtain

F q>C−1

q>1,αq>1,(1) = 1

q

∫ C

1
q

dα
√

1 − q−2

= (qC − 1)q−2
√

1 − q−2. (73)

4. The second term (αq > 1)

In this region, Iω = (C, 1) and we have

Fq>1,αq>1,(2) = 1

q(1 − C)

∫ 1

1
q

dα

∫ 1

C
dωH (α − C)

√
�.

(74)

Also, we assume that 1
q > C ⇒ q < C−1, which hints that

α > C always holds ⇒ H (α − C) ≡ 1 for α ∈ Iα . After te-
dious calculations, we get (see the Appendix)

F q<C−1

q>1,αq>1,(2) = 1

q(1 − C)

∫ 1

1
q

dα

∫ 1

C
dω

√
�. (75)

However, for 1
q < C ⇒ q > C−1, Iα turns out to be (C, 1). We

have that

F q>C−1

q>1,αq>1,(2) = 1

q(1 − C)

∫ 1

C
dα

∫ 1

C
dω

√
�, (76)

and the detailed results are included in the Appendix.
Taken together, the characteristic function F (q) in the re-

gion q > 1 is summarized as

F1<q<C−1 = Fαq<C
q>1,αq<1,(1) + Fαq>C,q<C−1

q>1,αq<1,(1)

+ F q<C−1,αq<C
q>1,αq<1,(2) + F q<C−1,αq>C

q>1,αq<1,(2)

+ F q<C−1

q>1,αq>1,(1) + F q<C−1

q>1,αq>1,(2) (77)

and

Fq>C−1 = Fαq<C
q>1,αq<1,(1) + Fαq>C,q>C−1

q>1,αq<1,(1)

+ F q>C−1

q>1,αq<1,(2) + F q>C−1

q>1,αq>1,(1)

+ F q>C−1

q>1,αq>1,(2), (78)

which completes the derivation of F (q) in both regions.

D. Discussions

Combining Eqs. (77) and (78) with Eq. (58), the results
of F (q) are condensed in Fig. 4 for typical values of C. It is
observed that the function F (q) is defined in four regions, re-
spectively. Precisely, F (q) is undefined for q ∈ [0,C) and the
self-consistent argument is not applicable. For q ∈ [C, 1), the
function F (q) is expressed by Eq. (58) which is nondecreas-
ing. While for q ∈ [1,C−1) ∪ (C−1,∞), the function F (q) are
respectively given by Eqs. (77) and (78), whose monotonicity
strongly relies on the correlation factor C. We here exemplify
two special cases to showcase the characteristic function F (q),
i.e., C = 0 and C = 1. In the situation C = 0, the intrinsic
frequencies and distributed couplings are totally uncorre-
lated, such that F (q) = π/8 for q ∈ [0, 1) that is a constant,
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FIG. 4. The characteristic function F (q) vs q with typical values
of C. The red, green and blue solid lines represent the values of F (q)
in the intervals [C, 1), [1,C−1) and [C−1, 5], respectively.

and F (q) = (6
√

q2 − 1 + 2q2 arccsc q − 4 arcsec q)/8q2 for
q� 1. In the scenario C = 1, the random frequencies and cou-
plings are completely deterministically correlated in a way,
such that F (q) is vastly simplified as F (q) = q−1

√
1 − q−2

for q � 1. Remarkably, these expressions recover the results
obtained in Ref. [49].

We highlight that the self-consistent equations offer a
general framework for depicting the equilibrium states. The
information about the stationary order parameter R (phase
coherence) can be detected from the structures of F (q). For
instance, given a fixed value of K , the identity K−1 = F (q)
determines the roots of q, which, in turn, locate the order pa-
rameter R via q = KR. In other words, Eq. (46) establishes an
implicit function relation between K and R at different C. On
that basis, the backward critical coupling corresponding to the
desynchronization is marked by the criterion K−1

b = F (qb) =
max F (q), and the associated critical order parameter is Rb =
qbF (qb). For example, we have (Kb, Rb) = (8/π, π/8) for
C = 0 and (Kb, Rb) = (2,

√
2/2) for C = 1.

Figure 5 illustrates the critical points (Kb, Rb) as a function
of C. Upon increasing the correlation factor C, it can be
shown that the backward critical point Kb characterizing the
termination of synchronized states is decreasing. Meanwhile,
the corresponding critical order parameter Rb gets increased.
These panels demonstrate that, with the increment of the cor-
relation, the existing region for phase coherence is prolonged
accompanied by the overall improved degree of synchroniza-
tion.

Figure 6 illustrates the order parameters R as the function
of C for typical fixed values of K (K > Kb), in which the
theoretical predictions and numerical simulations show a pre-
fect agreement. It becomes apparent that the synchronizability
can be significantly enhanced by increasing the deterministic
correlation, i.e., a larger C leads to a larger order parameter
R, provided K is fixed. Actually, the gradual variations of
the order parameter and the backward critical points (Kb, Rb)
shown in Fig. 5 suggest that a relatively small correlation C

FIG. 5. The backward critical points Kb and Rb for desynchro-
nization transition vs the correlation factor C. In both panels, the
solid lines are theoretical predictions from the self-consistent argu-
ments, the circles are numerical simulations with N = 50 000.

is enough to efficiently improve the level of phase coherence.
On the basis of the above analyses, we conclude that, even
with a given restriction, the proper assignments of the dis-
tributed couplings (e.g., introducing deterministic correlations
between the couplings and natural frequencies) can greatly
facilitate synchronization in coupled oscillator systems.

V. DISCUSSION

Before concluding, we make brief discussion about the
results obtained above. The aim is to clarify how the

FIG. 6. The order parameter R vs the correlation factor C for
typical values of K . The blue solid lines represent the theoreti-
cal predictions and the red circles are numerical simulations with
N = 100 000.
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deterministic-random coupling (DRC) affect the synchronized
dynamics in the heterogeneously coupled phase oscillator sys-
tems. The main results consist of the following two parts:

In Sec. III, we investigate the impacts of DRC on the for-
ward critical point Kf for the onset of synchronization. Using
the linear stability analysis, we obtain the eigenvalue equa-
tion describing the instability of the asynchronous state given
by Eq. (17). The eigenvalue equation is further discussed
in detail in Sec. III B. By imposing critical conditions, the
forward critical point Kf is obtained analytically in Eq. (23)
that is accompanied by the balanced equation Eq. (24) for
the critical frequency . Furthermore, the explicit formulas
for the balanced equation are calculated for different cases
[Eqs. (25)–(28)].

In Sec. III C, we use the perturbed method to get analytic
insights of Kf provided that the correlation factor C is small
enough. For this, we introduce the ansatz Eq. (30) with the
unknown scaling exponent β and the coefficient 1. Next, the
key task is to analyze the perturbed balanced equation Eq. (31)
which should be discussed in three different scenarios, re-
spectively, i.e., 0 < β < 1

2 [Eq. (35)], 1
2 < β < 1 [Eq. (36)],

and β = 1
2 [Eq. (37)]. After that, we demonstrate that only

the exponent β = 1
2 and the coefficient 1 = ±1 are admit-

table, thereby leading to the scaling behavior of Kf given by
Eq. (38).

The results of below synchronization are shown in Figs. 2
and 3 and summarized in Sec. III D. The main conclusion
is that the correlation factor has a significant influence on
the threshold for synchronization transition. When correlation
C = 0, the frequency and coupling are totally uncorrelated, at
which the critical point corresponding to the onset of synchro-
nization attains the maximum. However, if the deterministic
correlation is introduced (C > 0), then Kf gets decreased and
the deterministic correlation is prone to promote the onset of
synchronization. Interestingly, it is found that there exists a
critical correlation factor, at which Kf attains the minimum.
Finally, for C�(≈ 0.75) < C(≈ 1), Kf tends to a constant.
Therefore, the overall effect of the deterministic correlation
is to render the synchronization transition easier.

Section IV is devoted to untangle the effects of the DRC
on the synchronizability above the threshold. We utilize
the mean-field argument to obtain the self-consistent equa-
tion Eq. (45) through which all the stationary behaviors of the
systems can be captured. For convenience, the self-consistent
equation Eq. (45) is reformulated as parametric form given
by Eq. (46). Subsequently, we focus on discussing the char-
acteristic function F (q) Eq. (47) in various scenarios. The
computational processes are tediously complicated and the
main steps are as follows:

The first case with 0 � q < 1 is discussed in Sec. IV B.
Specifically, for 0 � q < C, the characteristic function is
proven to be undefined. However, for C � q < 1, the char-
acteristic function is summarized as Eq. (58). For the second
case q > 1 (Sec. IV C), the associated discussions become
more involved which should be distinguished with two sub-
cases, respectively. Specifically, in the situation q ∈ (1,C−1),
the characteristic function F (q) contains six terms that is
summarized in Eq. (77). In the situation q ∈ (C−1,∞), the
characteristic function F (q) consists of five terms that is listed

in Eq. (78). Finally, all the calculation details can be found
in the Appendix and the typical results of F (q) are shown in
Fig. 4.

The analyses and discussions about the self-consistent
equation are conduced in Figs. 5 and 6 and are summarized
in Sec. IV D, which mainly involves the dependence of back-
ward critical points and the global order parameter on the
correlation factor C. Thus, we conclude that, even with a given
restriction, the proper assignments of the distributed couplings
(e.g., the deterministic-random correlations) can significantly
favor synchronization transition in the networked oscillator
systems.

VI. CONCLUSION

In summary, we have investigated the synchroniza-
tion optimization in the generalized Kuramoto model with
deterministic-random coupling (DRC), where the uniformly
distributed couplings are rearranged, such that a fraction of
which are correlated with the intrinsic frequencies, whereas
the remainder retains independent. As reported in the previous
studies, it has been identified that the heterogeneous patterns
of coupling can shape the collective dynamics of phase oscil-
lators toward synchronization.

Nonetheless, in this work, we uncovered that the appro-
priate deterministic correlations involved in the DRC can
significantly enhance synchronization dynamics. Specifically,
we showed that, even within a given restriction, the added
deterministic correlations render synchronization transition
easier compared to the uncorrelated case. In particular, we
revealed that the deterministic correlations have nontrivial
impacts on both the onset and vanishing of synchroniza-
tion. There exists a minimum critical threshold for a certain
correlation manifesting the instability of the asynchronous
state. Furthermore, we demonstrated that, in the supercritical
regime, the increasing deterministic correlations tend to favor
synchronization. Both the existing region and the level of
phase coherence are remarkably amplified. We developed an
analytical treatment to comprehend the essential properties
underlying synchronization optimization induced by DRC.
Therefore, our work has led a solid foundation for exploring
synchronization optimization, and thus provided significant
insights for the better understanding of control strategy of
synchronization in networked systems.
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APPENDIX: THE DETAILED RESULTS
OF THE CHARACTERISTIC FUNCTION

In this Appendix, we list the specific expressions of the
characteristic function F (q) in different ranges that are men-
tioned in the main text.
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In the region 1 < q < C−1 and C < αq < 1, the character-
istic F (q) in Eq. (70) is

F q<C−1,αq>C
q>1,αq<1,(2) = 1

q(1 − C)

∫ 1
q

C
dα

∫ αq

C
dω

√
�

= U1 + C(U2 + U3 + U4 + U5 + U6)

4(−1 + C)q2
, (A1)

where

U1 = − arccosC, (A2)

U2 = 3
√

1 − C2, (A3)

U3 = −3C
√

−1 + q2, (A4)

U4 = −2C arccsc q, (A5)

U5 = Cq2 arcsec q, (A6)

U6 = 2C arcsin q. (A7)

In the situation 1 < q < C−1 and αq > 1, the characteristic
function F (q) in Eq. (75) is calculated as

F q<C−1

q>1,αq>1,(2)

= 1

q(1 − C)

∫ 1

1
q

dα

∫ 1

C
dω

√
�

= π + V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9

8(−1 + C)q2
,

(A8)

with

V1 = −6C
√

1 − C2, (A9)

V2 = −6
√

−1 + q2, (A10)

V3 = 6C
√

−C2 + q2, (A11)

V4 = −2q2 arccsc q, (A12)

V5 = 4 arcsec q, (A13)

V6 = −2 arcsin C, (A14)

V7 = −4C2 arcsin C, (A15)

V8 = 2q2 arcsin
C

q
, (A16)

V9 = 4C2 arctan
C√

−C2 + q2
. (A17)

In the circumstance q > C−1 and αq > 1, the characteristic
function F (q) in Eq. (75) is expressed as

F q>C−1

q>1,αq>1,(2)

= 1

q(1 − C)

∫ 1

C
dα

∫ 1

C
dω

√
�

= W1 + W2 + W3 + W4 + W5 + W6 + W7 + W8

4(−1 + C)q2
, (A18)

in which

W1 = −3
√

−1 + q2, (A19)

W2 = −3C2
√

−1 + q2, (A20)

W3 = 3C
√

−C2 + q2, (A21)

W4 = 3
√

−1 + C2q2, (A22)

W5 = −(1 + C2)(2 + q2) arccsc q, (A23)

W6 = (2 + C2q2) arccsc qC, (A24)

W7 = q2 arcsin
C

q
, (A25)

W8 = 2C2 arctan
C√

−C2 + q2
. (A26)
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