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We investigate a symmetric logarithmic derivative (SLD) Fisher information for kinetic uncertainty relations
(KURs) of open quantum systems described by the GKSL quantum master equation with and without the detailed
balance condition. In a quantum kinetic uncertainty relation derived by Vu and Saito [Phys. Rev. Lett. 128,
140602 (2022)], the Fisher information of probability of quantum trajectory with a time-rescaling parameter
plays an essential role. This Fisher information is upper bounded by the SLD Fisher information. For a finite
time and arbitrary initial state, we derive a concise expression of the SLD Fisher information, which is a double
time integral and can be calculated by solving coupled first-order differential equations. We also derive a simple
lower bound of the Fisher information of quantum trajectory. We point out that the SLD Fisher information
also appears in the speed limit based on the Mandelstam-Tamm relation by Hasegawa [Nat. Commun. 14, 2828
(2023)]. When the jump operators connect eigenstates of the system Hamiltonian, we show that the Bures angle
in the interaction picture is upper bounded by the square root of the dynamical activity at short times, which
contrasts with the classical counterpart.

DOI: 10.1103/PhysRevE.108.054136

I. INTRODUCTION

In recent years, universal relations that characterize the
fluctuations of nonequilibrium systems have been intensively
investigated. A primary class of inequalities is the thermody-
namic uncertainty relation (TUR) [1–10]. A similar relation,
the kinetic uncertainty relation (KUR), imposes another upper
bound on the precision of generic counting observables in
terms of the dynamical activity [11–13].

Quantum coherence plays an essential role in a broad class
of thermodynamics. Concerning the TUR and KUR origi-
nally derived for classical stochastic systems, it has been
shown through specific examples that these relations can
be violated in the quantum realm [14–19]. Several quantum
bounds accounting for the quantum coherence have been de-
rived [20–25]. For open quantum systems described by the
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation,
Ref. [20] derived a TUR using the large deviation statistics.
For the nonequilibrium steady states, Ref. [21] derived a TUR
by analyzing the total system. Reference [22] studied period-
ically driven heat engines described by the quantum master
equation and derived a TUR in the slow driving. For sys-
tems described by the GKSL equation with time-independent
Hamiltonian and jump operators, Hesegawa [23–25] derived
a quantum KUR

τ 2(∂τ 〈�〉)2

var[�]
� I (1)

using the Cramér-Rao inequality. Here, � is a time-integrated
counting observable of the system and var[�] is its variance.

*subarusatosi@gmail.com

I is the symmetric logarithmic derivative (SLD) Fisher
information:

I := 4
[
∂θ1∂θ2C(θ1, θ2)

− ∂θ1C(θ1, θ2)∂θ2C(θ1, θ2)
]|θ1=0=θ2 , (2)

C(θ1, θ2) := TrSρ
θ1,θ2 (τ ). (3)

Here, ρθ1,θ2 (t ) is the solution of the two-sided GKSL equa-
tion [see (15)] [26]. TrS is the trace of the system. Using this,
Hasegawa estimated I in the long-time region [23]. For the
same system, Vu and Saito [27] derived a quantum KUR:

τ 2(∂τ 〈�〉)2

var[�]
� F. (4)

Here, F is the Fisher information of probability of quantum
trajectory with a time-rescaling parameter [see (12)]. The
Fisher information is the sum of the dynamical activity and
the quantum correction Q (Q2 in Ref. [27]) which vanishes
for the classical case. The calculation of F is not light since
one has to sum over contributions from a huge number of
trajectories. Therefore, upper and lower bounds are useful
in practical calculations. Vu and Saito demonstrated that F
is upper bounded by I. In this paper, we derive a concise
expression of the upper bound of Q for a finite time and
arbitrary initial state. We also derive a simple expression of
a lower bound of Q.

Another class of inequalities is the speed limit of state
transformation. For closed quantum systems, since 1945, the
Mandelstam-Tamm relation [28,29]

∫ τ

0 dt �E � D has been
known (In this paper, we set h̄ = 1). �E is the energy fluctu-
ation and D is the Bures angle [see (59)] between the initial
and final states. Recently, even in classical systems, it turns out
that there exist speed limits expressed in terms of the distance
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between states [30]. Shiraishi et al. [30] demonstrated that√
A(τ )σ

2
� 1

2
l (p(0), p(τ )) (5)

for a system described by a classical master equation
d
dt pn(t ) =∑m Wnm pm(t ) satisfying the local detailed bal-
ance condition. Here, l (p(0), p(τ )) :=∑n |pn(0) − pn(τ )| is
L1 norm, σ is the total entropy production, and A(τ ) :=∫ τ

0 dt
∑

n �=m Wnm pm is the dynamical activity. A similar
relation

A(τ ) � 1
2 l (p(0), p(τ )) (6)

has been known [8]. Quantum extensions of (5) for the
open quantum systems described by the GKSL equation have
been researched [10,31–34]. However, the quantum extension
of (6) has been less investigated. For such open quantum
systems, Hasegawa [35] derived a KUR by exploiting the
Mandelstam-Tamm speed limit. In this KUR, a dynamical
activitylike quantity appeared instead of F . We point out that
this quantity equals the SLD Fisher information when Hamil-
tonian and jump operators are time independent. Using our
expressions, we derive a quantum speed limit described by
the dynamical activity when the jump operators connect the
eigenstates of the system Hamiltonian. Our speed limit can be
regarded as a quantum extension of (6).

The structure of the paper is as follows. First, we explain
the Fisher information F (Sec. II). In Sec. III, we show that the
SLD Fisher information is a sum of the dynamical activity and
a quantum correction, which is the upper bound of Q. In Sec.
IV, we study Q and its upper and lower bounds numerically
in a two-level system. Next, we study a speed limit (Sec. V).
In Sec. VI, we summarize this paper. In Appendix A, we
explain the SLD Fisher information and the two-sided GKSL
equation. In Appendix B, we derive (31). In Appendix C, we
analyze the upper bound of Q in the long-time region. In Ap-
pendix D, we derive the lower bound of Q. In Appendix E, we
derive (50) and (51). In Appendix F, we review Hasegawa’s
method and results. Appendix G is for the detailed calcula-
tions for Sec. V.

II. FISHER INFORMATION FOR QUANTUM
TRAJECTORIES

Here, we summarize techniques introduced in Ref. [27].
The GKSL equation is given by

dρ(t )

dt
= L(t )ρ(t ), (7)

L(t )• := −i[HS (t ), •] +
∑

k

[
Lk (t ) • Lk (t )†

− 1

2
{Lk (t )†Lk (t ), •}

]
. (8)

Here, [A, B] := AB − BA, {A, B} := AB + BA, and • is an
arbitrary linear operator of the system. HS is the system
Hamiltonian and {Lk} are jump operators. The following dis-
cussion does not require the detailed balance condition.

A quantum trajectory is specified by a list of tuples 	 :=
{(t1, k1), (t2, k2), …, (tN , kN )}. Here, tα is the time of the αth
jump by a jump operator Lkα

. The probability of quantum

trajectory is given by [27]

Pθ (	) = TrS[Mθ (	)ρ(0)Mθ (	)†], (9)

where

Mθ (	) := W θ (τ, tN )

( N∏
α=1

Lθ
kα

(tα )W θ (tα, tα−1)

)
(10)

with t0 = 0. W θ (t, s) is defined by

∂W θ (t, s)

∂t
=
(

−iH θ
S − 1

2

∑
k

(
Lθ

k

)†
Lθ

k

)
W θ (t, s) (11)

under W θ (s, s) = 1 with

H θ
S := (1 + θ )HS, Lθ

k := √
1 + θLk . (12)

Here, θ is the time-rescaling real parameter. The Fisher infor-
mation F is defined by

F := −〈∂2
θ lnPθ (	)

∣∣
θ=0

〉
, (13)

where 〈•〉 denotes the expected value for the probability dis-
tribution Pθ (	)|θ=0. F is bounded as (see Appendix A)

F � I. (14)

I is given by (2). The two-sided GKSL equation governing
ρθ1,θ2 is given by

dρθ1,θ2 (t )

dt
= Lθ1,θ2 (t )ρθ1,θ2 (t ) (15)

under ρθ1,θ2 (0) = ρ(0) [26]. Here,

Lθ1,θ2 (t )• := −iH θ1
S • + • iH θ2

S +
∑

k

{
Lθ1

k • (Lθ2
k

)†

− 1

2

[(
Lθ1

k

)†
Lθ1

k • + • (Lθ2
k

)†
Lθ2

k

]}
. (16)

F can be calculated only numerically. First, we discretize
time and introduce

�θ
0 := 1 +

(
−iH θ

S − 1

2

M∑
m=1

(
Lθ

m

)†
Lθ

m

)
�t, (17)

�θ
m := Lθ

m

√
�t (m = 1, . . . , M ). (18)

Here, �t := τ/N with a sufficiently large integer number N .
M is the number of the jump operator of the GKSL equation.
The probability of quantum trajectory Pθ (	) is

Pθ ({mi}) := TrS
[
�θ

mN−1
· · ·�θ

m0
ρ(0)

(
�θ

m0

)† · · · (�θ
mN−1

)†]
(19)

in N → ∞. Then, by quantum jump method [36], we numer-
ically construct each trajectory and calculate

F̃ := −
M∑

m0,··· ,mN−1=0

Pθ ({mi})∂2
θ ln Pθ ({mi})|θ=0, (20)

which is the discrete version of F . In the N → ∞ limit, F̃
becomes F .
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Note that (9) is slightly different from the original defini-
tion in Ref. [27], in which the initial state is decomposed as

ρ(0) =
∑

α

pα|α〉〈α|, (21)

where {|α〉} are normalized but need not be orthogonalized.
The probability of quantum trajectory is defined by

Pθ (α, {mi})

:= pαTrS
[
�θ

mN−1
· · · �θ

m0
|α〉〈α|(�θ

m0

)† · · · (�θ
mN−1

)†]
.

(22)

The associated Fisher information is

F̃ ′ := −
∑

α

M∑
m0,··· ,mN−1=0

Pθ (α, {mi})

× ∂2
θ ln Pθ (α, {mi})

∣∣∣∣
θ=0

. (23)

Vu-Saito’s original Fisher information F ′ is the N → ∞ limit
of F̃ ′. In general, F ′ does not coincide with F and depends
on the decomposition (21). However, the upper bound derived
from the quantum Cramér-Rao theorem [37,38] is indepen-
dent of the definitions, and F ′ � I holds (Appendix A).

III. SLD FISHER INFORMATION

A. Long time approximation

In Refs. [23,27], the SLD Fisher information I is calcu-
lated in the limit of the long-time when HS and Lk are time
independent. The SLD Fisher information I can be rewritten
as

I = 4∂θ1∂θ2 ln TrSρ
θ1,θ2 (τ )

∣∣
θ1=0=θ2

. (24)

If HS and Lk are time independent, I becomes

I = 4τ∂θ1∂θ2λ(θ1, θ2)
∣∣
θ1=0=θ2

+ O(1) (25)

in the limit of the long time. Here, λ(θ1, θ2) is the eigen-
value of Lθ1,θ2 which satisfies λ(0, 0) = 0. Based on this,
Refs. [23,27] have derived

I ≈ τ (Ḃss + Q̇+), (26)

Ḃss :=
∑

k

TrS[L†
k Lkρ

ss], (27)

Q̇+ := −4(TrS[L2RL1ρ
ss] + TrS[L1RL2ρ

ss]) (28)

with

L1• := −iHS • +1

2

∑
k

[Lk • L†
k − L†

k Lk•], (29)

L2• := •iHS + 1

2

∑
k

[Lk • L†
k − •L†

k Lk]. (30)

Here, ρss is the steady state and R is the pseudoinverse of the
Liouvillian [see (C7)].

B. Our result

Here, when HS and Lk depend on time, we derive an ex-
pression of I for arbitrary times based on (2). The first term

of (2) is reduced to the sum of the dynamical activity B(τ ) and
two double integrals (Appendix B):

∂θ1∂θ2C(θ1, θ2)
∣∣
θ1=0=θ2

= 1
4 B(τ ) + I1 + I2, (31)

where

B(t ) :=
∫ t

0
ds
∑

k

TrS[Lk (s)ρ(s)Lk (s)†], (32)

I1 :=
∫ τ

0
ds
∫ s

0
du TrS[L2(s)U (s, u)L1(u)ρ(u)], (33)

I2 :=
∫ τ

0
ds
∫ s

0
du TrS[L1(s)U (s, u)L2(u)ρ(u)]. (34)

Here, U (s, u) is defined by

∂U (s, u)

∂s
= L(s)U (s, u) (35)

with U (u, u) = 1. The second term of (2) is calculated as

− ∂θ1C(θ1, θ2)∂θ2C(θ1, θ2)
∣∣
θ1=0=θ2

= −
2∏

i=1

∫ τ

0
ds TrS[Li(s)ρ(s)]

= −
(∫ τ

0
ds TrS[HS (s)ρ(s)]

)2

=: I3. (36)

Here, we used

TrS[L1•] = −iTrS[HS•] = −TrS[L2•]. (37)

Thus, the SLD Fisher information is given by

I = B(τ ) + Q+(τ ), (38)

Q+ := 4(I1 + I2 + I3). (39)

Here, Q+ is the upper bound of the quantum correction Q :=
F − B.

Q+(t ) can be written as (Appendix B)

Q+ = 2Re(Qa) (40)

with

Qa(t ) := 4
∫ t

0
ds
∫ s

0
du TrS[L2(t )U (s, u)P (u)L1(u)ρ(u)].

(41)

Here, Re(x) is the real part of x and

P (u)• := • − ρ(u)TrS[•]. (42)

The double time integral is given by the following coupled
differential equations,

dQa

dt
= 4TrS[L2(t )qa(t )], (43)

dqa

dt
= P (t )L1(t )ρ(t ) + L(t )qa(t ) (44)

with Qa(0) = 0, qa(0) = 0, and the GKSL equation (7).
Equations (43), (44), and (7) can be solved by standard nu-

merical methods such as the Runge-Kutta method. (40), (43),
and (44) are the first main results of this paper. In Appendix C,
we check if Q+ in the long-time region reproduces (28).
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FIG. 1. Q, Q+, Q− and B for (a) γ t � 6 and (b) γ t � 2. The horizontal axes are γ t . We set � = γ , � = 0.25γ , n = 1, and ρ(0) =
1
2 (1 + 0.2σx + 0.3σy − 0.4σz ). Here, σi is the Pauli matrix (σy = −i|0〉〈1| + i|1〉〈0|, etc.).

The lower bound of Q is also given by a double time
integral (Appendix D):

Q � Q− := B(τ )2

− 2
∫ τ

0
ds
∫ s

0
du TrS[γ̂ (s)U (s, u)γ̂ (u)ρ(u)]

=: B(τ )2 + Qc(τ ). (45)

Here,

γ̂ (t )• :=
(

−iHS − 1

2

∑
k

L†
k Lk

)
•

+ •
(

iHS − 1

2

∑
k

L†
k Lk

)
. (46)

Qc(t ) can be calculated in the same way as Qa.

IV. NUMERICAL ANALYSIS

In the following, we suppose that HS and Lk are time-
independent.

As an example, we consider a system described by

HS = �|1〉〈1| + �(|0〉〈1| + |1〉〈0|), (47)

L1 = √
γ n|1〉〈0|, (48)

L2 =
√

γ (n + 1)|0〉〈1|. (49)

Figure 1 shows the time dependence of the dynamical activity
B and the quantum correction Q and its upper and lower
bounds (Q+ and Q−). F was calculated by using (17), (18),
(19), and (20) with the quantum jump method [36]. In Fig. 1,
we set γ�t = 0.001 and used 106 trajectories. In both panels,
we observe Q− � Q � Q+ holds. Figure 1(a) shows that the
quantum correction Q of this example is comparable to the
dynamical activity B. At short times, Q also takes negative
values and Q− provides a good lower bound as Fig. 1(b)
shows. After the state relaxes to the steady state, Q± increases
with a slope of Q̇±. Here, Q̇± := limτ→∞ Q±/τ are given by
[27] (Appendix E)

Q̇+ = 8A

γ y3[4(�2 + 2�2) + γ 2y2]3
, (50)

Q̇− = 2γB

y3[4(�2 + 2�2) + γ 2y2]3
, (51)

A := �2x(4�2+γ 2y2)3 + 8�2x(4�2+γ 2y2)2(6�2 + γ 2y2)

+ 16�4(γ 2�2y2(100x + 1) + γ 4y4(12x + 1)

+ 4�4(52x + 1)) + 256�6(γ 2(6x + 1)y2

+ 2�2(12x + 1)) + 1024�8y2, (52)

B := − x(4�2 + γ 2y2)3 + 16�2x(−16�4 + γ 4y4)

+ 16�4y2(−4�2 + 3γ 2y2) (53)

with x := n(n + 1), and y := 2n + 1. Q̇+ is nonnegative. In
general, Q± saturates when Q̇± = 0.

V. QUANTUM SPEED LIMIT

In this section, we discuss a quantum speed limit derived
by Hasegawa [35]:

1

2

∫ t2

t1

dt
√
J (t ) � D(σ (t1), σ (t2)). (54)

Here, σ (t ) := |�τ (τ ; t )〉〈�τ (τ ; t )|. (54) is the Mandelstam-
Tamm relation [28,29] applied to a state |�τ (s; t )〉 defined by

|�τ (s; t )〉 := Vτ (s; t )|ψ̃ (0)〉 ⊗ |0〉 (55)

with

Vτ (s; t ) := T exp

[ ∫ s

0
du

{
−i

t

τ
HS

(
t

τ
u

)

+
√

t

τ

∑
k

[Lk

(
t

τ
u

)
⊗ φ

†
k (u)

− Lk

(
t

τ
u

)†

⊗ φk (u)]

}]
. (56)

Here, |ψ̃ (0)〉 is a purification of ρ(0) (TrA[|ψ̃ (0)〉〈ψ̃ (0)|] =
ρ(0), where A is the ancilla system). T is the time ordering
operator. {φk (t )} are field operators having the canonical com-
mutation relation

[φk (t ), φ†
l (s)] = δklδ(t − s), (57)

054136-4



SYMMETRIC-LOGARITHMIC-DERIVATIVE FISHER … PHYSICAL REVIEW E 108, 054136 (2023)

FIG. 2. (a) l (t1.t2), D(ρ̃(t1), ρ̃(t2)), and T (ρ̃(t1), ρ̃(t2)); (b) D(ρ̃(t1), ρ̃(t2))/l (t1.t2), and T (ρ̃(t1), ρ̃(t2))/l (t1.t2) for γ t1 = 2. The horizontal
axes are γ t2. βε = 10, ρ(0) = 1

2 (1 − 0.5σx + 0.3σy + 0.2σz ). σi is the Pauli matrix.

and |0〉 is the vacuum state for the fields. J (t ) is the SLD
Fisher information for time [see (A5)]:

J (t ) := 4[〈∂t�τ (τ ; t )|∂t�τ (τ ; t )〉
− 〈∂t�τ (τ ; t )|�τ (τ ; t )〉〈�τ (τ ; t )|∂t�τ (τ ; t )〉], (58)

where |∂t�τ (τ ; t )〉 := ∂t |�τ (τ ; t )〉. In the Mandelstam-
Tamm relation, J (t )/4 is reduced to the energy fluc-
tuation. In Hasegawa’s theory, the Hamiltonian becomes
i ∂Vτ (τ ;t )

∂t Vτ (τ ; t )†, which does not relate to the real system
dynamics and thus, the physical meaning may not be so clear.
D(ρ, σ ) is the Bures angle:

D(ρ, σ ) := cos−1 F (ρ, σ ), (59)

F (ρ, σ ) := Tr
√√

ρσ
√

ρ = F (σ, ρ). (60)

F (ρ, σ ) is the fidelity [39]. Because of the contractivity of the
Bures angle (p. 414 of Ref. [39]) and ρ(t ) = TrABσ (t ) (B is
the field system),

D(σ (t1), σ (t2)) � D(ρ(t1), ρ(t2)) (61)

holds. Note that the trace distance T (ρ1, ρ2) :=
1
2 TrS

√
(ρ1 − ρ2)2 is smaller than the Bures angle

D(ρ1, ρ2) � T (ρ1, ρ2) [39]. For time-independent HS and Lk ,
we recognize that the two SLD Fisher information (2) and
(58) are connected (Appendix F),

J (t ) = I (t )

t2
= B(t ) + Q+(t )

t2
. (62)

The quantum correction Q+ can be eliminated in the inter-
action picture ρ̃(t ) := eiHStρ(t )e−iHSt when

[Lk, HS] = ωkLk, (63)

where ωk is a real number. The quantum master equation for
ρ̃(t ) is given by

dρ̃

dt
=
∑

k

[
Lk ρ̃(t )L†

k − 1

2
{L†

k Lk, ρ̃(t )}
]
. (64)

Repeating the arguments from (54) to (62), we obtain a quan-
tum speed limit of the system expressed with the dynamical
activity:

l (t1, t2) := 1

2

∫ t2

t1

dt

√
B(t )

t
� D(ρ̃(t1), ρ̃(t2)). (65)

Here, 0 � t1 � t2. (65) is the second main result of this paper.

As an instance, we consider a spinless quantum dot cou-
pled to a single lead,

dρ

dt
= −i[HS, ρ] + γ [1 − f (ε)]D[a](ρ) + γ f (ε)D[a†](ρ),

(66)

where HS = εa†a and D[X ](•) := X • X † − 1
2 {X †X, •}.

Here, a is the annihilation operator of the electron of the
system, ε is the energy level of the system, f (ε) = 1

eβε+1 is
the Fermi distribution, β is the inverse temperature of the
lead, and γ is the coupling strength. The jump operators
are L1 = √

γ [1 − f (ε)]a and L2 = √
γ f (ε)a† with ω1 = ε

and ω2 = −ε. (See Appendix G for detailed calculations).
Figure 2(a) shows the Bures angle D, the trace distance T ,
and geometric length l as functions of final time t2. In Fig. 2,
we set the initial time γ t1 = 2. Figure 2(b) shows that the
bound achievement ratio D(ρ̃(t1), ρ̃(t2))/l (t1.t2) becomes
greater than 0.8 around γ t2 = 2. In Fig. 3, we showed the
results when the initial time γ t1 = 0. Around γ t = 0, because
of B(t ) ∝ t and l (0, t ) ∝ √

t , the bound achievement ratio
grows in square root of time D(ρ̃(0), ρ̃(t ))/l (0, t ) ∝ √

t . The
square root dependence makes the upper bound looser in the
short time regime as shown in Fig. 3(a).

Naive extensions of (5) and (6) to the quantum regime may
be √

B(τ )σ

2
� T (ρ̃(0), ρ̃(τ )), (67)

B(τ ) � T (ρ̃(0), ρ̃(τ )). (68)

However, we numerically checked that they fail even in the
spinless quantum dot due to the quantum effect. Actually, the
quantum extensions of (5) contain nontrivial quantum correc-
tions [10,31,34]. However, the quantum extension of (6) has
been less investigated. We speculate√

B(τ ) � D(ρ̃(0), ρ̃(τ )) (69)

from the discussion of Fig. 3. However, from (65), we only
could derive a looser bound,√

bmax(τ )τ � D(ρ̃(0), ρ̃(τ )) (70)

with

bmax(τ ) := max
0�t�τ

1

t
B(t ). (71)
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FIG. 3. (a) l (t1.t2), D(ρ̃(t1), ρ̃(t2)), and T (ρ̃(t1), ρ̃(t2)); (b) D(ρ̃(t1), ρ̃(t2))/l (t1.t2), and T (ρ̃(t1), ρ̃(t2))/l (t1.t2) for γ t1 = 0. The horizontal
axes are γ t2. Other parameters are the same as Fig. 2.

Here, we used
√

bmax(τ )τ � l (0, τ ). Thus (69) would be cor-
rect in the short time limit. Derivation of a simple quantum
speed limit at zero initial time is a future work. The extension
to the first passage time [40–42] for open quantum systems is
also an interesting problem.

VI. SUMMARY

We investigated the symmetric logarithm derivative (SLD)
Fisher information, which appears in the context of KUR and
is the upper bound of the Fisher information of the quantum
trajectory for the time-rescaling parameter. For a finite time
and arbitrary initial state, we derived a concise expression
of the SLD Fisher information using a double time integral,
which can be calculated by numerically solving coupled first-
order ordinary differential equations. We also derived a simple
lower bound of the Fisher information for the probability of
quantum trajectory. Furthermore, we pointed out that for the
time-independent system, the SLD Fisher information divided
by time squared is identical to the SLD Fisher information that
appeared in the Mandelstam-Tamm speed limit by Hasegawa
[35]. Based on this observation, we showed that when the
jump operators connects energy eigenstates, the upper bound
of the Bures angle between the initial and final states in the
interaction picture is expressed with the square root of the
dynamical activity.

Note added in proof. Recently, Ref. [43] has appeared,
where an analytical expression and an upper bound of the
quantum generalization of the dynamical activity (F14) are
provided.
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APPENDIX A: SLD FISHER INFORMATION
AND THE TWO-SIDED GKSL EQUATION

1. SLD Fisher information

We consider n real parameters θ = (θ1, . . . , θn) and a state
ρθ . The SLD Sθ

i is defined by

∂iρ
θ = 1

2

(
ρθ Sθ

i + Sθ
i ρθ
)
, Sθ

i = (Sθ
i

)†
. (A1)

Here, ∂i = ∂/∂θ i. Although Sθ
i is not unique in general, the

SLD Fisher information matrix

Jθ
i j := 1

2 Tr
[
ρθ
{
Sθ

i , Sθ
j

}]
(A2)

is unique [38]. Jθ
i j can be rewritten as Jθ

i j = Tr[∂iρ
θSθ

j ].
In the following, we consider a pure state ρθ . Differentiat-

ing (ρθ )2 = ρθ , we obtain

∂iρ
θ = (∂iρ

θ )ρθ + ρθ∂iρ
θ . (A3)

Thus, 2∂iρ
θ is an SLD. Using this relation and denoting ρθ =

|ψθ 〉〈ψθ |, we obtain

Jθ
i j = 4Re[〈∂iψ

θ |∂ jψ
θ 〉 − 〈∂iψ

θ |ψθ 〉〈ψθ |∂ jψ
θ 〉]. (A4)

Here, |∂iψ
θ 〉 := ∂i|ψθ 〉. For n = 1, Jθ := Jθ

11 becomes

Jθ = 4[〈∂θψ
θ |∂θψ

θ 〉 − 〈∂θψ
θ |ψθ 〉〈ψθ |∂θψ

θ 〉]. (A5)

2. Continuous measurement

We introduce (M + 1)-dimensional Hilbert space H with
an orthonormal basis {|m〉}M

m=0 and a fictitious environment
system E of which Hilbert space is H⊗N . We consider a
combined system of S, the ancilla system A, and E . We sup-
pose that the initial state of the combined system is |ψ̃ (0)〉 ⊗
|0N−1, . . . , 01, 00〉. Here, |ψ̃ (0)〉 is the purification of ρ(0)
(i.e., TrA[|ψ̃ (0)〉〈ψ̃ (0)|] = ρ(0)), and |0N−1, . . . , 01, 00〉 =
⊗N−1

i=0 |0〉i. For each i = 0, 1, . . . , N − 1, an environmental
subspace i interacts with system S during the time interval
[i�t, (i + 1)�t] via a unitary operator Ui. Here, �t := τ/N .
The state of the combined system at time τ is given by

|ψθ 〉 = UN−1 · · ·U1U0|ψ̃ (0)〉 ⊗ |0N−1, . . . , 01, 00〉

=
M∑

m0,··· ,mN−1=0

�θ
mN−1

· · ·�θ
m0

|ψ̃ (0)〉

⊗ |mN−1, . . . , m1, m0〉, (A6)

where �θ
mi

is defined by

〈kS|�θ
mi

|k′
S〉 = 〈kS|i〈mi|Ui|k′

S〉|0〉i. (A7)

|kS〉 and |k′
S〉 are bases of the system. We suppose that �θ

m
are the same as (17) and (18). The Fisher information asso-
ciated with POVM (positive operator valued measure) [39]
M is denoted by I (θ,M). If we put M0({mi}) := 1SA ⊗
|mN−1, . . . , m1, m0〉〈mN−1, . . . , m1, m0| (1SA is the identity
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operator of SA), the outcome is given by

Tr[M0({mi})|ψθ 〉〈ψθ |] = Pθ ({mi}). (A8)

Thus, F̃ defined by (20) is given by

F̃ = I (0,M0({mi})). (A9)

Because of the quantum Cramér-Rao theorem [37,38],

I (θ,M) � Jθ (A10)

holds. Here, Jθ is the SLD Fisher information given by (A5).
Using (A9), (A10), and (A5), we obtain

F � I = 4

[
∂2

∂θ1∂θ2
〈ψθ2 |ψθ1〉

−
(

∂

∂θ2
〈ψθ2 |ψθ1〉

)(
∂

∂θ1
〈ψθ2 |ψθ1〉

)]∣∣∣∣
θ1=0=θ2

.

(A11)

Here,

〈ψθ2 |ψθ1〉 = TrSρ
θ1,θ2 (τ ), (A12)

ρθ1,θ2 (τ ) := TrAE [|ψθ1〉〈ψθ2 |]. (A13)

The time evolution equation of ρθ1,θ2 (t ) is given by (15) [26].
Then, we obtain (14).

To obtain (22), we adopt a purification

|ψ̃ (0)〉 =
∑

α

√
pα|α〉 ⊗ |ϕα〉A (A14)

with A〈ϕα|ϕβ〉A = δαβ and the POVM M0(α, {mi}) :=
|ϕα〉AA〈ϕα| ⊗ |mN−1, . . . , m1, m0〉〈mN−1, . . . , m1, m0|. Then
the outcome becomes (22)

Tr[M0(α, {mi})|ψθ 〉〈ψθ |] = Pθ (α, {mi}). (A15)

The associated Fisher information defined by (23) is given by

F̃ ′ = I (0,M0(α, {mi})). (A16)

Then, F ′ � I holds.

APPENDIX B: DERIVATION OF (31)

In the following, we use the Liouville space. An arbitrary
linear operator X of the system is described by a vector |X 〉〉.
The inner product is defined by 〈〈Y |X 〉〉 := TrS (Y †X ). In par-
ticular, 〈〈1|X 〉〉 = TrS (X ). An arbitrary linear super operator of
the system is described by an operator of Liouville space. The
conservation of the probability leads to 〈〈1|L(t ) = 0.

C(θ1, θ2) is given by

C(θ1, θ2) = 〈〈1|U θ1,θ2 (τ, 0)|ρ(0)〉〉, (B1)

where U θ1,θ2 (u, s) is defined by

∂U θ1,θ2 (u, s)

∂u
= Lθ1,θ2 (u)U θ1,θ2 (u, s) (B2)

with U θ1,θ2 (s, s) = 1. Note that U0,0(u, s) = U (u, s). The first
derivative leads to

∂θiC(θ1, θ2) =
∫ τ

0
du 〈〈1|U θ1,θ2 (τ, u)∂θiLθ1,θ2 (u)

× U θ1,θ2 (u, 0)|ρ(0)〉〉 (i = 1, 2). (B3)

Using the above equation, U0,0(s, 0)|ρ(0)〉〉 = |ρ(s)〉〉, and

〈〈1|U0,0(s, 0) = 〈〈1|, (B4)

we obtain (36). (B4) is derived from 〈〈1|L(s) = 0. The second
derivative (31) consists of∫ τ

0
ds TrS

[
∂θ1∂θ2Lθ1,θ2 (s)

∣∣
θ1=0=θ2

ρ(s)
] = 1

4
B(τ ) (B5)

and ∫ τ

0
ds
∫ s

0
du TrS

[
∂θi′L

θ1,θ2 (s)U θ1,θ2 (s, u)

× ∂θiLθ1,θ2 (u)
∣∣
θ1=0=θ2

ρ(u)
] = Ii (i = 1, 2) (B6)

with 1′ := 2 and 2′ := 1. Note that

Li(s) = ∂θiLθ1,θ2 (s)
∣∣
θ1=0=θ2

. (B7)

Q+(t ) can be written as

Q+(t ) = Qa(t ) + Qb(t ), (B8)

where

Qb(t ) := 4
∫ t

0
ds
∫ s

0
du TrS[L1(t )U (s, u)P (u)L2(u)ρ(u)].

(B9)

qa in (43) is defined by

qa(s) :=
∫ s

0
du U (s, u)P (u)L1(u)ρ(u). (B10)

Because of

(L•)† = L•†, (B11)

(Li•)† = Li′ •†, (B12)

(PLi•)† = PLi′ •†, (B13)

Qb = Q∗
a holds. Then, we obtain (40).

APPENDIX C: QUANTUM CORRECTION Q+
IN THE LONG-TIME REGION

The left and right eigenvalue equations of the Liouvillian
L are

L|ρn〉〉 = λn|ρn〉〉, (C1)

〈〈ln|L = λn〈〈ln|. (C2)

We set 〈〈lm|ρn〉〉 = δmn, λ0 = 0, and 〈〈l0| = 〈〈1|. Then, ρ0(=:
ρss ) is the steady state.

If the initial state is the steady state, (B8) becomes

Q+(τ ) = 4

(∫ τ

0
ds
∫ s

0
du TrS[L2e(s−u)LPL1ρ

ss]

+
∫ τ

0
ds
∫ s

0
du TrS[L1e(s−u)LPL2ρ

ss]

)
(C3)

with

P := 1 − |ρss〉〉〈〈1|. (C4)
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Using

e(s−u)L =
∑

n

e(s−u)λn |ρn〉〉〈〈ln|, (C5)

we obtain∫ τ

0
ds
∫ s

0
du e(s−u)LP

=
∑
n �=0

∫ τ

0
ds
∫ s

0
du e(s−u)λnP|ρn〉〉〈〈ln|

= −τ
∑
n �=0

1

λn
|ρn〉〉〈〈ln| −

∑
n �=0

1

λ2
n

|ρn〉〉〈〈ln|

+
∑
n �=0

eτλn

λ2
n

|ρn〉〉〈〈ln|

≈ −τ
∑
n �=0

1

λn
|ρn〉〉〈〈ln| = −τR, (C6)

where

R :=
∑
n �=0

1

λn
|ρn〉〉〈〈ln| = −

∫ ∞

0
dt etLP (C7)

is the pseudoinverse of the Liouvillian [22,44–48] (the Drazin
inverse [49] of L). Thus, we obtain

Q+(τ ) ≈ −4τ (TrS[L2RL1ρ
ss] + TrS[L1RL2ρ

ss]) (C8)

in the long-time limit. The expression of Q+ in the long-time
approximation is consistent with (28).

APPENDIX D: LOWER BOUND OF Q

Equation (20) can be rewritten as

F̃ =
M∑

m0,··· ,mN−1=0

P0({mi})[∂θ ln Pθ ({mi})|θ=0]2. (D1)

The score ∂θ ln Pθ ({mi})|θ=0 is given by

∂θ ln Pθ ({mi})|θ=0 = b({mi}) + d ({mi}), (D2)

where

b({mi}) :=
N−1∑
n=0

δmn �=0, (D3)

d ({mi}) :=
N−1∑
n=0

δmn,0γn({mi})�t, (D4)

γn({mi}) := TrS[�̂mN−1 · · · γ̂ · · · �̂m0ρ(0)]

P0({mi})
. (D5)

Here we introduce the convention that δm �=0 := 1 − δm,0 and
�̂m• := �0

m • (�0
m)†. γ̂ is defined by (46). Then F̃ becomes

F̃ = 〈b({mi})2〉 + 2〈b({mi})d ({mi})〉 + 〈d ({mi})2〉, (D6)

where 〈X ({mi})〉 :=∑M
m0,··· ,mN−1=0 P0({mi})X ({mi}). b({mi})2

and b({mi})d ({mi}) are calculated as

b({mi})2 = b({mi}) + 2
N−1∑
n=1

n−1∑
l=0

δmn �=0δml �=0, (D7)

and

b({mi})d ({mi}) =
N−1∑
n=1

n−1∑
l=0

(δmn �=0γl ({mi})δml ,0�t

+ γn({mi})δmn,0�tδml �=0). (D8)

In (D7), the first and second terms of the right-hand side come
from the contributions of the same times and different times,
respectively. In the limit of �t → 0, trajectory averages of the
above two equations become

〈b({mi})2〉

= B(τ ) + 2
∫ τ

0
ds
∫ s

0
du TrS[	̂(s)U (s, u)	̂(u)ρ(u)],

(D9)
〈b({mi})d ({mi})〉

=
∫ τ

0
ds
∫ s

0
du

(
TrS[	̂(s)U (s, u)γ̂ (u)ρ(u)]

+ TrS[γ̂ (s)U (s, u)	̂(u)ρ(u)]

)
, (D10)

where 	̂(t )• :=∑k Lk • L†
k . Thus, we obtain

〈b({mi})2〉 + 2〈b({mi})d ({mi})〉

= B(τ ) − 2
∫ τ

0
ds
∫ s

0
du TrS[γ̂ (s)U (s, u)γ̂ (u)ρ(u)]

(D11)

and

Q = 〈d ({mi})2〉 − 2
∫ τ

0
ds
∫ s

0
du TrS[γ̂ (s)U (s, u)γ̂ (u)ρ(u)].

(D12)

Here, 〈d ({mi})2〉 cannot be written as the double time integral
because γn({mi}) in d ({mi}) depends on the entire sequence of
a trajectory {mi}. Using 〈d ({mi})2〉 � 〈d ({mi})〉2, 〈b({mi}) +
d ({mi})〉 = 0, and 〈b({mi})〉 = B(τ ), we obtain (45).

APPENDIX E: DERIVATIONS OF (50) AND (51)

We start from (25). We suppose that the matrix represen-
tation of Lθ1,θ2 is block diagonalized, with one block L̃θ1,θ2

having eigenvalue λ(θ1, θ2). The characteristic polynomial of
L̃θ1,θ2 is given by

det(L̃θ1,θ2 − λ1d ) =
d∑

n=0

a(n)(θ1, θ2)λn. (E1)

Here, d is the dimension of L̃θ1,θ2 and 1d is
d-dimensional identity matrix. By differentiating∑d

n=0 a(n)(θ1, θ2)λ(θ1, θ2)n = 0, we obtain

a(0)
i + a(1)λi = 0 (i = 1, 2), (E2)

a(0)
12 + a(1)λ12 + a(1)

1 λ2 + a(1)
2 λ1 + 2a(2)λ1λ2 = 0. (E3)

Here, a(n) := a(n)(0, 0), Xi := ∂θi X |θ1=0=θ2 , and X12 :=
∂θ1∂θ2 X |θ1=0=θ2 . λ12 is calculated from (E2) and (E3).
Q̇+ := limτ→∞ Q+/τ is given by

Q̇+ = 4λ12 − Ḃss. (E4)
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For the system described by (47)–(49), L̃θ1,θ2 is given by

L̃θ1,θ2 =

⎛
⎜⎜⎜⎜⎝

− 1
2 (�1 + �2)γ n i�2� −�1�

√
�1�2γ (n + 1)

i�2� i�2� − 1
2�2γ (n + 1) − 1

2�1γ n 0 −i�1�

−i�1� 0 −i�1� − 1
2�1γ (n + 1) − 1

2�2γ n i�2�√
�1�2γ n −i�1� i�2� L44

⎞
⎟⎟⎟⎟⎠

(E5)

with L44 := − 1
2 (�1 + �2)γ (n + 1) − i(�1 − �2)� and

�i := 1 + θi. Using (E2), (E3), and (E4), we obtain (50).
Q− can be rewritten as

Q−(t ) = ∂2

∂θ2
ln TrSρ

θ (t )

∣∣∣∣
θ=0

. (E6)

Here, ρθ (t ) is defined by
d

dt
ρθ (t ) = Lθρθ (t ), (E7)

Lθ• := (1 + iθ )γ̂ • +
∑

k

Lk • L†
k (E8)

with ρθ (0) = ρ(0). From (E6), we obtain

Q−(τ ) = τ
∂2

∂θ2
�(θ )

∣∣∣∣
θ=0

+ O(1), (E9)

where �(θ ) is the eigenvalue of Lθ which satisfies �(0) = 0.
Q̇− = ∂2�(θ )/∂θ2|θ=0 is calculated in a similar way as λ12.
Then, we obtain (51).

APPENDIX F: HASEGAWA’S APPROACH

We review Hasegawa’s method and results [35]. We intro-
duce a state

|�(t )〉 = U (t )|�(0)〉 (F1)

with

|�(0)〉 := |ψ̃ (0)〉 ⊗ |0〉, (F2)

U (t ) = T exp

[ ∫ t

0
ds

{
−iHS (s)

+
∑

k

[Lk (s) ⊗ φ
†
k (s) − Lk (s)† ⊗ φk (s)]

}]
. (F3)

The state |�(t )〉 provides the solution of the GKSL equa-
tion [35]:

ρ(t ) = TrAB[|�(t )〉〈�(t )|]. (F4)

Using dρ = TrAB[d (|�(t )〉〈�(t )|)],
d (|�(t )〉〈�(t )|) = d|�(t )〉〈�(t )| + |�(t )〉d〈�(t )|

+ d|�(t )〉d〈�(t )|, (F5)

and

d|�(t )〉 =
((

−iHS − 1

2

∑
k

L†
k Lk

)
dt +

∑
k

Lkdφ
†
k

+ 1

2

∑
k,l

LkLldφ
†
k dφ

†
l

⎞
⎠|�(t )〉, (F6)

we obtain the GKSL equation (7). Here, dφ
†
k =∫ t+dt

t ds φ
†
k (s).

If we put

ρτ (s; t1, t2) := TrAB[|�τ (s; t1)〉〈�τ (s; t2)|], (F7)

we obtain ρτ (τ ; t, t ) = ρ(t ) [35]. The time evolution equa-
tion of ρτ (s; t1, t2) is given by

∂ρτ (s; t1, t2)

∂s
= Lτ (s; t1, t2)ρτ (s; t1, t2) (F8)

with

Lτ (s; t1, t2)• = −i
t1
τ

HS

(
t1
τ

s

)
• + • i

t2
τ

HS

(
t2
τ

s

)

+
√

t1
τ

√
t2
τ

∑
k

Lk

(
t1
τ

s

)
• Lk

(
t2
τ

s

)†

− 1

2

∑
k

[
t1
τ

Lk

(
t1
τ

s

)†

Lk

(
t1
τ

s

)
•

+ • t2
τ

Lk

(
t2
τ

s

)†

Lk

(
t2
τ

s

)]
. (F9)

(F8) is a two-sided GKSL equation. Because of

Lτ (s; t, t ) = t

τ
L
(

t

τ
s

)
, (F10)

we obtain

ρτ (s; t, t ) = ρ

(
t

τ
s

)
. (F11)

J (t ) defined by (58) is given by

J (t ) = 4
[
∂t1∂t2C(t1, t2) − ∂t1C(t1, t2)∂t2C(t1, t2)

]|t1=t=t2

(F12)

with C(t1, t2) := TrSρτ (τ ; t1, t2). J (t ) is independent from τ .
From (54), Hasegawa [35] showed a KUR:

τ 2(∂τ 〈C〉τ )2

〈C2〉τ − 〈C〉2
τ

� B(τ ). (F13)

Here,

B(t ) := t2J (t ) (F14)

is “the quantum generalization of the dynamical activity.”
〈X 〉τ := 〈�τ (τ ; τ )|X |�τ (τ ; τ )〉 = 〈�(τ )|X |�(τ )〉 and C is an
operator of the field system which describes a time-integrated
counting observable: C counts and weights jump events in a
quantum trajectory of the system S. In Ref. [35], Hasegawa
showed a KUR for more general operators of the field system.
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If HS and Lk are time independent, (F9) is obtained by
replacing 1 + θi by ti/τ (i = 1, 2) in (16). In this case, B(τ )
in Ref. [35] is identical to I in Ref. [27]:

B(τ ) = I. (F15)

(F13) is consistent with (1).

APPENDIX G: QUANTUM DOT

We consider the quantum dot (66). The state of the
system can be written as ρ̃(t ) = 1

2 (1 + r(t ) · σ). Here, σ =
(σx, σy, σz ), σi is the Pauli matrix, and r(t ) = (x, y, z) is the
Bloch vector. The equation of the motion of the Bloch vector
is given by

d

dt
x = −1

2
γ x,

d

dt
y = −1

2
γ y, (G1)

d

dt
z = −γ (z − [1 − 2 f (ε)]). (G2)

The dynamical activity is given by

B(t ) =
∫ t

0
ds

γ

2
(1 + [2 f (ε) − 1]z(s)). (G3)

We put ρi := ρ̃(ti ). If the eigenvalues of κ := √
ρ1ρ2

√
ρ1 are

λ1 and λ2, the fidelity is given by F (ρ1, ρ2) = √
λ1 + √

λ2.
Then,

[F (ρ1, ρ2)]2 = TrS (κ ) + 2
√

det(κ )

= TrS (ρ1ρ2) + 2
√

det(ρ1) det(ρ2). (G4)

This leads to

F (ρ̃(t1), ρ̃(t2))

=
√

1 + r(t1) · r(t2) +
√

[1 − r(t1)2][1 − r(t2)2]

2
. (G5)

The Bures angle is given by D(ρ̃(t1), ρ̃(t2)) =
cos−1 F (ρ̃(t1), ρ̃(t2)). The trace distance is given by

T (ρ̃(t1), ρ̃(t2)) = 1
2 |r(t1) − r(t2)|. (G6)

Here, |x| =
√

x2 = √
x · x.
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