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We have studied in detail the M-p balanced spin-glass model, especially the case p = 4. These types of model
have relevance to structural glasses. The models possess two kinds of broken replica states; those with one-step
replica symmetry breaking (1RSB) and those with full replica symmetry breaking (FRSB). To determine which
arises requires studying the Landau expansion to quintic order. There are nine quintic-order coefficients, and
five quartic-order coefficients, whose values we determine for this model. We show that it is only for 2 � M <

2.4714 · · · that the transition at mean-field level is to a state with FRSB, while for larger M values there is either
a continuous transition to a state with 1RSB (when M � 3) or a discontinuous transition for M > 3. The Gardner
transition from a 1RSB state at low temperatures to a state with FRSB also requires the Landau expansion to
be taken to quintic order. Our result for the form of FRSB in the Gardner phase is similar to that found when
2 � M < 2.4714 · · · , but differs from that given in the early paper of Gross et al. [Phys. Rev. Lett. 55, 304
(1985)]. Finally we discuss the effects of fluctuations on our mean-field solutions using the scheme of Höller and
Read [Phys. Rev. E 101, 042114 (2020)] and argue that such fluctuations will remove both the continuous 1RSB
transition and discontinuous 1RSB transitions when 8 > d � 6 leaving just the FRSB continuous transition. We
suggest values for M and p which might be used in simulations to confirm whether fluctuation corrections do
indeed remove the 1RSB transitions.

DOI: 10.1103/PhysRevE.108.054134

I. INTRODUCTION

Spin models of the p-spin or Potts glass variety [1,2] played
an important role in the development of one of the current
theories of structural glasses, the random first order transi-
tion (RFOT) picture [3–7]. These models have been primarily
studied in the infinite dimensionality limit, which is equivalent
to mean-field theory. Of course, what is really wanted is an
understanding of what happens in the physical realm of two
and three dimensions, and for these dimensions simulations
[8,9] of models of the type studied in this paper have revealed
that they behave completely differently from what is predicted
by the mean-field calculations. In particular, in the simulations
there is no sign of the random first-order transition which is
one of the central features of RFOT theory. Below the ideal
glass transition there is supposed to exist the ideal glass state,
a state of low configurational entropy but with a high stability
due to the assumed paucity of glass states. This state in replica
language has one-step replica symmetry breaking (1RSB).
The transition temperature to this state is identified as the
Kauzmann temperature in RFOT theory, which is the temper-
ature at which the entropy of the glass state becomes equal
to that of the crystalline state [10]. While a discontinuous
transition was not seen in the simulations, evidence was found
for the existence of long correlation lengths, which is also
the behavior found in real-space renormalization group (RG)
calculations [11,12] of p-spin models in three dimensions.

That simulations in three dimensions lead to a picture quite
different to that which arises from mean-field calculations has
largely been ignored: Work has continued apace using the
large d limit and mean-field techniques. We have therefore

begun a program of trying to understand why the mean-field
picture does not extend to three dimensions [13]. For one
particular p-spin model, the M-p spin-glass model with p = 6,
we were able to give an argument that the 1RSB state of that
model was unstable in any finite dimension due to the excita-
tion of droplets of flipped spins whose interface free energy
are very small [14]. That argument is specific to glass models
with a particular form of time reversal symmetry which gives
rise to a field theory in which the cubic term w2 is zero [see
Eq. (25)]. Unfortunately the generic field theories thought
relevant to glasses have w2 nonzero and it is these which
we study in this paper. Most of our work will be focused on
the case of p = 4. The 1RSB phase for p = 6 spin glasses is
destroyed by nonperturbative droplet excitations. For generic
glass models with w2 nonzero, we can only find perturbative
arguments. They are strong enough to lead us to the con-
clusion that the continuous phase transition to a state with
1RSB will not exist for dimensions d less than 8 and will be
replaced by a continuous transition to a state with FRSB. We
shall suggest that fluctuation corrections to the coupling terms
in Eq. (25) might also drive the system away from having a
discontinuous transition to a 1RSB state to a continuous tran-
sition to a state with full replica symmetry breaking (FRSB),
but we do not know whether the fluctuation corrections are
large enough to bring that about. We suspect that this question
will only be resolved by simulations and values of p and M
which might be appropriate for such simulations are suggested
in Sec. III.

Our procedure is based upon the old idea [15] of using
the renormalization group recursion relations for the coupling
constants of the field theory to map the coefficients of the
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critical field theory into a region where the correlation lengths
are small and Landau theory (i.e., mean-field theory) with
small fluctuation corrections can be employed. This program
has also been used by Höller and Read [16] on the prob-
lem of the de Almeida-Thouless transition of the Ising spin
glass in a field [17]. It has a field theory identical to that
of the M-p-spin-glass models discussed in this paper, i.e.,
that of Eq. (25), but with different numerical values for the
coefficients. [To discuss finite dimensions a gradient term of
the form

∫
dd r

∑
a,b(∇qab(r))2 would need to be included in

Eq. (25).] The program therefore requires us to understand
in detail the stationary solutions, i.e., mean-field solutions of
Eq. (25), and the bulk of this paper is devoted to this task.
Because Höller and Read discussed the RG aspects of the
calculations in great detail, we shall treat those briefly, just
focusing on the implications of numerical studies which were
carried out after their paper was written [18].

In Sec. II we introduce the balanced M-p models and the
replica procedure which was used to average their free energy
over disorder. The balanced M-p spin models are very conve-
nient to study with simulations as they are readily extended
to finite dimensions on a d-dimensional lattice. When this is
done the resulting field theory acquires the already mentioned
gradient squared term. One of the attractions of the balanced
version of these models is the absence of “hard modes,” which
are just usually cast aside (as in the paper of Caltagirone et al.
[19]), but this leaves the subsequent calculations of uncertain
accuracy. We shall focus on the case p = 4 and regard the
number of types of Ising spins M as a variable which can take
noninteger values. The simulations of Campellone et al. [9]
which failed to find a discontinuous 1RSB transition were in
fact done for a closely related model with p = 4 and M = 4
in three dimensions. At cubic order there are two coupling
constants, w1 and w2, at quartic order, there are five cou-
pling constants, y1, . . . , y5 and at quintic order, there are nine
coupling constants, z1, . . . , z9. The quadratic term τ vanishes
as usual at the mean-field transition temperature Tc and is
negative when T < Tc. We calculate the “bare” value of all
these coefficients in Appendix A for the case p = 4. Fluc-
tuation corrections will modify the bare values. In studying
the model at noninteger values of M we are anticipating that
the fluctuation corrections can modify the bare coefficients.
Studying the field theory of Eq. (25) for general values of
the coefficients would be a good idea, but there are so many
of these coefficients that we have limited our study to those
values which can be reached by varying M in the bare values.
In Sec. III we discuss what we believe will be the likely
consequences of fluctuation effects on the coupling constants.

In Sec. II A we determine the free energy of the system
in the high-temperature or paramagnetic phase where the or-
der parameter qab is independent of a and b, that is, replica
symmetric. At mean-field level qab = 0, (but fluctuation cor-
rections would leave it replica symmetric but nonzero). If the
transition is continuous, so that qab is small just below the
transition, then the expansion of the Landau-Ginzburg free en-
ergy functional in powers of qab should be useful and we give
its form in Sec. II B. Most workers have stopped at the quartic
terms, but we have continued up to the quintic terms. This
is necessary for two reasons. The difference in free energy
between the 1RSB free energy and the FRSB free energy is of

O(τ 5) (see, for example, Ref. [20]). Thus, one needs to worry
about the quintic terms when working out whether the state
which forms at the continuous transition is of 1RSB type or
is of FRSB type. Fortunately, we can show that the borderline
value of M, M∗∗ ≈ 2.47140 between these types is not depen-
dent on the quintic terms. (For 2 � M < M∗∗ the continuous
transition is to a state with FRSB, while for M∗∗ < M < 3,
the continuous transition is to a state with 1RSB.) The second
reason relates to studies of the Gardner transition [1,2]. The
Gardner transition is the transition from a state with 1RSB to
a state with FRSB as the temperature is lowered. Right from
the beginning it was realized that the quintic terms are needed
for its study [1]. We shall find though that our actual FRSB
solution is quite different to that of Ref. [1]. This is discussed
in Sec. II E.

A feature of the FRSB solutions is a singularity first noticed
by Goldbart and Elderfield [21]. They found that the FRSB
solution for q(x) at quartic level could have an unphysical
singularity in the interval 0 < x < 1 which would imply that
the probability of two states having an overlap q would be neg-
ative, which is impossible. This problem was studied in some
detail by Janiš and colleagues using a nonstandard approach
to replica symmetry breaking [22]. We find in Sec. II E that
the singularity at quartic level in fact determines the value of
M∗∗ and that one avoids the singularity at M > M∗∗ by simply
being in the state with 1RSB. At the Gardner transition the
quintic terms remove the quartic-level singularities. However,
similar singularities are to be found also at quintic level. Right
at the Gardner transition temperature TG, just where the free
energies of the FRSB state and the 1RSB state are equal, the
Goldbart-Elderfield singularity is at the lower breakpoint x1.
This causes the derivative of q(x) at x = x1 to be infinite.
However, for temperatures T less than TG, the singularity is
below x1 and the derivative stays finite.

In Sec. II C we derive the free energy at mean-field level for
the 1RSB state. For M > 3, when w2/w1 > 1, the transition
from the high temperature normal phase to a state with 1RSB
is a discontinuous transition which takes place at a transition
temperature above Tc. We suspect that this behavior would
be seen for all values of M > 3. However, if one truncates
the free energy to quartic-level terms, as is commonly done,
then the 1RSB state only exists in the interval 3 < M � 6.64.
With the inclusion of the quintic terms, the 1RSB forms at a
discontinuous transition when 14.41 � M � 3.98 and 3.27 �
M > 3. Thus, with the quintic form the 1RSB state persists up
to larger values of M. We believe that if all terms were kept
then the discontinuous transition to the 1RSB state would exist
for all M > 3. In Sec. II D we describe the simplifications
which arise in the large M limit. Truncation leads to spurious
features as the Landau expansion cannot be expected to be
accurate when qab is not small. Another spurious feature of
truncation is the apparent phase transition at low temperatures
from the 1RSB state to the replica symmetric state with qab

nonzero. In the large M limit we can solve without truncation
and such a transition does not arise (see Sec. II C).

The form of the FRSB solutions at both quartic and quintic
level, together with the Gardner transitions, is in Sec. II E. In
Sec. III we discuss how fluctuation corrections to the coupling
constants used in the mean-field solution will change the
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continuous 1RSB transition into the continuous FRSB solu-
tion, using extensions of the approach of Höller and Read
[16]. We suspect that the discontinuous 1RSB transition might
also suffer the same fate, based on the results of simulations
in low dimensions [8,9], but we cannot support this possi-
bility with analytical arguments. We finally conclude with
suggestions of the kinds of model which could be studied
numerically to resolve these issues, and also to resolve the
question of whether the FRSB state can exist for dimensions
d < 6.

II. THE BALANCED M-p MODEL IN THE FULLY
CONNECTED LIMIT

In this section, we study the M-p spin-glass model in the
fully connected limit, where one has M different types of Ising
spins, Si(x), i = 1, 2, . . . , M at each site x coupled with spins
on other sites via p-body interactions. Here we focus on the
so-called balanced model introduced in Ref. [13] for even p,
where only the coupling between two sets of p/2 spins on two
different sites is considered. It amounts to considering only
the soft mode in a more general M-p model, where all the
couplings between k spins and p − k spins are included for
k = 1, 2, . . . , p − 1.

In this paper, we focus on the p = 4 case. For p = 4, the
balanced model is given by four-spin interactions between a
pair of two spins on two different sites. Each site has

(M
2

)
different two-spin combinations. Therefore, for given pair of

sites, there are
(M

2

)2
terms in the Hamiltonian. The Hamilto-

nian is given by

H = −1

2

∑
x �=y

[
M∑

i1<i2

M∑
j1< j2

J (i1,i2 ),( j1, j2 )
x,y Si1 (x)Si2 (x)S j1 (y)S j2 (y)

]
,

(1)

where each J (i1,i2 ),( j1, j2 )
x,y is drawn from the Gaussian distribu-

tion with zero mean and the variance

J2

NM p−1
= J2

NM3
. (2)

We will set J = 1 for convenience. After neglecting the terms
of subleading order in N , we can write the replicated partition
function averaged over the disorder as

Zn = Tr exp

[
β2

4NM3

n∑
a,b

{
N∑
x

M∑
i1<i2

Sa
i1 (x)Sa

i2 (x)Sb
i1 (x)Sb

i2 (x)

}2]
.

(3)

The diagonal terms (a = b) in the replica indices give a factor
exp[nNβ2C], where

C = 1

4M3

(
M

2

)2

= (M − 1)2

16M
. (4)

For a �= b, following the convention used in Ref. [19], we
introduce the δ functions enforcing

qab = 1

NM2

N∑
x

M∑
i1<i2

Sa
i1 (x)Sa

i2 (x)Sb
i1 (x)Sb

i2 (x) (5)

in the replicated partition function. Using the integral repre-
sentation of the δ function, we can write

Zn = enNβ2C
∫ ∏

a<b

dqabdμab exp[−NG(q, μ)], (6)

where

G(q, μ) = −M

4
β2
∑
a �=b

q2
ab + M

2

∑
a �=b

μabqab − ln L(μ) (7)

and

L(μ) = Tr
{Sa

i }
exp

[
1

2M

∑
a �=b

μab

M∑
i< j

Sa
i Sa

j S
b
i Sb

j

]
. (8)

In the large-N limit, the integral is dominated by the saddle
points which are determined by

μab = β2qab (9)

and

qab = 1

M2

〈
M∑

i< j

Sa
i Sa

j S
b
i Sb

j

〉
L

, (10)

where 〈· · · 〉L is evaluated with respect to L in Eq. (8). The free
energy F is then given by

βF

N
= − 1

N
lim
n→0

1

n
ln Zn = −Cβ2 + lim

n→0

1

n
G(q, μ). (11)

A. Replica symmetric solution

We first look for the saddle-point solutions in the replica
symmetric (RS) form qab = q and μab = μ for all a �= b. We
have

lim
n→0

1

n
G(q, μ) = M

4
β2q2 − M

2
μq − lim

n→0

1

n
ln L(μ). (12)

Using

∑
a �=b

Sa
i Sa

j S
b
i Sb

j =
(∑

a

Sa
i Sa

j

)2

− n (13)

in Eq. (8) and the Hubbard-Stratonivich transformation on the
first term, we can rewrite Eq. (8) as

L(μ) = e−nμ(K/2M ) Tr
{Sa

i }

∫
DK y

× exp

⎡⎣√ μ

M

∑
a

M∑
i< j

y(i, j)S
a
i Sa

j

⎤⎦, (14)

where

K ≡
(

M

2

)
(15)
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and the integral over the K-dimensional vector y =
(y1, y2, . . . , yK ) ≡ (y(1,2), y(1,3), . . . , y(M−1,M ) ) is defined as

∫
DK y ≡

K∏
α=1

(∫ ∞

−∞

dyα√
2π

e−y2
α/2

)
. (16)

We therefore have

lim
n→0

1

n
ln L(μ) = − K

2M
μ + M ln 2 +

∫
DK y ln ζ (y, μ),

(17)

where

ζ (y, μ) ≡ 1

2M
Tr
{Si}

exp

[√
μ

M
y · �

]
, (18)

with the K-dimensional vector � = (�1, �2, . . . , �K ) =
(S1S2, S1S3, . . . , SM−1SM ). The RS free energy is then given
by

βFRS

N
= − Cβ2 + M

4
β2q2 − M

2
μq + K

2M
μ

− M ln 2 −
∫

DK y ln ζ (y, μ). (19)

By varying the free energy with respect to q and μ, respec-
tively, we have saddle-point equations

μ = β2q (20)

and

q = 1

M2

∫
DK y

1

ζ 2(y, μ)

×
K∑

α=1

{
1

2M
Tr
{Si}

�α exp

[√
μ

M
y · �

]}2

. (21)

At high temperatures, the RS solutions are given by q = μ =
0. In that case, ζ = 1 and the corresponding free energy is

βFRS

N
= −Cβ2 − M ln 2. (22)

The entropy S = −∂F/∂T for this phase is

SRS

N
= −Cβ2 + M ln 2. (23)

This becomes negative below

T∗ =
√

C

M ln 2
= M − 1

4M
√

ln 2
. (24)

Some values of T∗ are T∗ = 0.20019 for M = 3, 0.22521 for
M = 4, 0.25023 for M = 6, and 0.25738 for M = 7. It keeps
increasing with M and approaches 0.30028 in the M → ∞
limit.

B. Landau expansion of free energy

To study a possible continuous transition, we expand the
free energy, Eq. (11) for small values of the order parameter.
We first expand Eq. (8) to O(μ5) and take the trace over the
spins. The detailed steps are given in Appendix A. Now using
Eqs. (7), (9), and (11), we can write the free energy as

βF

N
= −Cβ2 − M ln 2 + lim

n→0

1

n

[
τ
∑
a,b

q2
ab − w1

∑
a,b,c

qabqbcqca − w2

∑
a,b

q3
ab − y1

∑
a,b

q4
ab − y2

∑
a,b,c

q2
abq2

bc − y3

∑
a,b,c

q2
abqbcqca

− y5

∑
a,b,c,d

qabqbcqcd qda − z1

∑
a,b

q5
ab − z2

∑
a,b,c

q3
abq2

bc − z3

∑
a,b,c

q3
abqbcqca − z4

∑
a,b,c

q2
abq2

bcqca − z5

∑
a,b,c,d

q2
abqbcqcd qda

− z6

∑
a,b,c,d

q2
abqbcqcd qdb − z7

∑
a,b,c,d

q2
abqbcq2

cd − z8

∑
a,b,c,d

qabqbcqcd qdaqac − z9

∑
a,b,c,d,e

qabqbcqcd qdeqea

]
, (25)

where qaa = 0, qab = qba, and all the sums over replica indices
are without any restriction.

The coefficient of the quadratic term is given by

τ = M

4
β2

(
1 − K

M3
β2

)
= M

4
β4
(
T 2 − T 2

c

)
, (26)

where

Tc ≡
√

K

M3
= 1

M

√
M − 1

2
. (27)

This expression coincides with Eq. (27) of Ref. [19]. Some
values of Tc are 0.33333 for M = 3, 0.30619 for M = 4,
0.26352 for M = 6, and 0.24744 for M = 7. Note that Tc

decreases with M and becomes zero in the M → ∞ limit.

Note also that Tc > T∗ for M = 2, 3, . . . , 6 and T∗ > Tc for
M � 7.

The coefficients of the cubic terms are given by

w1 = β6K

6M3
, w2 = β6K

6M3
(M − 2). (28)

The quartic and quintic coefficients are given in Appendix A
as functions of M. It is known [1,19] that if the ratio of the
cubic terms w2/w1, which in our model is equal to M − 2,
is greater than one, a discontinuous transition to the one-step
replica symmetry breaking phase (1RSB) occurs. When M =
2, our model reduces to the Ising spin glass and we can check
that the cubic and quartic coefficients coincide with those for
the Ising spin glass except for the multiplicity factor of 23 for
wi and 24 for yi.
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C. The 1RSB solution

We now consider the case where qab and μab take the one
step replica symmetry breaking (1RSB) form taking values
q1 and μ1 on n/m1 diagonal blocks (labelled by Bk , k =
1, 2, . . . , n/m1 of size m1 and q0 and μ0 outside the blocks.
We then have the terms in Eq. (7) as∑

a �=b

q2
ab = n

[
(m1 − 1)q2

1 + (n − m1)q2
0

]
, (29)∑

a �=b

μabqab = n[(m1 − 1)μ1q1 + (n − m1)μ0q0]. (30)

We will focus on the 1RSB solutions with q0 = μ0 = 0. By
writing

1

2M

M∑
i< j

∑
a �=b

μabSa
i Sa

j S
b
i Sb

j

= μ1

2M

n/m1∑
k=1

M∑
i< j

⎧⎪⎨⎪⎩
⎡⎣∑

a∈Bk

Sa
i Sa

j

⎤⎦2

− m1

⎫⎪⎬⎪⎭ (31)

in Eq. (8) and by using the Hubbard-Stratonovich transforma-
tion, we have

Tr
{Sa

i }
exp

⎡⎣ 1

2M

M∑
i< j

∑
a �=b

μabSa
i Sa

j S
b
i Sb

j

⎤⎦
= exp

[
−n

μ1K

2M

][ ∫
DK y

×
{

Tr
{Si}

exp

[√
μ1

M

M∑
i< j

y(i, j)SiS j

]}m1
]n/m1

. (32)

Therefore, we have

lim
n→0

1

n
ln L(μ) = − K

2M
μ1 + M ln 2

+ 1

m1
ln
∫

DK y ζ m1 (y, μ1), (33)

where ζ is defined in Eq. (18). Using Eqs. (29), (30), and (33)
in Eq. (11),

βF1RSB

N
= −Cβ2 − M

4
β2(m1 − 1)q2

1

+ M

2
(m1 − 1)μ1q1 + K

2M
μ1 − M ln 2

− 1

m1
ln
∫

DK y ζ m1 (y, μ1). (34)

Varying the free energy with respect to q1 and μ1, respec-
tively, we have

μ1 = β2q1 (35)

and

q1 = 1

M2

1∫
DK y ζ m1 (y, μ1)

×
∫

DK y ζ m1−2
K∑

α=1

{
1

2M
Tr
{Si}

�α exp[

√
μ1

M
y · �]

}2

.

(36)

Now varying the free energy with respect to m1, we have

M

4
β2q2

1 + 1

m2
1

ln
∫

DK y ζ m1 (y, μ1)

− 1

m1

∫
DK y ζ m1 (y, μ1) ln ζ (y, μ1)∫

DK y ζ m1 (y, μ1)
= 0. (37)

In summary, Eqs. (35), (36), and (37) are the saddle-point
equations one has to solve for the 1RSB state.

Note that when m1 = 1, we can explicitly evaluate∫
DK y ζ (y, μ1) = exp

[
K

2M
μ1

]
. (38)

From Eq. (34), we see that when m1 = 1, the 1RSB free
energy is equal to the RS one:

βF1RSB

N
→

m1→1
−Cβ2 − M ln 2 = βFRS

N
. (39)

To determine the transition temperature T 1RSB
c to the 1RSB

state, we set m1 = 1 in Eqs. (35), (36), and (37) and solve for
β. For m1 = 1, we can combine these three equations into one
equation, fM (σ ) = 0 for the parameter

σ ≡
√

μ1

M
, (40)

where

fM (σ ) ≡ e−Kσ 2/2
∫

DK y

[
ζ (y, μ1) ln ζ (y, μ1)

− σ 2

4

∑K
α=1{2−MTr �α exp[σy · �]}2

ζ (y, μ1)

]
− K

2
σ 2.

(41)

Note that ζ (y, μ1) is a function of σ . If there exists a nonzero
solution σ to fM (σ ) = 0, then one can obtain nonzero q1 from
Eq. (36) and the transition temperature T 1RSB

c from Eq. (35).
We solve this equation by numerically evaluating multi-

dimensional integrals in Eq. (41). In Figs. 1 and 2, fM is
plotted as a function of σ for M = 3 and M = 4. As we can
see from the figures, fM (σ ) starts off very flat and increases
monotonically for large values of σ . For M = 3, Fig. 1 clearly
shows a monotonic increase as a function of σ , thus we can
conclude that the only solution to f3(σ ) = 0 is σ = 0. From
Eq. (36), we then have q1 = 0 thus no discontinuous transition
in this case. For M = 4, we have to evaluate six-dimensional
(K = 6) integrals in Eq. (41). For that, we use Monte Carlo
methods, and the results are shown in Fig. 2. The error bars
come from sampling random points in the integrands within
the Monte Carlo evaluation of the integrals. We have averaged
over 30 trials for each data point. Since f4(σ ) stays very flat
for small σ before increasing to large positive values, it is
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FIG. 1. fM (σ ) defined in Eq. (41) for M = 3. A nonzero solution
σ of fM (σ ) = 0 would signal a discontinuous transition into the
1RSB state.

quite difficult to determine, if any, nonzero solution σ from
this plot alone.

To understand the situation more clearly, we study the
behavior of fM (σ ) for small σ . We can show (see Appendix B
for details) that for small σ , the leading order in the small-σ
expansion of fM (σ ) is O(σ 6). In fact, if we write fM (σ ) =∑∞

i=0 ci(M )σ i, then we find that ci = 0 for i odd, c0 = c2 =
c4 = 0 and

c6(M ) = − M

24
(M − 1)(M − 3) (42)

for M = 3, 4, 5, . . .. Therefore, for M = 3, the leading order
is actually O(σ 8). The next-order coefficient is given by

c8(M ) = − M

48
(M − 1)(3M2 − 27M + 47), (43)

for M � 3. Some steps needed to obtain these are given in
Appendix B. We note that c8(M = 3) > 0. This is consistent
with the monotonic increase of f3(σ ) shown in Fig. 1. For
M > 3, c6 becomes negative. Combining this fact with the
monotonic increase for large σ , we can conclude that there
exists a nonzero solution to fM (σ ) = 0 and that a discontinu-
ous transition for M > 3 is expected. From Eq. (43), we find
that c8(M ) > 0 for M � 6.64, therefore for these values of
M, we can estimate the solution as σ  √−c6(M )/c8(M ).

FIG. 2. Same as Fig. 1 with M = 4.

FIG. 3. (y1 − y3 + y5)/β8 (dashed line) and zeff
1 /β10 (solid line)

as functions of M. In the large-M limit, they approach 1/16 and 1/20,
respectively.

This program, however, fails when c8(M ) < 0 for M � 6.64.
(c6 < 0 for M > 3.)

We need to go to higher order to study the 1RSB transition
beyond this value of M. We find, however, that the method in
Appendix B becomes too cumbersome to get c10. The Lan-
dau expansion of the free energy given in Eq. (25) provides
a more useful tool. Since σ 2 ∼ μ1 ∼ q1, O(σ 6) and O(σ 8)
correspond to the cubic and quartic orders in qab, respectively,
and we need quintic-order terms in qab to evaluate c10. In Ap-
pendix C, we apply the 1RSB form directly to qab in Eq. (25).
When m1 = 1, the saddle-point equations can be combined
into a form

− 1
2 (w2 − w1)q3

1 − (y1 − y3 + y5)q4
1 − 3

2 zeff
1 q5

1 = 0, (44)

where

zeff
1 ≡ z1 − z3 − z4 + z5 + z8 − z9. (45)

Recalling that q1 = μ1/β
2 = Mσ 2/β2 and using the values of

wi and yi given in Appendix A, we can identify the first two
terms in Eq. (44) as the small-σ expansion of fM (σ ), since we
can rewrite

c6(M ) = − M3

2β6
(w2 − w1) (46)

and

c8(M ) = −M4

β8
(y1 − y3 + y5). (47)

It follows that the last term in Eq. (44) gives

c10(M ) = − 3M5

2β10
zeff

1 . (48)

The explicit expression as a function of M is given in
Eqs. (C10) and (C13) in Appendix C.

In Fig. 3, (y1 − y3 + y5)/β8 and zeff
1 /β10 are displayed as

functions of M. We note that y1 − y3 + y5 is negative (and
c8 is positive) for 2.35 � M � 6.64. Therefore, as we men-
tioned above, we can find the 1RSB solution for m1 = 1 for
3 < M � 6.64 within the quartic theory. The result for the
1RSB transition temperature obtained in this way is shown
as a solid red line in Fig. 4(a). We note, however, that the
result becomes unreliable as we approach the boundary value
M  6.64 as it shows a fictitious diverging behavior. We
now study how the quintic theory may improve this result.
The quintic contribution can be summarized by zeff

1 , which
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FIG. 4. (a) Red and blue solid lines are the 1RSB transition
temperatures T 1RSB

c as functions of M for the p = 4 balanced M-p
model expanded up to quartic (red) and to quintic (blue) orders in
the order parameter. Dashed and dot-dashed lines are T∗ [Eq. (24)]
and Tc [Eq. (27)], respectively. Two closely spaced horizontal lines
are the large-M limits of T∗ [lower one, Eq. (62)] and T 1RSB

c [upper
one, Eq. (70)]. (b) Close-up of the same plot for 3 � M � 4. There
is a gap in the solid blue line in the interval 3.27 � M � 3.98, where
no 1RSB solution exists at m1 = 1 for the quintic theory. The red line
corresponds to the quartic theory, which has no gap. The dot-dashed
line is Tc.

is negative for 4.37 � M � 12.46 (and for the narrow region
2 � M � 2.12). Since c10 is positive in that interval, we have
a chance to extend the result of the quartic theory to larger
values of M. As one can see in Fig. 4(a), the 1RSB transition
line calculated within the quintic theory indeed extends to
large values of M. But, since Eq. (44) for q1 �= 0 becomes
a quadratic equation for q1, there are intervals of M where
no real solution exists. We find that for 3.27 � M � 3.98 and
for M � 14.41, solutions to this equation become complex
and no 1RSB solution can be obtained. This can be seen in
Fig. 4(b), where one can see a segment of the 1RSB transition
line is missing. Also as in the quartic theory, the transition line
displays an apparent divergent behavior as we approach the
boundary value M  14.41. Therefore, we can conclude that
it is possible to obtain the 1RSB transition line using truncated
models, but the truncation of the free energy to a specific order
produces some unphysical features. Comparing the results of
the quartic and quintic theories in Fig. 4(a), we expect that a
systematic improvement may occur if we go to even higher
orders. We also note that the 1RSB transition temperatures
obtained in this way always stay above T∗.

0.20 0.22 0.24 0.26 0.28 0.30 0.32
T

0.005

0.010

0.015

0.020

0.025

0.030

0.035

FIG. 5. Dimensionless free energies per spin of the 1RSB so-
lution (solid line) and the RS solution with q �= 0 (dashed line) as
functions of temperature calculated for the quartic M = 4 model.
For each case, the free energy difference (�F ) from that of the
high-temperature RS solution [q = 0, Eq. (22)] is plotted. The 1RSB
solution exists only in the temperature interval 0.212 � T � 0.311.

The 1RSB transition line discussed above is obtained by
setting m1 = 1 where the 1RSB free energy coincides with
that of the high-temperature RS phase (with q = 0). Using
the results in Appendix C, we can obtain 1RSB solutions
for general values of 0 � m1 � 1 for the truncated model.
Rather unexpectedly, we find that for given M, the 1RSB
solution ceases to exist below a certain finite temperature for
which m1 = 0. We note that if m1 = 0, the 1RSB free energy
becomes that of the RS phase with nonzero q [see Eq. (C1)].
Therefore, below that temperature, we only have the RS solu-
tion with nonzero q. This is illustrated in Fig. 5, where we plot
the free energies of both 1RSB and RS solutions calculated
within a truncated model. One can clearly see that the 1RSB
solution exists only in a finite temperature interval. Within that
interval, the system is in the 1RSB phase which has a higher
free energy than the RS one with nonzero q. However, below
that interval, there is no 1RSB solution, so the system returns
to the RS phase. We believe that this rather unusual behavior
is caused by the truncation of the model in an arbitrary order.
In the large-M limit considered in Sec. II D, where one can
find the 1RSB solutions without truncation, we find that the
1RSB solution continues down to zero temperature and has a
higher free energy than the RS one.

D. The large-M limit

In this subsection, we consider the situation where we take
the limit M → ∞ from the start. In the large-M limit, Eq. (8)
can be rewritten as

L(μ) = Tr
{Sa

i }
exp

⎡⎣ 1

4M

∑
a �=b

μab

⎧⎨⎩
(

M∑
i

Sa
i Sb

i

)2

− M

⎫⎬⎭
⎤⎦

 Tr
{Sa

i }
exp

⎡⎣M

4

∑
a �=b

μab

(
1

M

M∑
i

Sa
i Sb

i

)2
⎤⎦, (49)

where we have neglected the subleading terms in the large-M
limit. We now introduce the δ function δ(MQab −∑M

i Sa
i Sb

i )
using the integral representation with the variable λab. Then
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we have from Eq. (6)

Zn = enNβ2C
∫ ∏

a<b

dqabdμabdQabdλab

× exp

[
−NM

{
− 1

4
β2
∑
a �=b

q2
ab + 1

2

∑
a �=b

μabqab

− 1

4

∑
a �=b

μabQ2
ab + 1

2

∑
a �=b

λabQab − ln L̃(λ)

}]
, (50)

where

L̃(λ) = Tr
{Sa}

exp

⎡⎣1

2

∑
a �=b

λabSaSb

⎤⎦. (51)

In the large-M limit, the integral is dominated by the saddle
points. In particular, the saddle-point equations obtained by
varying qab and μab are, respectively,

μab = β2qab (52)

and

qab = 1

2
Q2

ab. (53)

Inserting this into the above equation, we can rewrite Eq. (50)
as

Zn = enN (βJ )2C
∫ ∏

a<b

dQabdλab exp[−NMG̃(Q, λ)], (54)

with

G̃(Q, λ) = − 1

16
(βJ )2

∑
a �=b

Q4
ab + 1

2

∑
a �=b

λabQab − ln L̃(λ).

(55)
The free energy in the large-M limit is then given by

βF

NM
= −(βJ )2C∞ + lim

n→0

1

n
G̃(Q, λ), (56)

where

C∞ = lim
M→∞

C

M
= 1

16
. (57)

Note that we have restored J2 which sets the variance in
Eq. (2) explicitly. This free energy is exactly the same as the
one for the fully connected p spin-glass model with p = 4,
which is given by the Hamiltonian

H = −
∑

1�x1<···<xp�N

Jx1,x2,··· ,xN S(x1)S(x2) · · · S(xp), (58)

for the Ising spin S(x) at site x. The bonds Jx1,x2,··· ,xN are inde-
pendent random variables satisfying the Gaussian distribution
with zero mean and variance

p!J̃2

2N p−1
. (59)

The free energy for this model is given exactly the same as
Eq. (56) with J̃2 = J2/4. (The formula for this correspon-
dence for general p is J̃2 = 4C∞J2.)

We can readily use the known results for this model. The
replica symmetric phase with λ = Q = 0 has the free energy
per site as

βFRS

N
= − (β J̃ )2

4
− ln 2. (60)

The entropy per site is then given by

SRS

N
= ln 2 − (β J̃ )2

4
, (61)

which becomes negative for temperature T/J̃ < T ∞
∗ /J̃ ≡

1/(2
√

ln 2). Therefore, in the original unit

T ∞
∗ /J = 1

4
√

ln 2
 0.30028. (62)

This is the same value as that obtained in the M → ∞ limit
of Eq. (24).

If we use the 1RSB form for Qab and λab in Eq. (56), then
the free energy becomes

βF∞
1RSB

N
= − (β J̃ )2

4
[1 + (m1 − 1)Qp

1] + 1

2
(m1 − 1)λ1Q1

+ λ1

2
− ln 2 − 1

m1
ln
∫

Dy coshm1 (
√

λ1y). (63)

The saddle-point equations are as follows:

λ1 = (β J̃ )2

2
pQp−1

1 (64)

and

Q1 =
∫

Dy coshm1 (
√

λ1y) tanh2(
√

λ1y)∫
Dy coshm1 (

√
λ1y)

. (65)

There is another saddle-point equation which is obtained by
varying the free energy with respect to m1:

(β J̃ )2

4
Qp

1 (p − 1) + 1

m2
1

ln
∫

Dy coshm1 (
√

λ1y)

− 1

m1

∫
Dy coshm1 (

√
λ1y) ln(cosh(

√
λ1y))∫

Dy coshm1 (
√

λ1y)
= 0. (66)

Again, when m1 = 1, F1RSB becomes equal to FRS. We de-
termine the temperature T ∞

1RSB by setting m1 = 1. Using∫
Dy cosh(

√
λ1y) = eλ1/2, we can combine Eqs. (65), (66),

and (64) to get

e−λ1/2
∫

Dy cosh(
√

λ1y)

[
ln cosh(

√
λ1y)

− p − 1

2p
λ1 tanh2(

√
λ1y)

]
− λ1

2
= 0. (67)

If we define

ν ≡
√

λ1, (68)

then the above equation can be rewritten as f∞(ν) = 0, where

f∞(ν) ≡ e−ν2/2
∫

Dy
[

cosh(νy) ln cosh(νy)

− p − 1

2p
ν2 sinh2(νy)

cosh(νy)

]
− ν2

2
. (69)
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FIG. 6. f∞(ν ) defined in Eq. (69) for p = 4. There is a nonzero
solution ν  2.1163 to the equation f∞(ν ) = 0.

This is to be compared with the corresponding Eq. (41) for
finite M. In Fig. 6, f∞(ν) is plotted for p = 4. From the
nonzero solution and from the corresponding Q1 in Eq. (65)
and the relation Eq. (64), we obtain T ∞

1RSB/J̃  0.61688 or in

the original unit

T ∞
1RSB/J  0.30844 > T ∗

∞. (70)

For f (ν), the small-ν expansion yields

f∞(ν) =
(

2 − p

4p

)
ν4 +

(
2p − 3

6p

)
ν6 +

(
5(4 − 3p)

24p

)
ν8

+ O(ν10). (71)

We can see that for p > 2, f∞(ν) has a negative slope near the
origin. For p = 2, the leading order term is ν6 with a positive
coefficient.

E. The FRSB solution

Here we consider the FRSB solutions. We first write the
free energy in terms of the Parisi function q(x) for 0 � x � 1.
It is given by

βFFRSB

N
= −Cβ2 − M ln 2 − τ 〈q2〉 − w1

∫ 1

0
dx

{
xq3(x) + 3q(x)

∫ x

0
dy q2(y)

}
+ w2〈q3〉 + y1〈q4〉 + y2

{
〈q4〉 − 2〈q2〉2

−
∫ 1

0
dx
∫ x

0
dy (q2(x) − q2(y))2

}
− y3

{
2〈q〉〈q3〉 +

∫ 1

0
dx q2(x)

∫ x

0
dy (q(x) − q(y))2

}
− y5

{
〈q2〉2 − 4〈q〉2〈q2〉

− 4〈q〉
∫ 1

0
dx q(x)

∫ x

0
dy (q(x) − q(y))2 −

∫ 1

0
dx
∫ x

0
dy
∫ x

0
dz (q(x) − q(y))2(q(x) − q(z))2

}
+ z1〈q5〉, (72)

where

〈qk〉 =
∫ 1

0
qk (x)dx, (73)

and we have only kept the first quintic term. The FRSB
expressions for the rest of the quintic terms are given in
Appendix E.

Because the equations for the stationarity equations of the
FRSB functional equations are so cumbersome we have rel-
egated them to the Appendices D and E. We can only make
progress in solving these equations at the quintic level by
making simplifications. The full set of quintic terms is given
in Appendix E but in Eq. (72) we have reduced them from nine
terms to just one. A similar device was used by Parisi [23] at
quartic level when he retained only the y1 term. Subsequent
studies have shown that the physics was hardly changed by
such an approximation, but numerical values do get modified.
We choose the numerical value of that z1 to equal zeff

1 in
Eq. (C10). A second simplification was to set y5 = 0. When
this is done the differential equation of Eq. (D9) can be solved
analytically. With y5 set to be zero we do not think that does
much harm to the physics of the problem. For example, the
Goldbart-Elderfield singularity [21] still arises. But without
the approximations of retaining only the z1 term and setting
y5 to zero, the numerical work required for a solution would
have been much harder.

Fortunately at quartic level, that is, if we set z1 = 0, then
one can solve the differential equation for q(x), Eq. (D9),
analytically. There is no need to set y5 to zero when just
working at quartic level. Because it is a first order differential
equation, its solution depends on one adjustable constant x0.
The result is

q(x) =
w1y3 − 2w2y5 − 2(y3−2xy5 )(y2

3−4y1y5 )x0√
y1−xy3+x2y5

2
(−y2

3 + 4y1y5
) . (74)

Physical requirements on the choice of x0 are that for some
interval 0 < x1 < x < x2 < 1, q(x) is real, an increasing func-
tion of x, and positive. x1 is for the solutions discussed in this
paper at the point where q(x1) = 0, and solving this equa-
tion gives us x1 as a function of x0. The upper breakpoint, x2,
is where q(x) takes the constant value q(x2) in the interval
1 > x > x2. Its value as a function of x0 is determined by
solving Eq. (D8) at the value x = x2. This relates the value
of x2 to x0. The value of x0 itself can be determined by setting
the right-hand side of Eq. (D1) to zero by choosing a value for
x0, for any value of x > x1. The FRSB solution for the case
M = 2.25 at a value of τ = −0.001 is shown in Fig. 7. It is
contrasted with the form of q(x) for the 1RSB case at the same
values of M and τ .

Note that there is an inverse square root singularity in q(x)
when x = xs, where y1 − xsy3 + x2

s y5 = 0 but this singularity,
the Goldbart-Elderfield singularity, [21], causes no problem
so long as it occurs at a value of xs which is greater than
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FIG. 7. Plots of q(x) for the FRSB solution (red) and the 1RSB
solution (black) at M = 2.25 at τ = −0.001. The FRSB state is the
equilibrium state as it has the higher free energy. These plots are for
the quartic theory. x1 for the FRSB solution is where q(x) goes to
zero, x1 ≈ 0.24437, while the upper breakpoint x2 ≈ 0.25870.

x2 or less than x1. In the limit τ → 0, q(x) also goes to
zero (∼|τ |) so Eq. (D8) fixes x2 → w2/w1 = (M − 2). Hence
a FRSB solution can only exist if x2 < xs, which translates
to M∗∗ � 2 + √

2/3 ≈ 2.47140. The free energy difference
between the FRSB and the 1RSB state differs at order τ 5 and
we have found numerically that the coefficient of this term
goes toward zero as M → M∗∗. One might have thought that
one could not ignore the quintic terms when determining M∗∗
as they too give a contribution of O(τ 5). However, in the limit
when τ → 0, both the 1RSB and the FRSB solutions have
their upper breakpoints at w2/w1 and at small τ the value
of q(x) on the plateau is the same for both solutions (see
Fig. 7). The form of q(x) for the two solutions only differ in
the interval between x2 and x1 and x2 − x1 ∼ |τ | itself, so in
the integrals for the free energy, Eq. (E1), the plateau regions
give the contribution of O(|τ |5), which is the same for both
solutions, and the region of x where the solutions differ only
contributes to the higher-order terms in τ .

For 3 > M > M∗∗ the continuous transition is to the 1RSB
state. For M > 3, that is for w2/w1 > 1, the transition is
discontinuous and is to the 1RSB state. We were unable to find
a solution with FRSB which had a higher free energy than the
1RSB solution at the discontinuous transition itself.

While the quintic terms are not needed to determine the
value of M∗∗, it was pointed out years ago that they are needed
to obtain the Gardner transition [1]. This is the transition
which arises in the 1RSB state and it is to a state with FRSB.
Provided we set y5 to zero and just retain one of the quintic
terms z1, MATHEMATICA can analytically solve the first
order differential equation, but its explicit form is so long that
we have not included its form in this paper. In Fig. 8 we show
the resulting FRSB solution and the 1RSB solution with the
same parameters when M = 2.50 at a temperature below the
Gardner transition temperature, so that the FRSB state has a
higher free energy than the 1RSB state. Curiously the form of
the FRSB solution is nothing like that given in Ref. [1]. They
claimed that the continuously varying feature of q(x) grew
from the upper plateau. However, our solution is very similar
to the FRSB solution for M < M∗∗, and it seems natural to us
that at low enough temperature that solution should smoothly
extend into the region M > M∗∗ as M is increased.

0.30 0.35 0.40 0.45 0.50
x

0.05

0.10

0.15

0.20

0.25

FIG. 8. Plots of q(x) for the FRSB solution (red) and the 1RSB
solution (black) at M = 2.50 for τ = −0.01. This calculation has
been done at quintic level, with just one quintic coefficient, with
z1 = zeff

1 and with y5 = 0, for both the FRSB and 1RSB solutions,
to simplify the numerical work in the FRSB case. At this value of
M, the first transition is to the 1RSB state at τ = 0, but below the
Gardner transition temperature TG, (which corresponds to a value
of τG ≈ −0.0078) there is a transition to a state with FRSB. Below
TG, this FRSB state has a higher free energy than the corresponding
1RSB state.

A feature of the Gardner solution is that right at the critical
temperature TG where the Gardner state has a free energy
just equal to that of the 1RSB state, its q(x) is such that its
derivative dq(x)/dx is infinite right at the lower break point
x1. This is because at TG the Goldbart-Elderfield singularity
of the quintic-order solution is just at x1. As the temperature
is reduced below TG, this singularity occurs below x1, and
dq(x)/dx is finite at x1 (as in Fig. 8). For T > TG, the FRSB
solution ceases to exist.

Figure 9 is a schematic phase diagram showing the phases
which we have found in the M − p balanced model as a
function of M. To find the Gardner phase we had to use the
Landau expansion to quintic order. In the next section we
shall discuss the effects of the fluctuation corrections to the
mean-field theory and argue that in dimensions d < 8 that the
phase diagram becomes radically different to its mean-field
form.

2 3M∗∗ M

T

FRSB

1RSB

FRSB

Paramagnetic

1RSB

FRSB

FIG. 9. A schematic plot of the phase diagram as a function of
T and M, within the mean-field approximation. Phase boundaries as-
sociated with a continuous transition are drawn with colored dashed
lines, while a solid line denotes a discontinuous transition. The FRSB
transition for M > M∗∗ is the Gardner transition.
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III. DISCUSSION OF FLUCTUATION CORRECTIONS
AND BEHAVIOR IN FINITE DIMENSIONS

Most of this paper has been concerned with calculations at
mean-field level. Our motivation to study these was because
we wished to move toward the inclusion of fluctuations about
the mean-field solutions by using RG equations to renormalize
the numerous coupling constants, (τ , w1, w2, y1, . . ., y5, z1,
. . ., z9) until they lie in the region where fluctuations have
become small and mean-field theory becomes accurate. This
is the same program as followed by Höller and Read [16]
for the de Almeida-Thouless (AT) transition [17]. This is
the transition of the Ising spin glass in a field h, and in the
h − T phase diagram there is a line, the de Almeida-Thouless
line which separates the high-temperature paramagnetic phase
replica symmetric phase from a state with some version of
replica symmetry breaking. The field theory of our problem,
Eq. (25) is identical to theirs and the reader should consult
their paper for details. However, since their paper was written
new simulations have suggested a possible extension of their
approach, which we describe. We begin by briefly summariz-
ing some of their results and procedures.

For the quartic coefficients below d < 8 the coefficients
y1, y2, y3, y4 and y5 are dominated by the “box” diagrams for
dimensions 8 > d > 6 and their bare values become negligi-
ble compared to the contribution of the box diagrams, which
can be expressed in terms of the values of w1 and w2. For
d > 8, a good approximation to their values is provided by the
bare values of these coefficients. The important combination
of coefficients

ỹ(x) = Y (x) = y1 − xy3 + x2y5, (75)

at the value of x corresponding to the upper break point x2

(which in the limit τ → 0 has the value w2/w1) plays a key
role in determining the nature of the state below the transition.
When ỹ(ρ) is positive (where ρ = w2/w1), the transition is to
a state with FRSB, but if it is negative the transition is to a state
with 1RSB. [This is how the value of M∗∗ was determined
in the mean-field calculations by setting x = ρ = M − 2 and
solving Y (x) = 0 for M.] Höller and Read found from the box
diagrams that

ỹ(ρ) = Kdw
4
1ρ

2(22 − 48ρ − 32ρ2 − 8ρ3 + ρ4)/(8 − d ),

(76)

where Kd = 2/(�(d/2)(4π )d/2) (provided ρ < 1). Höller and
Read studied in particular the RG flow equations in dimen-
sions d = 6 + ε, where they could employ the Bray and
Roberts [24] RG recursion relations. Using these recursion
relation, one finds that under the RG transforms w1 and w2

scale down toward zero as exp[− 1
2εl]. As l → ∞ both w1 and

w2 approach their fixed point value, (which is 0) but their ratio
ρ = w2/w1 approaches a constant as the RG scale parameter
l goes to infinity. The Bray-Roberts recursion relations are
only valid if w1 and w2 are of O(

√
ε) and lie for d > 6

within the basin of attraction of the Gaussian fixed point at
w1 = w2 = 0. The bare values of w1 and w2 are of O(1) and
so do not lie within the basin of attraction. The fluctuation
corrections must somehow first modify the values of w1 and
w2 so that the RG calculation can proceed.

It is the numerical value of ρ in the large l limit which de-
termines whether ỹ(ρ) is positive or negative. The polynomial
in Eq. (76) is such that ỹ(ρ) is positive provided ρ < 0.8418.
Höller and Read did not determine the ratio ρ. We shall argue
that its value is universal at least for values of d < 8 and that
ρ = 0.5. Then as 0.5 < 0.8418, the state formed will have
FRSB and so is in the universality class of the Ising spin glass
in a field.

The key to understanding this is the real space RG cal-
culation of Angelini and Biroli [25]. This suggested that the
transition at the AT line in high dimensions might be con-
trolled by a zero-temperature fixed point. They found that in
a simple real-space RG approximation that in high enough
dimensions, the RG flows of h and J , the standard deviation of
the bond distribution, which are initially close to their values
on the AT line at some nonzero temperature flowed close to
their value on the AT line at zero temperature, but then veer
away up the h axis at T = 0. Then the flow is away from the
fixed point at T = 0 and h = hAT, where hAT is the value of the
field h on the AT line at T = 0. In other words, the RG flow is
controlled by a zero temperature fixed point. Because their RG
procedure (the Migdal-Kadanoff approximation) works well
only in low dimensions it was uncertain whether their zero-
temperature fixed point scenario in high dimensions should
be trusted. However, we believe that the recent simulation in
six dimensions in Ref. [18] strongly suggests that it should
be believed. These simulations showed that in six dimensions
that the renormalized vertices related to the “bare” couplings
w1 and w2 were such that their ratio was close to 1/2. But
this is the same value (i.e., 1/2) as was found at T = 0 in the
mean-field like Bethe lattice calculation of the same renor-
malized vertices in Ref. [26]. We therefore shall take it that the
renormalized value of ρ which should be inserted into Eq. (76)
is 1/2. As a consequence the continuous transition from the
high-temperature phase should be to a state with FRSB, and
for d < 8 the continuous 1RSB transition should no longer
occur.

The same line of argument will also apply to the AT tran-
sition of spin glasses in a field. This is a transition from a
paramagnetic high-temperature phase to a state with FRSB at
lower temperatures. These have been extensively studied by
simulations and the most recent of these is that of Bharadwaj
et al. [27]. They found numerical evidence that the AT line
might not exist below six dimensions. The absence of the
AT line below six dimensions was argued for in Ref. [28],
where it was suggested that as d → 6, h2

AT ∼ (d − 6), where
hAT is the AT field at T = 0. If this is correct, then in three
dimensions there would be no phase transition to a state with
replica symmetry breaking, but there could be long length
scales according to the droplet picture of spin glasses in a field
[29–31] and the Imry-Ma argument [32], especially if the field
is small. That structural glasses might behave as the Ising spin
glass in a field was suggested many years ago [33].

RG calculations are only useful when there exist long
correlation length scales. At mean-field level when ρ =
w2/w1 > 1 the transition to the 1RSB state is via a dis-
continuous transition at which there are no long correlation
length scales. How do the fluctuation corrections affect such
a transition? Our belief is that the effect of the fluctuations is
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M M

T T

FRSB

Paramagnetic

Paramagnetic

(a) 6 < d < 8 (b) d < 6

FIG. 10. Schematic phase diagrams after allowing for the effect
of fluctuation corrections to the mean-field phase diagram of Fig. 9
for (a) 6 < d < 8 and (b) d < 6. For d < 6 it is hypothesized that
there is only one phase present, the high-temperature paramagnetic
phase. In the region 6 < d < 8 there is a continuous transition from
the paramagnetic phase to a state with FRSB.

to drive the value of the ratio w2/w1 into the region where
the transition is continuous. Certainly there is no sign of a
discontinuous transition in the real space RG calculations such
as Ref. [12]. Nor was there any sign of a discontinuous tran-
sition in the AT line simulations in Ref. [27]. But at present
we cannot really exclude the possibility of a discontinuous
transition in physical dimensions but we note once more that
the simulations of Ref. [9] found no evidence for such a
transition at M = 4 in three dimensions. Fig. 10 provides a
summary of our expected form of the phase diagram first for
6 < d < 8 and secondly for d < 6.

The chief omission of our work is therefore a stronger con-
clusion on the possible existence of a discontinuous transition
and its dependence on the dimensionality d of the system. The
only way forward for investigating this question, especially in
high dimensions close to or above d = 6 would seem to be
simulations on the one-dimensional proxy models. In these
proxy models the form of the long range interactions between

the spins can be tuned to mimic behavior in d dimensions.
Indeed for the case p = 3, M = 2 that has already been done
[34]. Alas at mean-field level this model has w2/w1 < 1 and
so it would not be expected to have a discontinuous transition
and indeed there was no sign of such in the simulation. The
case when p = 3 and M = 3 has w2/w1 = 2 [19] and so
might be a good model to simulate as it should have a clear
discontinuous transition. The model of the type studied in this
paper, p = 4 but with M = 4 could also be a good model to
simulate using the one-dimensional proxy model: It has also
w2/w1 = 2.
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APPENDIX A: EXPANSION OF THE FREE ENERGY
TO THE QUINTIC ORDER IN ORDER PARAMETER

We expand Eq. (8) to O(μ5). We first write L ≡ 2nML′,
where

L′ ≡ Tr′
{Sa

i } exp

⎡⎣ 1

2M

∑
(a,b)

μab fab

⎤⎦. (A1)

Here Tr′ ≡ 2−nMTr satisfies Tr′
{Sa

i }1 = 1, and we define

fab ≡
K∑

α=1

�a
α�b

α, (A2)

where �a = (Sa
1Sa

2, Sa
1Sa

3, . . . , Sa
M−1Sa

M ) is a K-dimensional
vector for each replica index a with components �a

α , α =
1, 2, . . . , K ≡ M(M − 1)/2. The expansion of L′ to O(μ5)
has the following structure:

L′ = 1 + t̃2
∑
(a,b)

μ2
ab + w̃1

∑
(a,b,c)

μabμbcμca + w̃2

∑
(a,b)

μ3
ab + ỹ1

∑
a,b

μ4
ab + ỹ2

∑
(a,b,c)

μ2
abμ

2
bc + ỹ3

∑
(a,b,c)

μ2
abμbcμca

+ ỹ5

∑
(a,b,c,d )

μabμbcμcdμda + d̃1

∑
(a,b,c,d )

μ2
abμ

2
cd + z̃1

∑
(a,b)

μ5
ab + z̃2

∑
(a,b,c)

μ3
abμ

2
bc + z̃3

∑
(a,b,c)

μ3
abμbcμca

+ z̃4

∑
(a,b,c)

μ2
abμ

2
bcμca + z̃5

∑
(a,b,c,d )

μ2
abμbcμcdμda + z̃6

∑
(a,b,c,d )

μ2
abμbcμcdμdb + z̃7

∑
(a,b,c,d )

μ2
abμbcμ

2
cd

+ z̃8

∑
(a,b,c,d )

μabμbcμcdμdaμac + z̃9

∑
(a,b,c,d,e)

μabμbcμcdμdeμea + d̃2

∑
(a,b,c,d )

μ3
abμ

2
cd + d̃3

∑
(a,b,c,d,e)

μ2
abμcdμdeμec. (A3)

Here (a, b), (a, b, c), (a, b, c, d ), etc., indicate that the sums are over all distinct replica indices. The coefficients are obtained by
taking the trace of the spins as we explain below.

To calculate the free energy, we have to take the logarithm of L′ and expand ln(1 + x) to O(μ5). There are three contributions
to this order coming from the −(1/2)x2 part. They are

−1

2
t̃2
2

∑
(a,b)

μ2
ab

∑
(c,d )

μ2
cd = −1

2
t̃2
2

⎡⎣2
∑
(a,b)

μ4
ab + 4

∑
(a,b,c)

μ2
abμ

2
bc +

∑
(a,b,c,d )

μ2
abμ

2
cd

⎤⎦, (A4)

−1

2
· 2t̃2w̃1

∑
(a,b)

μ2
ab

∑
(c,d,e)

μcdμdeμec = −t̃2w̃1

[
6
∑

(a,b,c)

μ3
abμbcμca + 6

∑
(a,b,c,d )

μ2
abμbcμcdμdb +

∑
(a,b,c,d,e)

μ2
abμcdμdeμec

]
, (A5)
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and

− 1

2
· 2t̃2w̃2

∑
(a,b)

μ2
ab

∑
(c,d )

μ3
cd = −t̃2w̃2

[
2
∑
(a,b)

μ5
ab + 4

∑
(a,b,c)

μ2
abμ

3
bc +

∑
(a,b,c,d )

μ2
abμ

3
cd

]
. (A6)

Note that the last terms in Eqs. (A4), (A5), and (A6) as well as the terms in Eq. (A3) with coefficients, d̃i, i = 1, 2, 3 have
disconnected parts. When we take the trace over the spins, we have to keep in mind that the Ising spins must be paired to give
nonvanishing contribution. For example, we have Tr′ fab = 0 for a �= b. We evaluate the first few sets of coefficients as follows:

t̃2 = 1

2!

2

(2M )2
Tr′ f 2

ab = 1

2!

1

(2M )2
2K = K

4M2
, (A7)

w̃1 = 1

3!

8

(2M )3
Tr′ fab fbc fca = 1

3!

1

(2M )3
8K = K

6M3
, (A8)

w̃2 = 1

3!

4

(2M )3
Tr′ f 3

ab = 1

3!

1

(2M )3
4M(M − 1)(M − 2) = K

6M3
(M − 2), (A9)

and

d̃1 = 1

4!

12

(2M )4
Tr′ f 2

ab f 2
cd = 1

4!

1

(2M )4
12K2, (A10)

d̃2 = 1

5!

80

(2M )5
Tr′ f 3

ab f 2
cd = 1

5!

1

(2M )5
80KM(M − 1)(M − 2), (A11)

d̃3 = 1

5!

160

(2M )5
Tr′ fab fbc fca f 2

de = 1

5!

1

(2M )5
160K2. (A12)

Here all replica indices are distinct. One can see that d̃1 = t̃2
2 /2, d̃2 = t̃2w̃2, and d̃3 = t̃2w̃1. Therefore, all the disconnected terms

in ln L′ vanish.
We therefore have

ln L′ = t̃2
∑
(a,b)

μ2
ab + w̃1

∑
(a,b,c)

μabμbcμca + w̃2

∑
(a,b)

μ3
ab + (ỹ1 − t̃2

2

)∑
a,b

μ4
ab + (ỹ2 − 2t̃2

2

) ∑
(a,b,c)

μ2
abμ

2
bc

+ ỹ3

∑
(a,b,c)

μ2
abμbcμca + ỹ5

∑
(a,b,c,d )

μabμbcμcdμda + (z̃1 − 2t̃2w̃2)
∑
(a,b)

μ5
ab + (z̃2 − 4t̃2w̃2)

∑
(a,b,c)

μ3
abμ

2
bc

+ (z̃3 − 6t̃2w̃1)
∑

(a,b,c)

μ3
abμbcμca + z̃4

∑
(a,b,c)

μ2
abμ

2
bcμca + z̃5

∑
(a,b,c,d )

μ2
abμbcμcdμda

+ (z̃6 − 6t̃2w̃1)
∑

(a,b,c,d )

μ2
abμbcμcdμdb + z̃7

∑
(a,b,c,d )

μ2
abμbcμ

2
cd + z̃8

∑
(a,b,c,d )

μabμbcμcdμdaμac

+ z̃9

∑
(a,b,c,d,e)

μabμbcμcdμdeμea. (A13)

The first quartic coefficient is given by

ỹ1 = 1

4!

8

(2M )4
Tr′ f 4

ab = 1

4!

8

(2M )4
[K + 3K (K − 1)

+ 3M(M − 1)(M − 2)(M − 3)]. (A14)

This is valid for M � 3. For 2 � M � 3, there are not enough
spins whose combination makes the second term in the square
bracket. Therefore, the square bracket must be just K +
3K (K − 1) for 2 � M � 3. The rest of them are

ỹ2 = 1

4!

48

(2M )4
Tr′ f 2

ab f 2
bc = 1

4!

48

(2M )4
K2, (A15)

ỹ3 = 1

4!

96

(2M )4
Tr′ f 2

ab fbc fca

= 1

4!

96

(2M )4
M(M − 1)(M − 2), (A16)

and

ỹ5 = 1

4!

48

(2M )4
Tr′ fab fbc fcd fda = 1

4!

48

(2M )4
K. (A17)

These are valid for M � 2.
We obtain the first quintic coefficient as

z̃1 = 1

5!

16

(2M )5
Tr′ f 5

ab

= 1

5!

16

(2M )5
[10M(M − 1)(M − 2)K

+ 12M(M − 1)(M − 2)(M − 3)(M − 4)]. (A18)

This is valid for M � 4. For 2 � M � 4, the second term in
the square bracket should be dropped for the same reason as
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given for ỹ1. The next coefficient is given for M � 2 as

z̃2 = 1

5!

320

(2M )5
Tr′ f 3

ab f 2
bc

= 1

5!

320

(2M )5
M(M − 1)(M − 2)K. (A19)

The third and fourth quintic coefficients are given by

z̃3 = 1

5!

320

(2M )5
Tr′ f 3

ab fbc fca

= 1

5!

320

(2M )5
[K + 3K (K − 1)

+ 3M(M − 1)(M − 2)(M − 3)], (A20)

and

z̃4 = 1

5!

480

(2M )5
Tr′ f 2

ab f 2
bc fca

= 1

5!

480

(2M )5
[2M(M − 1)(M − 2)

+ 2M(M − 1)(M − 2)(M − 3)]. (A21)

Again these expressions are valid only for M � 3. For 2 �
M � 3, the second terms in the square brackets in Eqs. (A20)

and (A21) do not appear. The remaining quintic coefficients
are given by

z̃5 = 1

5!

960

(2M )5
Tr′ f 2

ab fbc fcd fda

= 1

5!

960

(2M )5
M(M − 1)(M − 2), (A22)

z̃6 = 1

5!

960

(2M )5
Tr′ f 2

ab fbc fcd fdb = 1

5!

960

(2M )5
K2, (A23)

z̃7 = 1

5!

480

(2M )5
Tr′ f 2

ab fbc f 2
cd = 0, (A24)

z̃8 = 1

5!

960

(2M )5
Tr′ fab fbc fcd fda fac

= 1

5!

960

(2M )5
M(M − 1)(M − 2), (A25)

and

z̃9 = 1

5!

384

(2M )5
Tr′ fab fbc fcd fde fea = 1

5!

384

(2M )5
K. (A26)

These expressions are valid for all M � 2.
We now convert the summations over replica indices in

Eq. (A13) into those without any restriction. We obtain

ln L′ = t ′
2

∑
a,b

μ2
ab + w′

1

∑
a,b,c

μabμbcμca + w′
2

∑
a,b

μ3
ab + y′

1

∑
a,b

μ4
ab + y′

2

∑
a,b,c

μ2
abμ

2
bc + y′

3

∑
a,b,c

μ2
abμbcμca

+ y′
5

∑
a,b,c,d

μabμbcμcdμda + z′
1

∑
a,b

μ5
ab + z′

2

∑
a,b,c

μ3
abμ

2
bc + z′

3

∑
a,b,c

μ3
abμbcμca + z′

4

∑
a,b,c

μ2
abμ

2
bcμca

+ z′
5

∑
a,b,c,d

μ2
abμbcμcdμda + z′

6

∑
a,b,c,d

μ2
abμbcμcdμdb + z′

7

∑
a,b,c,d

μ2
abμbcμ

2
cd + z′

8

∑
a,b,c,d

μabμbcμcdμdaμac

+ z′
9

∑
a,b,c,d,e

μabμbcμcdμdeμea, (A27)

where t ′
2 = t̃2, w′

1 = w̃1 and w′
2 = w̃2. The first two quartic

coefficients are

y′
1 = ỹ1 − t̃2

2 − (ỹ2 − 2t̃2
2

)+ ỹ5

=
(

K

24M4

){
2, if 2 � M � 3,

(3M2 − 15M + 20), if M � 3,

(A28)

and

y′
2 = ỹ2 − 2t̃2

2 − 2ỹ5 = −
(

K

4M4

)
. (A29)

The rest of them are the same as when the summations are
restricted,

y′
3 = ỹ3, y′

5 = ỹ5. (A30)

The quintic coefficients are given by

z′
1 = z̃1 − 2t̃2w̃2 − (z̃2 − 4t̃2w̃2) + z̃5 + z̃7

=
(

K

10M5

){5(M − 2), if 2 � M � 4,

(M − 2)(M2 − 7M + 17), if M � 4,

(A31)

z′
2 = z̃2 − 4t̃2w̃2 − 2z̃5 − 2z̃7

= −
(

K

M5

)
(M − 2), (A32)

z′
3 = z̃3 − 6t̃2w̃1 − 2(z̃6 − 6t̃2w̃1) + 5z̃9

=
(

K

6M5

){
2, if 2 � M � 3,

(3M2 − 15M + 20), if M � 3,

(A33)
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z′
4 = z̃4 − z̃7 − z̃8

=
(

K

2M5

){
0, if 2 � M � 3,

(M − 2)(M − 3), if M � 3,
(A34)

and

z′
6 = z̃6 − 6t̃2w̃1 − 5z̃9 = −

(
K

2M5

)
. (A35)

The other coefficients are unchanged, namely,
z′

i = z̃i (A36)
for i = 5, 7, 8, and 9.

Finally, the free energy is now given by Eq. (11) with
Eq. (7). One of the saddle-point equations gives μab = β2qab.
Inserting this relation into Eq. (11), we obtain the free energy
in the form given in Eq. (25) with

wi ≡ β6w′
i, y j ≡ β8y′

j, zk ≡ β10z′
k, (A37)

for i = 1, 2, j = 1, 2, 3, 5 and k = 1, 2, . . . , 9.

APPENDIX B: SMALL-σ BEHAVIOR OF fM (σ )

Here we present some steps leading to the small-σ expan-
sion of fM (σ ) defined in Eq. (41). As mentioned in the main
text, we expand fM (σ ) up to O(σ 8). There are numerous terms
to be evaluated. In the following, for brevity, we only list the
quantities needed for the calculation of the O(σ 6)-coefficient.
We first write

ζ (y, μ1) ≡ 1

2M
Tr
{Si}

exp [σy · �] =
∞∑
j=0

σ j

j!
ζ j (y), (B1)

where σ ≡ √
μ1/M. We immediately see that ζ1(y) =

0 since Tr �α = 0. Using the fact that Tr�α�β = 0
for α �= β, we find that ζ2(y) =∑K

α y2
α and ζ3(y) =∑K

(α,β,γ ) yαyβyγ
1

2M Tr�α�β�γ . Higher-order contributions
are

ζ4(y) =
K∑
α

y4
α + 3

K∑
α �=β

y2
αy2

β +
K∑

(α,β,γ ,δ)

yαyβyγ yδ

1

2M
Tr�α�β�γ �δ, (B2)

ζ5(y) = 10
K∑

(α,β,γ )

y3
αyβyγ

1

2M
Tr�α�β�γ + 10

K∑
(α,β,γ ,δ)

y2
αyβyγ yδ

1

2M
Tr�β�γ �δ +

K∑
(α,β,γ ,δ,σ )

yαyβyγ yδyσ

1

2M
Tr�α�β�γ �δ�σ ,

(B3)

and

ζ6(y) =
K∑
α

y6
α + 15

K∑
α �=β

y4
αy2

β + 15
K∑

(α,β,γ )

y2
αy2

βy2
γ + 20

K∑
(α,β,γ ,δ)

y3
αyβyγ yδ

1

2M
Tr�α�β�γ �δ

+ 15
K∑

(α,β,γ ,δ,σ )

y2
αyβyγ yδyσ

1

2M
Tr�β�γ �δ�σ +

K∑
(α,β,γ ,δ,σ,μ)

yαyβyγ yδyσ yμ

1

2M
Tr�α�β�γ �δ�σ�μ. (B4)

Here (α, β, γ ), etc., indicate the summation is over all
distinct indices and K ≡ (M2 ). Performing the Gaussian inte-
grals, we have

∫
DK y ζ j (y) = 0 for j odd,

∫
DK y ζ2(y) = K ,∫

DK y ζ4(y) = 3K + 3K (K − 1), and∫
DK y ζ6(y) = 15K + 45K (K − 1) + 15K (K − 1)(K − 2).

(B5)

For the calculation up to O(σ 6), we also need the following
quantities: ∫

DK y ζ 2
2 (y) =3K + K (K − 1), (B6)∫

DK y ζ 3
2 (y) = 15K + 9K (K − 1) + K (K − 1)(K − 2),

(B7)∫
DK y ζ2(y)ζ4(y) = 15K + 21K (K − 1)

+ 3K (K − 1)(K − 2), (B8)∫
DK y ζ 2

3 (y) = 6M(M − 1)(M − 2). (B9)

These expressions are valid when K � 2 or M = 3, 4, 5, . . ..

Now in the second term inside the integral in Eq. (41), we
can write by symmetry

K∑
α=1

[
1

2M
Tr �α exp [σy · �]

]2

= K

[
1

2M
Tr �1 exp [σy · �]

]2

.

(B10)

We then define

1

2M
Tr �1 exp [σy · �] ≡

∞∑
j=1

σ j

j!
η j (y). (B11)

We find that η1(y) = y1,

η2(y) =
∑
(α,β )

yαyβ2−MTr�1�α�β, (B12)

and

η3(y) = y1 + 3y1

∑
α �=1

y2
α +

K∑
(α,β,γ )

yαyβyγ

× 1

2M
Tr�1�α�β�γ . (B13)
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For the calculation up to O(σ 6), we need∫
DK y η2

2(y) = 4(M − 2), (B14)∫
DK y η1(y)η3(y) = 3K, (B15)∫

DK y η2
1(y)ζ2(y) = K + 2. (B16)

It is now a matter of Taylor expanding the functions inside
the integral in Eq. (41) and using the above results to get the
expansion coefficients in fM (σ ) =∑∞

j=0 c2 j (M )σ 2 j . We find
that c0 = c2 = c4 = 0 and the leading order term is O(σ 6).
We obtain

c6(M ) = − M

24
(M − 1)(M − 3). (B17)

As mentioned in the main text, it becomes negative for M > 3.
To go up to O(σ 8), we need results of more Gaussian integrals

similar to Eqs. (B5)–(B9) and to Eqs. (B14)–(B16). After
a rather long calculation with the help of symbolic algebra
packages in MATHEMATICA, we obtain

c8(M ) = − M

48
(M − 1)(3M2 − 27M + 47), (B18)

which is valid for K � 3 or M = 3, 4, 5, . . .. We note that
c8(M = 3) = 7/8 > 0.

APPENDIX C: THE 1RSB EQUATIONS FOR
THE QUINTIC LANDAU FREE ENERGY

Here we consider the 1RSB saddle-point equations cor-
responding to the free energy expanded up to quintic order
as given in Eq. (25). Let us assume that qab takes the 1RSB
form having values q1 on n/m1 diagonal blocks of size m1

and q0 = 0 outside the blocks. We can then express the cubic,
quartic, and quintic terms in qab in terms of q1 and m1 as we
have done in Eqs. (29) and (30) for the quadratic terms. We
obtain

βF1RSB

N
= −Cβ2 − M ln 2 + τ (m1 − 1)q2

1 − w1(m1 − 1)(m1 − 2)q3
1 − w2(m1 − 1)q3

1

− y1(m1 − 1)q4
1 − y2(m1 − 1)2q4

1 − y3(m1 − 1)(m1 − 2)q4
1 − y5(m1 − 1)

(
m2

1 − 3m1 + 3
)
q4

1

− z1(m1 − 1)q5
1 − z2(m1 − 1)2q5

1 − z3(m1 − 1)(m1 − 2)q5
1 − z4(m1 − 1)(m1 − 2)q5

1

− z5(m1 − 1)
(
m2

1 − 3m1 + 3
)
q5

1 − z6(m1 − 1)2(m1 − 2)q5
1 − z7(m1 − 1)3q5

1

− z8(m1 − 1)(m1 − 2)2q5
1 − z9(m1 − 1)(m1 − 2)(m2

1 − 2m1 + 2)q5
1. (C1)

The saddle-point equations are obtained by varying the free energy with respect to q1 and m1. They are given by

2τq1 = 3[w1(m1 − 2) + w2]q2
1 + 4[y1 + y2(m1 − 1) + y3(m1 − 2) + y5

(
m2

1 − 3m1 + 3
)
]q3

1 + 5[z1 + z2(m1 − 1) + z3(m1 − 2)

+ z4(m1 − 2) + z5
(
m2

1 − 3m1 + 3
)+ z6(m1 − 1)(m1 − 2) + z7(m1 − 1)2 + z8(m1 − 2)2

+ z9(m1 − 2)(m2
1 − 2m1 + 2)]q4

1 (C2)

and

τq2
1 = [w1(2m1 − 3) + w2]q3

1 + [y1 + 2y2(m1 − 1) + y3(2m1 − 3) + y5(3m2
1 − 8m1 + 6)]q4

1

+ [z1 + 2z2(m1 − 1) + z3(2m1 − 3) + z4(2m1 − 3) + z5(3m2
1 − 8m1 + 6) + z6(3m2

1 − 8m1 + 5)

+ 3z7(m1 − 1)2 + z8(3m2
1 − 10m1 + 8) + z9(4m3

1 − 15m2
1 + 20m1 − 10)]q5

1. (C3)

Combining the above equations with the condition q1 �= 0, we have

0 = [−m1w1 + w2] + 2[y1 − y3 + y5m1(2 − m1)]q1 + [3z1 + z2(m1 − 1) + z3(m1 − 4) + z4(m1 − 4)

+ z5
(−m2

1 + m1 + 3
)+ z6m1(1 − m1) − z7(m1 − 1)2 + z8

(
4 − m2

1

)+ z9m1
(−3m2

1 + 10m1 − 10
)]

q2
1. (C4)

The 1RSB transition temperature is determined by setting m1 = 1 in the above equation. We obtain

(w2 − w1) + 2(y1 − y3 + y5)q1 + 3(z1 − z3 − z4 + z5 + z8 − z9)q2
1 = 0. (C5)

Equivalently, we have an equation without factors of β as

(w′
2 − w′

1) + 2(y′
1 − y′

3 + y′
5)μ1 + 3(z′

1 − z′
3 − z′

4 + z′
5 + z′

8 − z′
9)μ2

1 = 0. (C6)

From Appendix A, the coefficients are given by

w2 − w1 = β6

12M2
(M − 1)(M − 3), (C7)
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and

y1 − y3 + y5 =
⎧⎨⎩− β8

48M3 (M − 1)(12M − 29), if 2 � M � 3,

β8

48M3 (M − 1)(3M2 − 27M + 47), if M � 3.
(C8)

In Sec. II E, we have defined the effective quintic coefficient zeff
1 as the one that appears in the above equation, which can be

calculated from the results in Appendix A as

zeff
1 ≡ z1 − z3 − z4 + z5 + z8 − z9 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β10

60M4 (M − 1)(45M − 103),

− β10

60M4 (M − 1)(30M2 − 195M + 283),

β10

60M4 (M − 1)(3M3 − 57M2 + 273M − 355).

(C9)

In the above equation, the three cases from top to bottom correspond to the regions, 2 � M � 3, 3 � M � 4, and M � 4,
respectively. This is related to the small-σ expansion of fM (σ ) discussed in Sec. II C as follows. If we multiply Eq. (C5) by
−q3

1/2 and use q1 = μ1/β
2 = Mσ 2/β2, then Eq. (C5) becomes

c6(M )σ 6 + c8(M )σ 8 + c10(M )σ 10 = 0, (C10)

where

c6(M ) = − M3

2β6
(w2 − w1), (C11)

c8(M ) = −M4

β8
(y1 − y3 + y5), (C12)

and

c10(M ) = − 3M5

2β10
(z1 − z3 − z4 + z5 + z8 − z9). (C13)

APPENDIX D: FRSB EQUATIONS FOR THE FREE ENERGY WITH ONE QUINTIC TERM

Taking a functional derivative of the free energy in Eq. (72) with respect to q(x), we have

0 = δ

δq(x)

(
βFFRSB

N

)
= −2τq(x) − w1

{
3xq2(x) + 3

∫ x

0
dy q2(y) + 6q(x)

∫ 1

x
dy q(y)

}
+ 3w2q2(x) + 4y1q3(x) − 4y2〈q2〉q(x)

− y3

{
2〈q3〉 + 6〈q〉q2(x) + 2〈q2〉q(x) + 4xq3(x) − 6q2(x)

∫ x

0
dy q(y) − 2

∫ 1

x
dyq3(y)

}

− y5

{
4〈q2〉q(x) − 8〈q〉2q(x) − 8〈q〉〈q2〉 − 4

∫ 1

0
dx′ q(x′)

∫ x′

0
dy (q(x′) − q(y))2

− 4〈q〉
[

3xq2(x) − 4q(x)
∫ x

0
dy q(y) − 2

∫ 1

x
dy q2(y) +

∫ x

0
dy q2(y) + 2q(x)

∫ 1

x
dy q(y)

]

−
[

4x2q3(x) − 12xq2(x)
∫ x

0
dy q(y) − 4

∫ 1

x
dy yq3(y) + 4xq(x)

∫ x

0
dy q2(y) + 4q(x)

∫ 1

x
dy yq2(y)

− 4
∫ x

0
dyq(y)

∫ x

0
dz q2(z) − 4

∫ 1

x
dy q(y)

∫ y

0
dz q2(z) − 8q(x)

∫ 1

x
dy q(y)

∫ y

0
dz q(z) + 8q(x)

[∫ x

0
dy q(y)

]2

+ 8
∫ 1

x
dy q2(y)

∫ y

0
dz q(z) + 4q(x)

∫ 1

x
dy
∫ y

0
dz q2(z)

]}
+ 5z1q4(x). (D1)

For 0 � x � 1 where q′(x) �= 0, we can take a derivative of the above equation and have(
1

q′(x)

d

dx

)[
δ

δq(x)

(
βFFRSB

N

)]
= 0. (D2)
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This gives us

0 = −2τ − w1

{
6xq(x) + 6

∫ 1

x
dy q(y)

}
+ 6w2q(x) + 12y1q2(x) − 4y2〈q2〉 − y3

{
12〈q〉q(x) + 12xq2(x)

− 12q(x)
∫ x

0
dy q(y) + 2〈q2〉

}
− y5

{
4〈q2〉 − 8〈q〉2 − 4〈q〉

[
6xq(x) − 4

∫ x

0
dy q(y) + 2

∫ 1

x
dy q(y)

]

−
[

12x2q2(x) − 24xq(x)
∫ x

0
dy q(y) + 4x

∫ x

0
dy q2(y) + 4

∫ 1

x
dy yq2(y) − 8

∫ 1

x
dy q(y)

∫ y

0
dz q(z)

+ 8

[∫ x

0
dyq(y)

]2

+ 4
∫ 1

x
dy
∫ y

0
dz q2(z)

]}
+ 20z1q3(x). (D3)

Taking one more derivative with respect to x and divide by q′(x), we have for x with q′(x) �= 0,(
1

q′(x)

d

dx

)(
1

q′(x)

d

dx

)[
δ

δq(x)

(
βFFRSB

N

)]
= 0. (D4)

This is given by

0 = − 6(w1x − w2) + 24Y (x)q(x) + 12Y ′(x)
∫ 1

x
dy q(y) + 60z1q2(x), (D5)

where

Y (x) ≡ y1 − xy3 + x2y5. (D6)

Taking a derivative of the above equation with respect to x once again, we have

d

dx

(
1

q′(x)

d

dx

)(
1

q′(x)

d

dx

)[
δ

δq(x)

(
βFFRSB

N

)]
= 0. (D7)

This can be written as

0 = −6w1 + 24Y (x)q′(x) + 12Y ′(x)q(x) + 24y5

∫ 1

x
dy q(y) + 120z1q′(x)q(x). (D8)

Eliminating
∫ 1

x0
dy q(y) from Eqs. (D5) and (D8), we have

q′(x) = −y3w1 + 2y5w2 + 2(−y2
3 + 4y1y5)q(x) + 20z1y5q2(x)

4Y ′(x)(Y (x) + 5z1q(x))
. (D9)

APPENDIX E: FRSB EXPRESSIONS FOR ALL QUINTIC TERMS

Here we present the expressions in terms of the Parisi function q(x) for the quintic contributions to the free energy, which is
denoted by F (5)

FRSB. We have

βF (5)
FRSB

N
= z1〈q5〉 − z2

[
−〈q5〉 + 2〈q3〉〈q2〉 +

∫ 1

0
dx
∫ x

0
dy (q3(y) − q3(x))(q2(y) − q2(x))

]

− z3

[
2〈q〉〈q4〉 +

∫ 1

0
dx q3(x)

∫ x

0
dy (q(y) − q(x))2

]
− z4

[
2〈q2〉〈q3〉 +

∫ 1

0
dx q(x)

∫ x

0
dy
(
q2(y) − q2(x)

)2]

− z5

[
−4〈q〉2〈q3〉 + 〈q2〉〈q3〉 − 3〈q〉〈q2h〉 − 〈q3〉〈h〉 −

∫ 1

0
dx q2(x)

∫ x

0
dy (q(y) − q(x))(h(y) − h(x))

]
,

− z6[−2〈q〉〈q2〉2 − 〈q2〉〈qh〉] − z7

[
2〈q2〉〈q3〉 + 〈q〉〈q4〉 − 4〈q〉〈q2〉2 − 3〈q2〉〈g〉 + 〈q2g〉

− 〈q〉
∫ 1

0
dx
∫ x

0
dy
(
q2(y) − q2(x)

)2 −
∫ 1

0
dx
∫ x

0
dy (g(y) − g(x))(q2(y) − q2(x))

]
,

− z8[−4〈q2〉〈q3〉 − 4〈q〉〈q2h〉 − 〈qh2〉] − z9

[
8〈q〉3〈q2〉 − 4〈q2〉2〈q〉 + 10〈q〉2〈qh〉 − 2〈q2〉〈qh〉
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+ 2〈q〉〈q2〉〈h〉 + 3〈q〉〈h2〉 + 〈h〉〈qh〉 + 2〈q〉
∫ 1

0
dx q(x)

∫ x

0
dy (q(y) − q(x))(h(y) − h(x))

+
∫ 1

0
dx h(x)

∫ x

0
dy dy(q(y) − q(x))(h(y) − h(x))

]
, (E1)

where

h(x) =
∫ x

0
dy (q(y) − q(x))2, (E2)

g(x) =
∫ x

0
dy
(
q2(y) − q2(x)

)
(q(y) − q(x)). (E3)

Stationary conditions for the free energy obtained from the quintic contributions are quite complicated. In this Appendix, we
only present

0 =
(

1

q′(x)

d

dx

)(
1

q′(x)

d

dx

)[
δ

δq(x)

(
βF (5)

FRSB

/
N
)]

. (E4)

This is given by

0 = 60z1q2(x) − 6z2〈q2〉 − z3

[
6
∫ x

0
dy q2(y) + 48q(x)

∫ 1

x
dy q(y) + 60xq2(x)

]

− z4

[
12
∫ 1

x
dy q2(y) + 24q(x)

∫ 1

x
dy q(y) + 60xq2(x)

]
− z5

[
− 24〈q〉2 + 6〈q2〉 − 6〈h〉 − 72〈q〉xq(x)

+ 36〈q〉
∫ x

0
dy q(y) − 6x

∫ 1

x
dy q2(y) + 60xq(x)

∫ x

0
dy q(y) − 12

(∫ x

0
dy q(y)

)2

− 54x2q2(x) + 6
∫ x

0
dy h(y) − 6xh(x)

]

− z6[−6〈q2〉x] − z8

[
− 24〈q2〉 − 96〈q〉xq(x) + 48〈q〉

∫ x

0
dy q(y) + 96xq(x)

∫ x

0
dy q(y)

− 24

(∫ x

0
dy q(y)

)2

− 60x2q2(x) − 12x
∫ x

0
dy q2(y)

]
− z9

[
12x〈q〉2 + 48x〈q〉{xq(x) −

∫ x

0
dy q(y)} + 12x2h(x)

+ 6x

(
〈h〉 − 2

∫ x

0
dy h(y)

)
+ 48x

(
xq(x) −

∫ x

0
dy q(y)

)2

+ 6x〈h〉 + 72x〈q〉
∫ x

0
dy (q(x) − q(y)) − 12x〈q2〉 + 60x〈q〉2

]
.

(E5)
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