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Optimal covariance cleaning for heavy-tailed distributions: Insights from information theory

Christian Bongiorno 1,* and Marco Berritta 2

1Université Paris-Saclay, CentraleSupélec, Laboratoire de Mathématiques et Informatique pour la Complexité et les Systèmes,
91192 Gif-sur-Yvette, France

2Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

(Received 27 April 2023; accepted 31 October 2023; published 27 November 2023)

In optimal covariance cleaning theory, minimizing the Frobenius norm between the true population covariance
matrix and a rotational invariant estimator is a key step. This estimator can be obtained asymptotically for
large covariance matrices, without knowledge of the true covariance matrix. In this study, we demonstrate that
this minimization problem is equivalent to minimizing the loss of information between the true population
covariance and the rotational invariant estimator for normal multivariate variables. However, for Student’s t
distributions, the minimal Frobenius norm does not necessarily minimize the information loss in finite-sized
matrices. Nevertheless, such deviations vanish in the asymptotic regime of large matrices, which might extend
the applicability of random matrix theory results to Student’s t distributions. These distributions are characterized
by heavy tails and are frequently encountered in real-world applications such as finance, turbulence, or nuclear
physics. Therefore, our work establishes a connection between statistical random matrix theory and estimation
theory in physics, which is predominantly based on information theory.
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I. INTRODUCTION

In today’s data-rich environment, the central role of multi-
variate analysis across various fields has become increasingly
evident, driven by advancements in computational capabilities
and data availability. As a result, there is a growing need
to estimate large covariance matrices. However, this process
becomes challenging when the number of variables n is large
relative to the number of observations t , a phenomenon known
as the “curse of dimensionality.” In such cases, the covariance
matrix becomes increasingly noisy and can even turn nonpos-
itive definite when n > t . It is often the case that we must
operate under conditions where n is approximately equal to t
due to factors such as nonstationarity, placing intrinsic limits
on our data collection capacity.

Several techniques have been proposed to refine covari-
ance estimations in the “curse of dimensionality” regime. To
grasp the rationale behind these techniques, it is essential
to delve into foundational statistical theory. When consid-
ering a single pair of time series, the sample covariance
estimator is unbiased, implying the minimization of the mean-
squared error (MSE) and maximization of likelihood. This
is a well-accepted premise. However, complications arise
when extending this logic to combined estimators involv-
ing multiple time series, such as a covariance matrix. The
traditional understanding of “unbiased” may shift based on
our objective. If the goal is to minimize the MSE over all
matrix elements, i.e., the Frobenius norm, then the sample
estimator is no longer unbiased with respect to this combined
loss. This discrepancy is highlighted by the Stein paradox
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[1,2]. It might appear contradictory at first, but it is not upon
closer inspection. Even in the multivariate context, the sample
estimator remains unbiased regarding individual losses. In
simpler terms, for every matrix element, the true expectation
aligns with the sample estimator. Yet, when t is small, the vari-
ances surrounding these expectation values are not negligible.
As a result, an alternative estimator can leverage variance
information to minimize the overall MSE, embodied by the
Frobenius norm.

Thus, the primary objective of covariance cleaning theory
is to introduce a multivariate estimator optimized for a com-
bined loss. In this context, a frequently employed strategy is
the correction of eigenvalues of the sample covariance matrix.
The earliest of such methods, rooted in random matrix theory
(RMT), was proposed in Ref. [3]. The fundamental propo-
sition of this method is the convergence of the eigenvalue
distribution of a random noise time series to the Marchenko-
Pastur distribution when n, t → ∞ with q = n/t > 1 finite.
Here, n refers to the number of variables or dimensions in
the data, whereas t represents the number of observations
or data points. Real-world matrices, like those representing
daily returns in financial markets, partially conform to the
Marchenko-Pastur distribution but also exhibit outlier eigen-
values. In the method from Ref. [3], all eigenvalues λ that
are less than a threshold λmax are treated as sample noise
fluctuations and are filtered out. Here, λmax is the maximum
eigenvalue predicted by the Marchenko-Pastur distribution.
This value serves as a boundary between the bulk of the
distribution, representing noise, and the outliers, potentially
representing a signal.

However, this approach has been replaced by more ef-
fective techniques, proving that the sample eigenvalues that
belong to the bulk of the Marchenko-Pastur carry relevant
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information. Starting from this observation, a large variety of
approaches to address the optimal eigenvalue correction were
proposed [4]. Needless to say, behind any idea of optimality, a
proper covariance estimator target must be defined. The case
of the former cited method is the Oracle estimator [5]. In a
simple world, the Oracle estimator is the optimal correction
that minimizes the Frobenius norm distance of the unknown
population matrix. As the population matrix is unknown, as-
sumptions like large sample size limit and stationarity are
required to have an asymptotic approximation for such esti-
mators. The latter is, of course, one of the strongest, as shown
in Ref. [6].

In this work, we explore a different loss function for the
target matrix. We question whether the current state-of-the-art
literature holds true when one aims to minimize the informa-
tion lost by the estimator when approximating the population
matrix. To quantify this information loss, we employ the
Kullback-Leibler (KL) divergence [7]. For two probability
measures P and Q over a set X , the KL divergence is defined
as

K(P||Q) :=
∫
X

(
log

P

Q

)
dP. (1)

This measure, a cornerstone of information theory, pro-
vides a quantification of the informational discrepancy
between two probability distributions. It essentially measures
the “informational cost” of approximating one distribution (in
our case, the population matrix) with another (the estimator).

The use of the KL divergence is not confined to informa-
tion theory. It has also found extensive application in various
physical contexts. Indeed, the task of estimating physical
quantities from noisy measurements is pervasive in physics,
and methods that revolve around minimizing the KL diver-
gence to extract information about a system have been widely
employed. For example, it has been used to study spin-glasses
[8], in high-energy physics [9], to extract information from
gravitational waves detection [10], and to estimate the electron
density in solid-state systems [11]. It has also been deployed
in a host of other contexts [12,13]. Interestingly, the quantum
extension of the KL divergence—the quantum relative entropy
and its associated quantity, the quantum Fisher information
[14]—has played a pivotal role in quantum metrology [15].
This is not surprising, considering that one of the primary
objectives of quantum metrology is to estimate a physical
quantity based on a finite set of noisy measurements, a prob-
lem that our work also addresses. In general, the quantum
relative entropy is central to several concepts in quantum
mechanics. For instance, quantities such as entanglement or
purity are often estimated using the trace distance or the fi-
delity, both of which are related to the KL divergence [16]. In
such cases, the loss of information is typically quantified using
the Fisher information metric. However, the Fisher informa-
tion metric’s locality precludes its use in scenarios where
very little is known beforehand [17]. Furthermore, in quantum
mechanics, covariance matrices are instrumental in character-
izing the entanglement properties of multipartite systems [18].
Specifically, the covariance matrix can be leveraged to con-
struct the logarithmic negativity, a measure of entanglement
[19,20].

The problem of estimating physical quantities from noisy
measurements when the underlying probability distribution is
a fat-tailed distribution, such as the Student’s t distribution,
is common in various fields of physics [21–24] and finance
[25–27]. Specifically, in finance, daily returns are well ap-
proximated using the Student’s t distribution [28], although,
at larger time scales, a slow convergence toward a Gaussian
distribution is observed [29]. In practical applications, con-
sidering larger timescales can be problematic due to factors
like nonstationarity and the potential for missing significant
market events. Consequently, daily returns, with their rich
informational content, remain a focus for many financial an-
alysts and researchers. Furthermore, leveraging results from
information theory, Ref. [30] proved that fat tails significantly
affect the largest eigenvalue, differing notably from the Gaus-
sian case. This shows that fat tails are an important feature that
cannot be overlooked.

In this context, the application of the Kullback-Leibler
(KL) divergence for correlation matrix filtering for Normal
multivariate variables was first introduced in Ref. [31]. A pre-
liminary attempt to generalize this to multivariate heavy-tailed
distributions was made in Ref. [32], although it considered
only a simple single factor model with heavy tails. To date,
a closed expression of the KL divergence for multivariate
Student’s t distributions remains elusive, with the work in
Ref. [33] providing a closed expression under the quasi-
normality assumption, and only for a Student’s t distributed
probability.

In our work, we delve deeper into this problem. We explore
the relationship between estimators based on the minimal
Frobenius norm and the KL divergence, and how they behave
differently for fat-tailed distributions. We highlight that, while
the target estimators for the minimal Frobenius norm and KL
coincide for normal multivariate variables, they diverge in the
finite n regime for fat-tailed distributions. Consequently, we
develop a numerical approach for optimal correction for the
Student’s t distribution and derive asymptotically the limiting
equation for the KL divergence in the Student’s t case in the
large n (thermodynamic) limit. In doing so, our work illumi-
nates the interplay between the choice of the estimator and
the underlying distribution, offering valuable insights into the
estimation problem in situations where a Gaussian assumption
is not suitable.

II. PROBLEM STATEMENT

The main goal of the filtering methods is to find the best
rotational invariant estimator (RIE) for the population corre-
lation matrix C. The RIE is defined as

�(�) := V�V′, (2)

where V ∈ O(n) are given, and they are not eigenvectors of C
but, in general, are the eigenvectors of the sample correlation
matrix. The standards correlation cleaning approaches rely on
finding the eigenvalue matrix �F that minimizes the Frobe-
nius norm distance with the population matrix ||�(�) − C||F .
Such estimator, when the population matrix C is known is
called Oracle, and it can be obtained [5] from

�F = (V′CV)d , (3)
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where the operator (•)d sets to zero the out-of-diagonal
elements.

The optimal RIE that minimizes the KL divergence assum-
ing that the population matrix is known, must be derived from
the multivariate form of the KL,

K[C||�(�)] := E
[

log

( P (x; C)

P (x; �(�))

)]
P (x;C)

. (4)

Here, the operator E stands for the expectation. In this
formulation, the KL divergence represents the expected infor-
mation loss when we use P (x; �(�)) as an approximation for
data that are actually distributed according to P (x; C). More
specifically, it calculates the expected value of the logarithmic
ratio of the probability density functions (PDFs) with covari-
ance matrices C and �(�) for a multivariate random variable
with zero means and population covariance matrix C.

III. MULTIVARIATE GAUSSIAN

For multivariate Gaussian variables with zero means, the
KL divergence is already well-established [31] and can be
expressed as follows:

K[C||�(�)] = 1

2

[
Tr[�(�)−1C] − n + log

( |�(�)|
|C|

)]
.

(5)

Interestingly, for Gaussian multivariate variables, the eigen-
values that minimize the Frobenius norm also minimize the
KL divergence, i.e., �F = �KL. The former result can be
obtained by solving

∂λk K[C||�(�)] = 1

2

(
1

λk
− 1

λ2
k

Tr[vkv′
kC]

)

= 1

2

(
1

λk
− 1

λ2
k

v′
kCvk

)
= 0. (6)

That leads to Eq. (3).

IV. MULTIVARIATE T STUDENT

If both distributions are instead two multivariate t-student
random variables, then the computation is more challenging
and requires tailored approximations. The PDF for a standard-
ized t student of n random variables is

P (x; C, ν) = �[(ν + n)/2]

�(ν/2)νn/2πn/2|C|1/2

(
1 + 1

ν
x′C−1x

)− n+ν
2

.

(7)
Our first step is to illustrate the difference between the

Gaussian and the t-student cases in a low sample size (n)
scenario. For this, we have developed a Monte Carlo method-
ology, which can be found in the referenced repository [34],
that calculates the expected value of multiple random re-
alizations of Eq. (4) for random variables drawn from the
distribution given in Eq. (7). In the top panel of Fig. 1, we
depict the difference between the minimum of the KL diver-
gence and the Frobenius norm. In this particular example, we
have used n = 2, which means that the correlation’s eigen-
value has just one degree of freedom, given that they must
sum up to n. This figure also includes a numerical approx-
imation of the KL divergence obtained through an integral

FIG. 1. The top panel shows the KL for a matrix with n = 2 and
a Student’s t distribution with ν = 4, the plot reports the Monte Carlo
estimation and the numerical quadrature obtained integrating the two
variables in sufficiently large interval ([−100, 100]). The plot shows
eigenvalues for the minimal KL and Frobenius norms, highlighting
significant differences. The bottom panel shows the difference in KL
between �(�F ) and �(�KL ) for the Student’s t distribution with
parameter ν of a synthetic covariance matrix C with n = 30 and an
eigenvalue distribution that comes from a geometric progression with
exponent 1.8. The eigenvector V is obtained by applying a small
random rotation in terms of Euler angles to the original eigenval-
ues of C. The rotation of C’s eigenvectors is done to avoid trivial
solutions, namely λ = 1. The optimal �KL is obtained with a Monte
Carlo computed with 10 000 samples. The plot indicates the mean
and the standard deviation of 100 runs.

quadrature method. However, this method becomes imprac-
tical as n increases. For larger values of n, we can obtain a
numerical approximation of �K by using a combination of
sequential least-squares programming (SLQP) minimization
and the Monte Carlo approach. This numerical approxima-
tion accentuates the discrepancy with the Frobenius norm
estimator as ν approaches 2, as demonstrated in Fig. 1. This
discrepancy, even in just one example, refutes the assumption
that both metrics yield the same minimum.

A. Asymptotic derivation

Given that a numerical discrepancy is observed for small n,
our aim is to derive an asymptotic approximation of the KL for
two Student’s t distributions in the large n limit. This involves
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calculating the expected value of

log

( P (x; C, ν)

P (x; �(�), ν)

)

= 1

2

[
log

|�(�)|
|C| + (n + ν) log

(
1 + 1

ν
x′�(�−1)x

1 + 1
ν
x′C−1x

)]
,

(8)

with x ∼ P (x; C, ν). To compute the expected value of the
first term, we leverage the linearity of the expectation operator
and examine each logarithm of the ratio separately. The last
term poses a greater challenge. One might consider applying
the replica trick [35,36]. The replica trick is based on the

equation E[log(Z (x))] = limη→0
E[Z (x)η]−1

η
where in our case

Z is the argument of the logarithm in the last term. Unfor-
tunately, the analytical calculations of the η dependence of
E[Z (x)η], where x is distributed according to a Student’s t dis-
tribution, results extremely challenging. Moreover, they may
not even be analytically calculable. Therefore, an alternative
approach is required. To address this, we consider the first-
order two-variable Taylor expansion of the variance of the
argument of the logarithm. This expansion is centered around
the expected values of the quadratic bilinear forms x′�(�−1)x
and x′C−1x, which we denote as A and B, respectively, and
c = 1/ν. The detailed computations for the variance, the co-
variance, and the expectation in the multivariate t distribution
case are provided in Ref. [37]. This approach leads us to

V
[

1 + cA

1 + cB

]
� Ṽ

[
1 + cA

1 + cB

]
= c2

[
V[A]

(1 + cE[B])2 − 2
1 + cE[A]

(1 + cE[B])3 C[A, B] + (1 + cE[A])2

(1 + cE[B])4 V[B]

]

= 2(ν − 2)n
(
ν − nTr[C�(�−1)]

2 + Tr[C�(�−1)C�(�−1)](ν + n − 2) − 2(ν − 2)Tr[C�(�−1)] − 2
)

(ν − 4)(ν + n − 2)3
(9)

where we extracted the system size dependence
from the traces Tr[C�(�−1)] = nTr[C�(�−1)] and
Tr[C�(�−1)C�(�−1)] = nTr[C�(�−1)C�(�−1)].
We have numerically observed that this approximation
overestimates the actual variance. By recognizing that

lim
n→∞ Ṽ

[
1 + 1

ν
x′�(�−1)x

1 + 1
ν
x′C−1x

]
= 0, (10)

we can also infer that the true variance approaches zero in the
same limit. Consequently, in high dimensions, the distribution
of the ratio converges to a δ distribution centered at their ex-
pected values. This simplification facilitates the computation
of the KL in the large n limit. The KL divergence can then be
expressed as

K[C||�(�)]

≈ 1

2

{
log

|�(�)|
|C| + (n + ν)

×
[

log

(
1 + nTr[C�(�−1)]

ν − 2

)
− log

(
1 + n

ν − 2

)]}
.

(11)

Then the normalized KL can be derived with an asymptotic
limit

K[C||�(�)] = lim
n→∞

K[C||�(�)]

n

= 1
2 (log |�(�)| − log |C|+ log Tr[C�(�−1)]),

(12)

and it is independent of ν. From the former equation, it is
possible to obtain the Gaussian case with the limit

lim
ν→∞

K[C||�(�)]

n

= 1
2 (log |�(�)| − log |C| + Tr[C�(�−1)] − 1). (13)

The derivative of the normalized KL of Eq. (12) in the
eigenvalues by expressing n again, that in the large limit is
approximately

∂λk K[C||�(�)] ≈ 1

2

(
1

nλk
− 1

λ2
k

v′
kCvk

Tr[C�(�−1)]

)
, (14)

which is equal to zero in the 
F = (V′CV)d since
Tr[C�(�−1

F )] = n. As a result, the former equation has the
same zeros of Eq. (6). Proving the equivalence of the mini-
mum for the Gaussian and t-student cases in the large system
limit.

Another interesting observation is that in the n large limit
also the normalized KL of Eq. (12) in the 
F is equal for the
Gaussian and student’s t cases to

K[C||�(�F)] = 1
2 (log |�(�F)| − log |C|). (15)

Finally, if ν is not a negligible fraction of n, then we could
write ν = hn with h finite and nonzero. Then,

lim
n→∞

K[C||�(�)]

n

= 1
2 [log |�(�)| − log |C|+(1+h) log(h+Tr[C�(�−1)])

− (1 + h) log(1 + h)]. (16)

The former equation highlights that a discrepancy between
the Normal and Student’ t case is observed for small h, while
the discrepancy disappears for h → ∞ or if the equation is
computed in 
F .

In Fig. 2 we show that our approximation converges pretty
well to the asymptotic expectations for moderately large
n = 1000. In particular, on the top plot, we confirm that the
deviation from the Normal expectations is observed also for
very large values of ν, whenever the ratio h = ν/n is not large.
In the bottom plot, we confirm Eq. (15), in fact, all estimates
converge to the same values independently from the value
of h.
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FIG. 2. The top panel shows simulations with n = 1000 of the
KL between the population and the sample covariance matrix as a
function of h; the bottom plot shows the KL between the popula-
tion matrix and the Oracle estimator. The different lines represent,
Eq. (12) (blue), Eq. (5) (orange), the numerical Monte Carlo (green),
and Eq. (16) (red). The values are averaged over 100 independent
runs.

V. DISCUSSION

In summary, we have demonstrated that the key step
of optimal covariance cleaning theory, namely minimizing
the Frobenius norm between the true population covariance
matrix and a rotational invariant estimator, is equivalent to
minimizing the loss of information between the true popu-
lation covariance and the rotational invariant estimator for
normal multivariate variables. We have shown that this equiv-
alence does not necessarily hold for Student’s t distributions in
finite-sized matrices, but that it holds asymptotically for large
matrices. This result might help to extend the applicability
of random matrix theory to Student’s t distributions, which
are commonly encountered in real-world applications such as
finance.

Our work contributes to reinforcing the connection be-
tween statistical random matrix theory and estimation theory
in physics, within the framework of information theory. The
use of information theory has been instrumental in the devel-
opment of a wide range of physical theories and models, such
as the maximum entropy principle, which has been used to
derive equilibrium thermodynamics from information theory.
Our findings suggest that information theory can also provide
valuable insights in the field of optimal covariance cleaning
theory, which has important applications in statistical data
analysis, signal processing, and machine learning.

In future work, it would be interesting to explore the ap-
plicability of our results to other heavy-tailed distributions
and to investigate whether the use of alternative metrics for
quantifying the loss of information, such as the Kullback-
Leibler divergence, could lead to improved performance in
finite-sized matrices. Additionally, it would be valuable to
study the performance of optimal covariance cleaning in the
presence of missing or incomplete data, which is a common
issue in many real-world applications. Overall, our work high-
lights the potential of combining concepts from information
theory and random matrix theory to develop more robust and
accurate statistical methods for analyzing complex data sets.
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