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Homophily is the principle whereby “similarity breeds connections.” We give a quantitative formulation of
this principle within networks. Given a network and a labeled partition of its vertices, the vector indexed by
each class of the partition, whose entries are the number of edges of the subgraphs induced by the corresponding
classes, is viewed as the observed outcome of the random vector described by picking labeled partitions at
random among labeled partitions whose classes have the same cardinalities as the given one. This is the recently
introduced random coloring model for network homophily. In this perspective, the value of any homophily score
�, namely, a nondecreasing real-valued function in the sizes of subgraphs induced by the classes of the partition,
evaluated at the observed outcome, can be thought of as the observed value of a random variable. Consequently,
according to the score �, the input network is homophillic at the significance level α whenever the one-sided
tail probability of observing a value of � at least as extreme as the observed one is smaller than α. Since,
as we show, even approximating α is an NP-hard problem, we resort to classical tails inequality to bound α

from above. These upper bounds, obtained by specializing �, yield a class of quantifiers of network homophily.
Computing the upper bounds requires the knowledge of the covariance matrix of the random vector, which
was not previously known within the random coloring model. In this paper we close this gap. Interestingly, the
matrix depends on the input partition only through the cardinalities of its classes and depends on the network
only through its degrees. Furthermore all the covariances have the same sign, and this sign is a graph invariant.
Plugging this structure into the bounds yields a meaningful, easy to compute class of indices for measuring
network homophily. As demonstrated in real-world network applications, these indices are effective and reliable,
and may lead to discoveries that cannot be captured by the current state of the art.
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I. INTRODUCTION

Network homophily is the phenomenon, first observed by
social scientists, whereby people who share the same char-
acteristics tend to be connected [1]. More abstractly, given
a simple undirected graph G (modeling interactions) and a
partition P of its vertices (modeling a classification based, for
instance, on certain characteristics), G is said to be homophilic
with respect toP if the subgraphs induced by the classes in the
partition (i.e., people who presumably share the same char-
acteristics) are significantly dense (thus showing a tendency
to connect). What makes this definition vague is the inher-
ent difficulty of explaining what “significantly dense” means.
The main aim of this paper is to give a precise quantitative
meaning to this term. A well-established descriptive approach
to quantifying network homophily consists in defining a
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real-valued nondecreasing function � of the edge densities (or
simply of the sizes) of the subgraphs induced by the classes of
the given partition P, and to locate the value of � evaluated
at the input on a universal scale. The function � is called
homophily score or descriptive homophily index. One of the
simplest descriptive indices is the homophily ratio [2] (called
inside edge fraction in [3]), which is simply defined as the
fraction of the homophillic edges, namely, those edges that
are induced by the classes of the partition. Also, by dividing
the sum of the edge densities of the subgraphs induced by the
classes by the number of classes yields another index in the
scale [0,1]. Often the role of the universal scale is replaced
by numerical experiments on benchmark instances while ho-
mophily indices are taken from a consolidated catalog. We
refer the reader to Refs. [4,5] for (among other things) an
annotated bibliography on both aspects.

In this paper we take an inferential statistics approach,
namely, we think of the partitioned input network (G,P)
as the observed value of a random object in a probability
space which induces a probability distribution on its measur-
able functions and, in particular, on homophily indices. The
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latter ones are now random variables (statistics) of which we
observe a particular realization. Depending on our ability to
compute their distributions, a task which is very far from
obvious (see the next section and Sec. V), we can perform
hypothesis testing, locate confidence intervals, or, less ambi-
tiously, simply compare the observed values of these statistics
with their expected values under the null model represented
by the chosen probability space for the random object (G,P).
We can think of the celebrated network modularity index by
Newman [6] as probably the most notable instance of this
approach. The probability space for (G,P) consists of all
multigraphs on the set of vertices of G with the same degrees
as G sampled according to Bollobás’ configuration model [7]
(see next section). The statistic in this case is the random
variable

1

m

s∑
i

[Mi − E(Mi )],

where m is the size of G, Mi is the random number of edges
induced by the ith class of the given partition P of V (G)
into s classes, and E(Mi ) is its expected value under the
configuration model. The modularity of G with respect to
P is simply the value of this statistic in the observed data
(m1, . . . , ms) where mi is the number of observed homophilic
edges induced by the vertices of class i, i = 1, . . . , s. Since
network modularity is a nondecreasing monotone function of
the m′

is, besides its statistical interpretation, it directly quanti-
fies homophily in the scale [−1/2, 1]. Actually, the range of
the index could be a proper subinterval of [−1/2, 1] whose
extreme points correspond to the perfectly antihomophilic
regime and to the perfectly homophilic regime, respectively.
In this sense the scale [−1/2, 1] is not universal. However,
finding the maximum of modularity over the set of labeled
partitions whose classes have prescribed cardinalities, and
hence the width of the range of the index over this set, is an
NP-complete problem, and the same is true for the homophily
ratio (see theorem 5).

In this paper we take a complementary approach: we
think of G as given while we think of P as a sample from
the probability spaces consisting of all labeled partitions of
V (G) having the same structure of P, equipped with the
uniform distribution (see [8,9] for alternative probability mea-
sures on P). This is the random coloring model introduced
in [10]. The random coloring model is simple enough to
derive exact closed formulas for the first two moments of
the random variables M ′

i s, which are now defined on the
probability space of the labeled partition of the same struc-
ture as P (see Sec. II). On these grounds, we propose a
multidimensional extension of the well-known three-sigma
rule of thumb by providing a Cantelli-type upper bound for
the probability of the tails [�(M1, . . . , Ms) � �(m1, . . . , ms)]
and [�(M1, . . . , Ms) � �(m1, . . . , ms)] where � is the ho-
mophily score. These bounds are coupled together and yield
an index that ranges in [−1, 1], which we take as a quantifier
of network homophily. Moreover, its absolute value can be
interpreted as an estimated significance of the deviation of the
observed homophily from the expected one under the random
coloring model. To illustrate the idea, consider the follow-
ing extremely simplified problem: suppose we want to asses

whether a set C of c vertices of a graph G induces a subgraph
H which is significantly denser among the subgraphs induced
by the same number of vertices; we may think of the edge
density y of H as a sample of the random variable Y described
by the density of the subgraph induced by uniform sampling
of sets of c vertices from G; by the results in [10], we known
the expectation Y and the variance σ 2 of Y ; hence we can
compute the observed z score defined as z = (y − Y )/σ ; the
denser is H the higher is z. Well, but how much high z is? How
can we assess that what we observe is statistically significant?
If we knew the tail probability

Pr

{
Y − E(Y )

σ
� z

}
,

then we could immediately answer: if y � Y , then H is not
significantly dense at all, while the smaller is the tail prob-
ability above, the higher is the significance of the deviation
from the expected value. However, already in this simplified
problem, the probability above is even hard to approximate
(see Sec. II A). Here comes to our aid a kind of three-sigma
rule of thumb: let

Z = Y − E(Y )

σ

be the Z score of Y , namely, the standardized version of Y ; by
Cantelli’s inequalities ((7) and (8) in Sec. II A) the inequality

Pr{Z � z} � 1

1 + z2

holds and tells us that, for z � 0, the function z �→ z2

1+z2 = 1 −
1

1+z2 is not decreasing in the range [0,1] and that the higher
z, the higher its significance. By applying the same inequal-
ity to −Z we obtain a symmetric bound for the hypo-dense
behavior, namely, the significance of very large deviation of
Y from Y in the opposite direction; similarly, for z � 0, the
function z �→ − z2

1+z2 is not decreasing in the range [−1, 0] and
that the higher |z| is, the higher is its significance. Coupling
the bounds yields an index in the scale [−1, 1] which ranges
between the hypo-dense and hyper-dense case. The multidi-
mensional extension of this idea is technically more difficult
in that the bound crucially depends on the covariance matrix
of the random vector M, which was not previously known
within the random coloring model. In this paper we close this
gap by computing the covariance matrix of subgraph sizes
under the random coloring model. Interestingly, the matrix
depends on the input partition only through its profile and on
the network only through its degree sequence. Furthermore,
all the covariances have the same sign, and this sign is a graph
invariant.

The knowledge of the covariance structure of the random
outcome M allow us to define a class of quantifiers of network
homophily by specializing the function �. Although this leads
to a variety of possibilities to measure network homophily
(see Sec. IV), what we deem more interesting of our work
is the methodological approach, which consists in viewing
the input partitioned network, as a random object where
randomness is inherited from random partitions rather than
from random graphs. In principle, this is nothing more than a
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reasonable modeling choice. However it has some important
implications:

We provide an universal scale for our indices; in fact, their
range is always (and tightly) the interval [−1, 1], unlike the
ranges of other indices, such as the modularity and homophily
ratio indices, whose maxima are difficult to locate, the corre-
sponding optimization problems being typically NP-complete
(see Theorem 5).

Due to the simplicity of the random coloring model we
gain the possibility of sharper analysis with respect to random
graph models; for example, we have complete knowledge
of the covariance structure of M, which can be exploited to
estimate the significance of the observed homophily score via
tail inequalities and hence to take this estimated significance
as a homophily quantifier.

We discuss and substantiate these claims in Sec. V where
we show, for instance, as expected, that the inherent ho-
mophilic nature of the Homo sapiens PPI network with respect
to the location of corresponding genes on chromosomes is
captured neither by the descriptive indices like the homophily
ratio nor by Newman’s modularity, while it is captured by
ours.

The rest of the paper proceeds as follows. In Sec. II the
general concept of homophily in random models is formally
described introducing the ground of our approach to ho-
mophily: the random coloring model; in Sec. III we elicit
the second-order moment structure of the random outcome
M and study its properties including its computational com-
plexity; these results are next exploited in Sec. IV where we
propose a class of quantifiers of homophily and show that
each of them can be efficiently computed; and in Sec. V we
substantiate our approach through examples and real-world
applications. Section VI closes the paper with concluding
remarks.

II. HOMOPHILY IN RANDOM MODELS

Throughout the rest of the paper we use the following
standard notation: for a positive integer k the symbol [k]
stands for the set {1, . . . , k} of the first k positive integers. The
edge set of a graph G is denoted by E (G). Symbols Kn, Pn,
K1,n, and K (t )

2 denote the isomorphism classes of the complete
graph on n vertices, the path on n vertices, the tree with n + 1
vertices and n leaves, and the graph consisting of t disjoint
edges. The number of copies of P3 in G is denoted by π3(G).
Let G be a graph on [n] with m edges. Let P be a partition
of [n] into s distinguishable classes. Let ci be the number
of vertices in class i, i ∈ [s]. The s-tuple c = (c1, . . . , cs) is
the profile of P. Since labeled partitions P of [n] of profile
c correspond bijectively to surjective maps f : V (G) → [s]
where f −1(i) = ci, for i ∈ [s] := {1, 2, . . . , s}, we can equiv-
alently think of the partitioned network (G,P) as the colored
network (G, f ) where for each vertex of G, f tell us the
color of that vertex. Accordingly, we rephrase the definition of
homophily by saying homophillic with respect to f rather than
homophillic with respect to P, and we refer to c as the profile
of coloring f . Also, we say that an edge of G is i-homophilic
(or homophilic of color i) if both endpoints have color i. Let
(m1, . . . , ms)′—here and henceforth u′ denotes the transpose
of vector u ∈ Rd , for some natural number d , usually thought

of as column vector—be the observed outcome for the in-
put (G,P), where mi is the number of i-homophilic edges
under f .

There are mainly three options to prescribe randomness for
(G, f ):

(a) We may think both G and f as random objects, namely,
Gn is a set of graphs on [n], �c is the set of colorings of [n] of
profile c, and PGn,c is a probability measure on Gn × �c.

(b) We may think of G as given while of the coloring f as
a sample from �c according to a probability measure Pc on
�c (Pc can therefore be viewed as conditional probability).

(c) We may think of f as given while the graph G as as
sample from the random graph Gn according to a probability
measure PGn on Gn (PGn can therefore be viewed as condi-
tional probability).

Since models in (a) can be recovered by the knowledge of
models in (b) and (c) via the factorizations

PGn,c(G, f ) = PGn,c(G, f |G)PGn (G),

PGn,c(G, f ) = PGn,c(G, f | f )Pc( f ),

where we identify the marginals of PGn,c with PGn and Pc, we
may concentrate on the models in (b) and (c). Note that, when
�c is the set of proper colorings of [n], i.e., adjacent vertices
have different colors, model in (a) is investigated in [11], and
an optimization version is analyzed in [12].

Whichever model of (a), (b), and (c) applies,
M = (M1, . . . , Ms)′ is the outcome in the chosen proba-

bility space [of which we observe (m1, . . . , ms)]; Mi is the
random variable defined as the number of i-homophilic edges.

M = (M1, . . . , Ms) with Mi = E(Mi), i ∈ [s] and E(·)
being the expectation under the chosen model, is the the ex-
pected or most typical outcome even if, despite being typical,
it might not belong to the support of M (for instance, because
its coordinates might not be integer numbers).

σ 2
i = Var(Mi) = E((Mi − Mi )2) is the variance of Mi,

� = E((M − M )(M − M )′) is the covariance matrix of M,
and, provided that σi > 0 for all i ∈ [s], � = D− 1

2 �D
1
2 is the

correlation matrix of M, where D is the diagonal matrix with
diagonal entries σ 2

1 , . . . , σ 2
s .

Z = (Z1, . . . , Zs) and z = (z1, . . . , zs) are the z- and the ob-
served z-score vectors, where, for i ∈ [s], Zi = (Mi − Mi )/σi

and zi = (mi − Mi )/σi; notice that the covariance matrix of Z
is �.

Probably the most notable instance of the model in (c) is
the celebrated network modularity index by Newman [6]; more
generally, Newman studies from a quantitative viewpoint the
broader phenomenon of assortative mixing of which network
homophily can be seen as categorical manifestation [13]. In-
deed, the modularity of G with respect to f in the sense of [6]
is the index

q( f ) =
s∑
i

[
mi

m
−

(
Di

2m

)2
]
, (1)

where Di is the sum of the degrees of the vertices in the ith
color class. To see why the index above fits the model in
(c) let Mi be the random number of i-homophilic edges in a
(multi)graph G sampled according to Bollóbas’ configuration
model [7]—a random (multi)graph with the same degrees as
G—and observe [6] that ( Di

2m )2 is the expectation of Mi/m
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under this model. Therefore q( f ) takes the form

1

m

s∑
i

[mi − E(Mi )], (2)

which expresses q( f ) as an appropriate multiple of the sum
of the deviations of the observed homophillic edges in class
i from their expected value under a particular null model
(the configuration model in the present case). The reason
why one resorts to probability spaces of multigraphs rather
than simple graphs is because, unlike the Erdős-Rényi model
G(n, p), the edges of a simple random graph G(d ) on [n] with
prescribed degree sequences d are correlated. In fact, even
estimating the probability of a single edge can be challenging,
and that makes analyzing G(d ) difficult and more difficult
than the case of multigraphs ([14]). However, in principle, the
choice of any null model (Gn,PGn ) yields a modularity-like
index having the same general structure (2).

A. The random coloring model

The models in (b) are in some sense complementary to
those in (c). Choosing for Pc the uniform measure we obtain
the recently introduced random coloring model for network
homophily [10] based on implicit ideas in [15]. The probabil-
ity space consists thus of the set 	c of all colorings of G of
profile c equipped with the uniform measure

Pc = c1! · · · cs!/n!. (3)

This is the model we adopt in this paper. The random coloring
model is simple enough to allow an exact closed formula for
the first two moments of the random variables M ′

i s (see [10]).
In fact, within this model there is a handy representation of
the random variables M ′

i s by means of the Bernoulli random
variables X e

i , e ∈ E (G), i ∈ [s], defined as the indicators of the
event: edge e is i-homophilic. Indeed,

Mi =
∑

e∈E (G)

X e
i ,

so that we have the following expressions for the mean and
the variance of Mi, i = 1, . . . , s ([10])

Mi = m
c2

i

n2
, (4)

σ 2
i = m

c2
i

n2

(
1 − m

c2
i

n2

)
+ 2

[(
c3

i

n3
− c4

i

n4

)
π3(G) + c4

i

n4

(m

2

)]
,

(5)

where, following the notation in [16], for a positive integer
a and a nonnegative integer q, we denote by the symbol aq

the qth falling factorial of a, namely, aq = a(a − 1) · · · (a −
q + 1), with a0 = 1. Thus, a2 = a(a − 1). After setting c2 =
(c2

1, . . . , c2
1 ), the most typical outcome in the random coloring

model with parameters c and n reads as

M = m

n2
c2,

namely, the most typical outcome corresponds to a (possibly
unattainable) coloring having the property that each color
class induces a subgraph having the same density as input

graph. In [10] it is shown that both the marginal mean Mi

and the marginal variance σ 2
i can be computed in optimal

O(s + m) worst-case time. It is instructive to compute this
vector for the complete graph on n vertices and a given profile
c. It is clear that, for any coloring g ∈ 	c, the number of edges
in the subgraph induced by color i is exactly c2

i /2. Hence
M is constant on 	c and M = c2/2. On the other hand, the
density of the complete graph is 1 while the coefficient of c2

in the representation of M is half this density. Therefore, by
applying the formula, we recover the same result. Using the
corresponding formula, the reader may check that σ 2

i = 0 for
all i ∈ [s]. Notice that π3(Kn) = n3/2.

Homophily in the random coloring model. The null hy-
pothesis behind the random coloring model is the absence of
homophily, namely, the coloring f does not correlate with
G. This means that the effect of f on G, measured by some
monotone function � of the number of homophilic edges,
should be statistically the same as the effect of any other
(equally likely) coloring of G with the same profile as f .
We aim at devising an index, in the form of a nondecreasing
function of the number of homophilic edges, such that

(i) On the one hand it locates the input (G, f ) in the uni-
versal scale R (i.e., independent on the particular input graph)
whose extreme values correspond to the antihomophilic and
perfect homophilic behavior, respectively. Note that locating
the range of the modularity value or homophily ratio index is
a far from obvious problem (see Theorem 5), since it requires
locating their maxima over the labeled partitions of the given
profile.

(ii) On the other hand, values of the index are measures of
the significance of the deviation of the number of homophilic
edges from their expected value under the random coloring
model.

Suppose for the moment that we know the distribution M
induced by Pc. Consider the arithmetic mean of the z scores

A := A(Z1, . . . , Zs) = 1

s

s∑
i

Zi.

This amounts to choose the statistic � as a function of
(M1, . . . , Ms) as

� : Rs → R, x �→ 1

s

s∑
i

xi − Mi

σi
,

which is trivially an affine nondecreasing function of its argu-
ments. The index

a(G, f ) =
{

1 − Pr{A(Z ) � A(z)} if A(z) � 0
Pr{A(Z ) � A(z)} − 1 if A(z) < 0 (6)

ranges in [−1, 1] and meets the requirements in (i) and (ii).
Unfortunately, knowing the distribution of M is a very un-
likely case. Indeed, a straightforward reduction to CLIQUE
shows that given a certain positive integer κ even deciding
whether the marginal tail probability Pr{M1 � κ} is positive
or not is an NP-complete problem: just choose for κ the num-
ber c1(c1 − 1)/2 where c1 is the number of vertices of color 1:
G has a clique on c1 vertices if and only if Pr{M1 � κ} > 0.
Therefore, since CLIQUE is not even in the APX class, it fol-
lows that the probabilities in (6) are even hard to approximate.
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While this circumstance is very frustrating, not being able to
calculate the probability of a given event exactly is a rather
common event in probability and statistics. The usual remedy
is to resort to so-called tail inequalities. The typical couple
of one-sided tail inequalities for the random variable �(Z ),
where � : Rs → R, read as

Pr{�(Z ) � �(z)} � B(�(z)) if �(z) > 0
Pr{�(Z ) � �(z)} � B(�(z)) if �(z) < 0

,

where B is a non-non-negative real-valued function of its
argument which depends in general on the mixed moments
of the random vector Z = (Z1, . . . , Zs)′. For our purposes,
the most interesting concentration inequality is the celebrated
Cantelli’s inequality. This inequality requires the knowledge
of covariance matrix of M, which was not previously known
to our best knowledge and for which we give a closed form
expression (see Theorem 2) in the next section which depends
on G only through its degrees and on f only through its
profile. Let us illustrate how we can mimic index a via tail
inequalities, assuming the knowledge of the covariance struc-
ture of M. Consider classical univariate Cantelli’s inequalities
for a random variable X with finite expectation and finite
variance σ 2. For a positive real number t , these inequalities
are

Pr{X − E(X ) � t} � σ 2

t2 + σ 2
, (7)

Pr{X − E(X ) � −t} � σ 2

t2 + σ 2
. (8)

Notice the symmetry in the bounds which implies that both
the left and the right tail are approximated in the same way.
The more symmetric the distribution of X − E(X ) is, the more
effective these bounds are. Since A(Z ) is a centered univariate
random variable, with finite variance

Var(A(Z )) = E

([
1′Z
s

]2
)

= E

(
1′ZZ ′1

s2

)
= 1′E(ZZ ′)1

s2

= 1′�1
s2

,

where � is the covariance matrix of Z and 1 is the
s-dimensional all-ones vector, the bounds above apply. There-
fore, the index

a(G, f ) = sgn[A(z)]
[sA(z)]2

[sA(z)2] + 1′�1
, (9)

where z is the observed z score and sgn is the signum func-
tion, ranges in [−1, 1], and meets the requirements in (i)
and (approximately) the requirement in (ii). In view of the
hardness result, this is the best we can hope for by pursuing
this approach.

III. COVARIANCE STRUCTURE OF SUBGRAPH
DENSITIES

We saw in the previous section that the covariance matrix
of the outcome of the random coloring model crucially enters
the upper bounds on the probability of deviating from the
most typical outcome and finally in the estimates of a. This
section is devoted to the study of the covariance structure of

M, and this completes the knowledge about the second-order
moments of M started in [10].

Theorem 1. Let (G, f ) be the input graph in the random
coloring model. Let G have n vertices and m edges and f have
profile c. Then, for all i, j, i �= j

cov(Mi, Mj ) = c2
i c2

j

{
2

n4

[(
m

2

)
− π3(G)

]
−

( m

n2

)2
}
,

which can be written as

cov(Mi, Mj ) = γ (G)c2
i c2

j , (10)

where

γ (G) = 2

n4

[(
m

2

)
− π3(G)

]
−

( m

n2

)2
(11)

depends only on G through its density and the distribution of
its degrees.

Proof. Let i ∈ [s] be any color. Edge e ∈ E (G) is i-
monochromatic under a coloring g, if both end vertices of e
have color i. Let X e

i be the Bernoulli random variable defined
as the indicator of the event: edge e is i-monochromatic. Recall
from Sec. II A that for every color i, Mi has the representation
Mi = ∑

e∈E (G) X e
i . Let now i, j ∈ [s] be two distinct colors.

By definition cov(Mi, Mj ) = E(MiMj ) − E(Mi)E(Mj ) and
by (4) we already know E(Mi )E(Mj ). The rest of the proof
follows by expanding E(MiMj ):

E(MiMj ) = E

⎛
⎝

⎡
⎣ ∑

e∈E (G)

X e
i

⎤
⎦

⎡
⎣ ∑

e′∈E (G)

X e′
j

⎤
⎦

⎞
⎠.

By expanding the product inside the expectation, we obtain
the polynomial expression∑

(e,e′ )∈E (G)×E (G)

X e
i X e′

j .

Since no i-monochromatic edge e can share a vertex with a
j-monochromatic edge e′, we have the relations

X e
i X e′

j = 0 ∀(e, e′) ∈ E (G) × E (G) such that e ∼ e′,

where, for edges e and e′ (with possibly e = e′) we write e ∼
e′ if e and e′ have at least a vertex in common. Therefore, by
linearity

E(MiMj ) =
∑
e�∼e′

E(X e
i X e′

j ).

Now E(X e
i X e′

j ) = Pr{X e
i = 1, X e′

j = 1} because the variables
involved are Bernoulli and, if e �∼ e′, then

Pr
{
X e

i = 1, X e′
j = 1

} = (n − 4)!

(ci − 2)!(c j − 2)!

(
n!

ci!c j!

)−1

= c2
i c2

j

n4
.

Since Pr{X e
i = 1, X e′

j = 1} does not depend on the pair (e, e′),

it follows that E(MiMj ) is
c2

i c2
j

n4 times the number of ordered
pairs (e, e′) with no vertex in common and this number is
twice (= 2!) the difference between the number

(m
2

)
of un-

ordered pairs of edges and the number of pairs sharing exactly
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one vertex. Since the latter number is precisely the number
π3(G) of paths of G with two edges we obtain

E(MiMj ) = 2
c2

i c2
j

n4

[(
m

2

)
− π3(G)

]
.

In view of (5), after subtracting E(Mi)E(Mj ) from the expres-
sion above we obtain the required expression. Now (10) and
(11) follow by trivial manipulations. �

Notice that for i = j, the expression above does not
specialize to the variance given in (5). However, what is
remarkable is that the covariances have the same sign and
this sign depends only on G and not on the probability space.
Therefore the sign of γ (G) is a graph invariant. Interestingly
we have the following theorem.

Theorem 2. LetG be a class of graph whose members have
the same number of edges and vertices and hence the same
edge density. Then γ (G) is maximized on G by the graphs
having a minimum possible sum of squares of the degrees,
and it is minimized on G by those graphs having a maximum
possible sum of squares of the degrees.

Proof. By (11), γ (G) is maximized (minimized) over G,
by the graphs G for which which π3(G) is minimum (max-
imum). Let dG = (d1, . . . , dn) be the degree sequence of a
graph G and observe that 2π3(G) = ∑

i d2
i + 2m. Therefore

G∗ maximizes (minimizes) γ (G) over G if and only if dG∗

minimizes (maximizes)
∑

i d2
i over the same set. �

As an example, let us consider the case of trees. Since
among trees

∑
i d2

i is maximized by stars, while trees that
minimize

∑
i d2

i are paths, we have explicitly

γ (K1,n) = − 1

(n + 1)2 and γ (Pn) = 1

n2(n − 1)
.

We can also express γ (G) in terms of the first two moments
of the degree distribution of G. Let δ1 and δ2 be the first two
moments of the degree distribution of G—recall that degree
distribution of G is the function which associates each integer
t ∈ {0, 1, . . . , n − 1} with the fraction of vertices having t
neighbors in G. One has δ1 = 2m/n and δ2 is the sum of the
squares of the degrees divided by n. After simple but tedious
manipulations it follows that

γ (G) = n

n4

(
2n − 3

2n − 2
δ2

1 + 1

2
δ1 − δ2

)
;

therefore,

γ (G) � 0 ⇐⇒ δ2 − δ2
1

δ1
� 1

2

(
1 − δ1

n − 1

)
.

After setting υ(G) = δ2−δ2
1

δ1
and denoting by ρ(G) the edge

density of G, the relation above reads as

γ (G) � 0 ⇐⇒ υ(G) � 1 − ρ(G)

2

and relates the sign of the correlation of the marginal of M
(or of Z) to the so-called index of dispersion of the degree
distribution of G. This index is defined as the ratio between
the variance and the mean of a given distribution. The index
of dispersion of the degree distribution of G is thus precisely
υ(G). Since for any graph G it holds that 0 � 1−ρ(G)

2 < 1,
it follows that values of the index larger than one qualify

overdispersed distributions while values of the index smaller
than one qualify underdispersed distributions. Hence net-
works with overdispersed degree distribution yield negatively
correlated marginals, while regular graphs yield positively
correlated marginals.

Besides its interesting combinatorial meaning, invariant
γ (G) implies a strong linear algebraic structure for the co-
variance matrix of M, and this structure has striking algorithm
consequences for computing Cantelli’s bounds that our ho-
mophily quantifiers (to be defined in the next section) rely
on. Recall that a Z matrix is a square matrix A over the real
field whose off-diagonal elements are nonpositive and that an
M matrix is a nonsingular Z matrix whose real eigenvalues
are positive [17]. Clearly every symmetric positive definite
Z matrix is an M matrix. M matrices are characterized in
several different ways (see [17,18]). For our purposes the most
interesting such characterization is the following.

Theorem 3. ([17]) A Z matrix is an M matrix if and only if
it has a nonnegative inverse.

The following theorem essentially recognizes the rich
structure of the covariance matrix of M, while the method-
ological implications are given in the next section.

Theorem 4. Let (G, f ) be the input pair in the random
coloring model with G and f as in Theorem 1.

(i) The covariance matrix � of the outcome M of the
random coloring model (	c,Pc ) is of the form

� = Q + γ (G)c2c2′
,

where Q = diag(q1, . . . , qs) with

qi = σ 2
i − γ (G)

(
c2

i

)2
,

where σ 2
i is given in (5) and γ (G) in Theorem 1. Hence � is a

rank 1 update of the diagonal matrix Q. If Q is invertible, so is
�, and by the Sherman-Morrison formula, �−1 is of the form

�−1 = diag
(
q−1

1 , . . . , q−1
s

) − γ (G)

1 + γ (G)a′Qa
aa′,

where a = Q−1c2.
(ii) If γ (G) � 0, then �S is an M matrix for all principal

minors �S with S �= ∅, while if γ (G) � 0, then (�−1)S is an
M matrix for all principal minors (�−1)S with S �= ∅.

The same conclusions in (i) and (ii) hold when � is re-
placed by the correlation matrix �.

Proof. Statement (i) follows straightforwardly by rewriting
equations (5) and (10) in matrix form and then by applying
the Sherman-Morrison formula [19]. As for the last state-
ment, observe that if � is positive definite, then so is D =
diag(σ 2

1 , . . . , σ 2
s ). Hence, replacing � by D− 1

2 �D− 1
2 affects

neither the sign of γ (G) nor the property of being a rank 1
update of a diagonal matrix. It remains to prove Statement
(ii). Both � and �−1 are positive definite matrices, and both
are rank 1 updates of a diagonal matrix; namely, they are
of the form L + λuu′, where L is a diagonal nonsingular
real matrix, λ is a real number, and u ∈ Rs

+. Therefore, for
every nonempty subset S of [s] it holds that (L + λuu′)S =
LS + λuSu′

S and uS > 0. Let AS = LS + λuSu′
S It can be seen

in various way (e.g., by the Cauchy interlacing eigenvalues
Theorem, [18]) that AS is a symmetric definite positive matrix
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for every nonempty subset S of [s]. Therefore if λ � 0, then
AS is a positive definite Z matrix, and hence AS is an M matrix
for every nonempty subset S of [s]. �

In view of the theorem, finding �, � and their inverses can
be accomplished very efficiently, in fact, in optimal O(s2 + m)
worst-case time, where s is usually a small constant: com-
puting γ (G) requires O(m), and due to the structure of the
covariance matrix, O(s2) is needed to write � or � to perform
inversion and vector multiplication.

Remark 1. Beside the sign, the absolute value of γ (G) is
also quite informative. Indeed, by (11), if G is sparse enough,
like the graphs considered in Sec. V, |γ (G)| is very small and
the covariance is nearly zero. Consequently, M and Z have
essentially uncorrelated marginals so that � is very close to
the diagonal matrix D.

IV. MEASURING HOMOPHILY: A CLASS OF INDICES
FOR NETWORK HOMOPHILY

We have already defined the homophily index a(G, f ) in
Sec. II A. Since the index depends only on the observed z
scores and the correlation matrix of M, after the results of the
previous section, we see that a(G, f ) can be computed very
efficiently. The rationale behind the definition of index a is
that if G is homophilic with respect to f , then this behavior
should be exhibited globally: either in most classes or in a few
classes but in an extremely significant way. The same applies
to antihomophily. We can therefore view the arithmetic mean
A(z) of the observed z scores as a score of the homophily
of G with respect to f and a(G, f ) as a measure of the
statistical significance of such a score. Moreover, as seen in
Sec. II A, A(z) is a real-valued nondecreasing affine function
of the observed outcome (m1, . . . , ms)′ so that, in the same
vein, we can define and efficiently compute an entire class of
indices simply by choosing a different score in the form of
an affine nondecreasing real-valued function �. The recipe
goes as follows. Let w ∈ Rs have nonnegative components
and consider the linear map Rs  x �→ w′x ∈ R. This map
clearly restricts to a measurable function of 	c so that, by lin-
earity, the score � defined by �(M ) = w′(M − M ), describes
a centered random variable with covariance matrix

�� = w′�w, (12)

where � is the covariance matrix of M. Clearly � is a
nondecreasing real-valued function in the coordinates of
the observed outcome (m1, . . . , ms)′. Therefore, by mimick-
ing the construction of a(G, f ) and after setting y = (m1 −
M1, . . . , ms − Ms)′, we can associate with the score � the
index j�(G, f ), varying in [−1, 1], defined by

j�(G, f ) = sgn[�(y)]
[�(y)]2

[�(y)]2 + w′�w
. (13)

By construction, for any choice of the score � and hence of
the weighting w, index j�(G, f ) meets the requirements in
(i) and (approximately) the requirement in (ii) of Sec. II A.
Index j�(G, f ) can be specialized in several reasonable ways.
For instance, according to the the terminology of [3], typi-
cal choices for the score � could be based on one of the
following:

The edge-inside fraction, also called homophily ratio, de-
fined as mi/m; this amounts to choosing w = 1′/m so as to
have a score in the range [0,1].

The average internal degree defined as 2mi/ci; this
amounts to choosing w proportional to 2( 1

c1
, . . . , 1

cs
)′ by a

coefficient ν; possible choices for ν are the reciprocal of the
maximum degree �(G) of G, the reciprocal of the number of
color classes 1

s , or even the reciprocal of the average degree
d (G) = 2m

n .

The internal density or dyadicity defined as 2mi/c2
i ; this

amounts to choosing w proportional to 2( 1
c2

1

, . . . , 1
c2

s
)′ by the

coefficient 1
s so to have a score in the range [0,1].

We can also consider weighted version of the score
A(z) [which leads to index a(G, f )] simply by defining
�(z) = ∑s

i=1 wizi with
∑s

i=1 wi = 1. As an illustration con-
sider the homophily-ratio-based score, which we denote by
R(G, f ). Hence R(G, f ) = 1

m

∑
i=1(mi − Mi ) and r(G, f ) =

1
m

∑
i=1 mi is the descriptive homophily ratio [2], which, in

our model, is viewed as the observed sample of the random
variable R = 1

m

∑
i=1 Mi. In view of (13), the corresponding

homophily index r(G, f ) is defined by

r(G, f ) = sgn(R)

[∑
i(mi − Mi )

]2

[∑
i(mi − Mi )

]2 + 1′�1

and gives an upper on the statistical significance of the tails
[R � r(G, f )] and [R < r(G, f )] according to, respectively,
if R(G, f ) � 0 or R(G, f ) < 0.

Besides the quantifiers defined above, there are other pos-
sibilities for a global assessing of homophily in the form
of estimated significance of an appropriate distance from
the expected outcome M = (M1, . . . , Ms)′ of the observed
outcome (m1, . . . , m′

s) sampled from the random outcome
M = (M1, . . . , Ms)′. The most celebrated and widely used
such distance is the Mahalanobis distance. For a random
vector X = (X1, . . . Xs)′ with expectation X = (X1, . . . , Xs)′
and definite positive covariance matrix �, the Mahalanobis
distance of X from a particular point x in the support of X
is the distance dM (X, x) =

√
(x − X )′�−1(x − X ). This dis-

tance actually measures how far the point x is from being
typical, where typical means lying in an ellipsoid centered
at X whose axes are the principal components of X . Notice
that if X is a centered random vector whose marginals have
unit variance, then dM (X, x) = ‖x‖�−1 , i.e, the Mahalanobis
distance of a standardized random vector from a point x in
the support of its distribution coincides with the vector norm
induced by the correlation matrix �−1. In particular, if, as
usual, Z and z are the z score and the observed z score, re-
spectively, corresponding to the input colored network (G, f ),
then dM (Z, z) = ‖z‖�−1 , where � is the correlation matrix of
M. Furthermore, dM (Z, z) is the Euclidean norm of z when-
ever M has uncorrelated marginals. For simplicity, we denote
dM (Z, z) simply by ‖z‖ and refer to it as the Mahalanobis
norm of z. While it is clear that the higher ‖z‖ is, the less
typical is the observed result (m1, . . . , ms), ‖z‖ is not a score
in the previously defined sense, since ‖z‖ is not generally
monotone even in the absolute values of the coordinates; i.e.,
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it is not true that

|z′
i| � |zi|, ∀i ∈ [s] ⇒ ‖z′‖ � ‖z‖.

However, if G is sparse enough so that M has nearly un-
correlated marginals and ‖z‖ is close to the Euclidean norm
of z (recall Remark 1), or G is overdispersed so that � has
nonnegative entries, then the above implication holds (at least
approximately in the first case). In these cases, ‖z‖ can be
taken as a homophily score, at least in a weaker sense. Similar
to the homophily indices defined above, a quantifier of the
homophily of G with respect to f based on the weak score
‖z‖ is obtained by estimating from above the significance of
‖z‖ under the random coloring model. By a multidimensional
version of Chebyshev’s inequality ([20]) one has

Pr{‖Z‖ � ‖z‖} � s

‖z‖2
= s

z′�z
,

therefore

h(G, f ) = max

{
0,

‖z‖2 − s

‖z‖2

}

can be taken as a quantifier of homophily in the interval [0,1]:
values of h close to 1, indicate that the observed outcome is
very far from its expected value along the directions most
responsible for the variance structure of M. However, this
index alone does not distinguish between antihomophilic and
homophilic behavior, and the analysis must be refined by
inspecting the sign pattern of z. What is true, however, is that if
the value of h is positive and small, then the observed outcome
is typical.

Given the results of the previous section, it is clear that
both the indices j�(G, f ) (for any choice of weighting vector
w) and h(G, f ) can be computed in optimal O(s2 + m) worst-
case time.

V. DISCUSSION, EXAMPLES, AND APPLICATIONS

The uniqueness of our approach is to consider the input
colored (partitioned) network as a random object, where the
randomness is inherited from random colorings rather than
random graphs, and the way we exploit this modeling choice
via tail inequalities. While this is nothing more than a reason-
able modeling choice, it has some profound implications:

(A) We gain more information about the significance of
the observed outcome when comparing our indices with other
consolidated homophily scores. In fact, the significance of
the latter cannot generally be assessed per se but rather by
the comparisons with other benchmark (possibly randomly
generated) instances. Moreover, even locating the values of
these scores on a universal scale by comparing them to their
respective maxima is a far from trivial problem, the corre-
sponding optimization problems being typically NP-complete
(see Theorem 5 below); rather, our indices designed to provide
a measure of their significance by default always (and tightly)
sit in the interval [−1, 1]; in this sense their scale is universal.

(B) Due to the simplicity of the random coloring model,
we gain the possibility of sharper analysis with respect to
random graph models. Recall that even estimating the edge
probabilities in random graph models, such as G(d ), can be
challenging [14]. In contrast, the representation of M as a

sum of identically distributed Bernoulli random variables al-
lows even the exact computation of the second-order mixed
moments of M, which allows us to define a whole class of
homophily quantifiers, each based on a particular homophily
score defined as an affine function of the data or even quanti-
fiers based on the distance from the most typical outcome of
the observed one.

Let us elaborate on these points with an example and
real-world applications. Before doing so, we give a formal
proof that maximizing the modularity and homophily ratio
index over the labeled partition of a given profile are difficult
problems. Let c-MODULARITY and c-HOMOPHILY RA-
TIO be the problems of maximizing the modularity and the
homophily ratio index, respectively, over the labeled partition
of profile c.

Theorem 5. The decision versions of c-MODULARITY
and c-HOMOPHILY RATIO are NP-Complete problems.

Proof. Instances of both problems are of the form (G, c)
together with the value p of modularity (respectively, ho-
mophily ratio) where G is an undirected graph of order n
and c is an s-tuple of positive integers that add up to n, and
we are asked to decide whether a partition of vertices with
profile c exists giving value at least p for the index. Consider
the subset of instances where G is cubic, i.e., each vertex has
degree 3, and c = ( n

2 , n
2 ). Note that n is even because G is a

regular graph of odd degree. The set of feasible partitions is
thus restricted to the set of partitions into two classes with
the same number of vertices. In this case, given (1), q and
r differ by an additive constant. Therefore both indices are
maximized when the total number of edges induced by the
two classes is maximized and, equivalently, when the number
of edges having exactly one end in each of the two classes
is minimized. The latter problem is MIN BISECTION ON
CUBIC GRAPHS, whose decision version is known to be
NP-Complete [21]. This proves that c-MODULARITY and
c-HOMOPHILY RATIO are hard by restriction, so they are
hard in general. �

A. A toy example

This nice and meaningful example was suggested by an
anonymous referee to highlight the difference between mod-
ularity and our indices based on tail inequalities. Consider a
graph G of order n consisting of m disjoint edges where m
is an even number. Hence n = 2m and the degree sequence
of G is the 2m-dimensional all-ones vector 1. Let us ana-
lyze the indices over all colorings f of profile (m, m) or,
equivalently, over all partitions P of [n] into m red vertices
and m blue vertices. In this case there is no ambiguity in
establishing whether an instance (G, f ) is more homophilic
than another instance (G′, f ′), where G = G′ in the random
coloring model, and f = f ′ in the configuration model. The
only problem here is how to assess whether or not the given
instance is homophilic per se. Let Mr and Mb be the random
number of homophillic red and blue edges, respectively un-
der the configuration model and the random coloring model.
We use the same symbols for random variables on different
probability spaces to facilitate comparisons. A random pairing
of the vertices of G is called a (simple) configuration. Let
G(1) be the set of graphs on [n] with degree sequence 1, and
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let us equip this set with the uniform distribution (this yields
the configuration model in this case). All graphs in G(1) are
simple, and the probability of seeing a particular configuration
by uniform sampling is m!2m

2m! . For integers h and k such that
0 � h � m

2 and 0 � k � m
2 , the event (Mr = h, Mb = k) has

probability 0 in both probability spaces whenever h �= k. This
because edges whose end vertices have different colors match
the same number of vertices in both color classes. Therefore
the joint distribution of (Mr, Mb) is supported by the diagonal
{(k, k), 0 � k � m/2} in both models. Hence

Pr{M1 � k|conf} = Pr{M2 � k|conf}
= Pr{M1 � k, M2 � k|conf}

and

Pr{M1 � k|rand-col} = Pr{M2 � k|rand-col}
= Pr{M1 � k, M2 � k|rand-col}.

Actually, it can be shown more, namely,

Pr{Mi � k|conf} = Pr{Mi � k|rand-col}

= 2m(m!)2

(2m)!

m/2∑
t=k

(
m

t, t

)
2−2t , i ∈ {b, r},

(14)

where ( m
t, t ) is the multinomial coefficient of m with parts

t, t, m − 2t . That is, even though the random variables are
defined on different probability spaces, their tails have the
same measure so that we can omit the reference to the proba-
bility space and denote by F (k) the probability Pr{Mi < k} =
1 − Pr{Mi � k} where Pr{Mi � k} is given by (14). Either by
the relation above or by direct computation, it follows that

Econf(Mr/m) = Econf(Mb/m) = Erand-col(Mr/m)

= Erand-col(Mb/m) = m(m − 1)

2m(2m − 1)

= m − 1

2(2m − 1)
.

In fact, since each configuration has probability m!2m

2m! , the
probability of seeing an edge connecting two particular ver-
tices is 1

2m−1 rather than 1
2m . However, the difference between

1
2m−1 and 1

2m is negligible. In fact, m−1
2(2m−1) is close to 1

4 when
m is large. We can thus stick to the definition of q given in
Sec. II. Therefore, by (2), the modularity of any observed par-
tition P(k) with k red edges and k blue edges—recall that no
partition with a different number of red and blue homophilic
edges can be observed—is

q(P) = 2

(
k

m
− 1

4

)
.

In conclusion, Newman’s modularity interpolates linearly be-
tween −1/2, corresponding to the perfectly antihomophilic
case, and 1/2, corresponding the perfectly homophilic case.
Clearly the same result would have been obtained by taking
expectations with respect to the random coloring model. In
this particular case, however, the analysis provided by these
indices is not sharper than what the simple homophily ratio

0 25 50 75 100 125 150 175 200 225 250

-1

-0.5

0

0.5

1

Modularity

Homophily ratio

Index a

Pr{M < k}

k

FIG. 1. Theoretical probability Pr{M < k} (in gray) for the
matching example in Sec. V A compared against homophily ratio,
modularity, and index a. Values are reported as a function of k.
Experiments refer to an instance with 1000 vertices, 500 edges, and
coloring profile (500, 500).

r provides: r(P(k)) = q(P(k)) + 1/2. On the other hand, by
looking at Fig. 1, one can appreciate the information gain
provided by the indices based on concentration inequalities.
The figure refers to a matching with 1000 vertices, 500 edges,
and coloring profile (500,500). Since in every coloring of
profile (500,500) the number of red edges is the same as the
number of blue edges, all the indices q, r, and a are actually
real-valued functions defined on the integers between 0 and
250. For q and r this is clear by their definition, while for a it
suffices to observe that the arithmetic mean of the observed z
scores corresponding to the observed outcome (k, k) coincides
with the marginal z score of the red edges (or, equivalently, of
the blue edges). In particular, the plot of q and r are (parallel)
straight lines, while a is of the form z2(k)

1+z2(k) with z(k) being
the marginal z score corresponding to k red edges. This z
score is itself an affine function of k. In the figure we plot the
corresponding values, as k runs between 0 and 250, against
the plot of the (exact) probability F (k).

By inspecting the plots of F (k) it is clear that values of
k [and hence the observed outcomes of the form (k, k)] out-
side the interval [110,140] are extremely unlikely, meaning
antihomophily (left tail) or homophily (right tail). Neither q
nor r can detect this phase transition, while index a clearly
does. In conclusion, the situation is much the same as deciding
whether the number of heads in a long series of coin tosses
is consistent with the assumption that the coin is fair: q and
r would count only the fraction of heads, while a would
estimate the likelihood of the sequence.

B. Measuring homophily on real networks

If we want to decide whether a particular categorical prop-
erty correlates with the structure of the network, we simply
encode the property as a coloring and apply one of the pro-
posed indices. Here we concentrate on a(G, f ) and r(G, f ).
To illustrate this application we implemented a prototype
function in Python 3 for computing these indices and run
it on five instances of the form (G, f ). In the first four
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TABLE I. Indicators for the five considered instances.

Network Vertices Edges 1 − r(G, f ) [1 − a(G, f )]106 r(G, f ) q(G, f )

Treponema pallidum 894 8157 0.0014 160.8 0.545 0.3538
Escherichia coli 4020 29 748 0.0015 11.1 0.507 0.3332
Saccharomyces cerevisiae 6157 119 051 0.1233 18.0 0.498 0.2138
Homo sapiens 27 342 777 098 0.0025 1007.3 0.049 −0.0011
Pokec 1 212 349 8 320 600 1.6582e-06 3.3 0.466 0.1629

instances G is a Protein Protein Interaction (PPI) network:
each vertex of the network represents a protein, while edges
represent interactions between proteins in different organisms.
More specifically, for the first three instances, G is one of
Treponema pallidum, Escherichia coli, and Saccharomyces
cerevisiae—retrieved from STRING database [22]—while in
the fourth instance, G is the Homo sapiens PPI network. In
the last instance, G is the network Pokec, which describes
symmetric interactions among users of a popular Slovak social
network. The coloring f in the first three instances associates
each vertex with its functional class according to the standard
taxonomy of the NCBI database [23]. As explained in detail in
[10], the range of f consists of 19 colors rather than 24. In the
fourth instance, f associates each protein with the chromo-
some the related gene belongs to. Finally, in the last instance,
f associates each user with one out of the five classes of (de-
clared) age. For biological reasons, the first four networks are
inherently homophilic with respect to the chosen colorings,
and there are reasons to expect that the same is true for the
social network. The results of our experiments, summarized in
Table I, confirm these expectations. The second and the third
columns of Table I correspond to the number of vertices n and
the number of edges m of G, respectively; the other columns
of the table report the values of the indices used in the com-
parison: the random homophily ratio-based index r(G, f ),
the arithmetic mean of the z-score-based index a(G, f ), the
descriptive homophily ratio r(G, f ), and Newman’s modular-
ity q(G, f ). Actually, the values of r(G, f ) and a(G, f ) are
complemented to 1 to give an immediate perception of the
significance of the value of the corresponding statistic. For
example, the last row of the fourth column of the table reads
as follows: the probability of observing, by chance, a coloring
with a higher homophily ratio than the observed one is less
than 1 in half a million, that is, much less than the significance
level typically set at 5%. Since locating the maximum of r and
q is a difficult optimization problem [see Theorem 5 and recall
(A)], the significance of these indices cannot be assessed
by comparisons to their respective maxima but rather by a
comparison with the results in Table II, where we reported
the values of all of the indices averaged over five randomly
generated instances (G, f1), . . . (G, f5) where G is kept fixed
and the f ′

i s are picked independently at random among the
colorings of G with the same profile as the input coloring
f . Even without knowing the actual range of r and q, it can
be seen from Table II that all four considered indices behave
as expected, i.e., none of them deviates significantly from its
expected reference value. Also the comparison between the
last column of the two tables shows that the index q (as well as
r) suggests homophily with respect to the corresponding col-
oring of all five networks except Homo sapiens. This network

is not considered to be significantly homophilic w.r.t. the given
coloring by both the modularity index and the descriptive
homophily ratio, while it is considered homophobic by both of
our indices, consistent with the underlying biological reasons.
Also note that although n, m span a wide range and the edge
density differs by up to three orders of magnitude, our indices
assume fairly comparable values, confirming the consistency
of our method. The time needed to compute our indices is
negligible with respect to the I/O time for reading the graphs,
confirming that both the a(G, f ) and r(G, f ) indices can be
computed in linear time without using any special data struc-
ture, provided that the number of colors is O(

√
m) (which is

not restrictive in concrete applications).

VI. CONCLUSION

We proposed an inferential statistical approach, based on
second-order tail inequalities, to quantify network homophily
for an input (G,P) consisting of a undirected graph G and a
given partition of its vertex set. After adhering to the accepted
paradigm that whatever network homophily means, it is mea-
sured by a nondecreasing function of the edge densities of the
subgraphs induced by the classes of P, we proposed to look
at any such function, referred to as a descriptive homophily
index, as a random variable defined on the probability space
of the labeled partitions of the same profile as P endowed
with the uniform measure. This is the random coloring model
introduced in [10] and formally refined in the present pa-
per. Within the random coloring model, values of descriptive
indices are just observed samples from the corresponding
random variables described by picking labeled partitions at
random. In light of this view, we proposed to quantify network
homophily as the (signed) statistical significance (p value)
of the observed value under the null hypothesis of the ab-
sence of homophily. The p value of the observed value is
the probability of the appropriate (right or left) tail of the
corresponding random variable, namely, the probability of

TABLE II. Indicators for the randomized coloring of the consid-
ered instances, averaged each on five random colorings.

Network 1 − r(G, f ) [1 − a(G, f )]106 r(G, f ) q(G, f )

Treponema pallidum 0.6715 457 697 0.161 −0.00295
Escherichia coli 0.6487 499 182 0.467 0.00028
Saccharomyces cerevisiae 0.7734 539 713 0.282 −0.00013
Homo sapiens 0.5784 709 707 0.107 −0.00024
Pokec 0.5720 770 348 0.257 0.00003
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observing a more extreme value than the observed one. We
showed that the problem of computing the p value is hard to
approximate, since the corresponding optimization problem
is not even in the APX class. However, we gave upper bounds
on this p value by mimicking the three-sigma rule of thumb,
namely, by resorting to tail inequalities such as Chebyshev’s
and Cantelli’s inequalities. While on the one hand we have
no control on the quality of the approximation of the p value
via these inequalities, on the other hand, in view of the inap-
proximability result, this is the best we can hope for unless
P = NP. Estimating the p value via tail inequalities requires
the knowledge of covariance matrix of the random vector M,
which was not previously known within the random coloring
model. Due the simplicity of the model, in this paper we
closed this gap by giving a closed form expression for the
covariance matrix of M. In particular, we discovered that the
correlation among the marginals of the random vector M is
ruled by a parameter γ (G) whose sign is a graph property
[hence γ (G) is a graph invariant] and whose absolute value
dictates the intensity of the correlations; for sparse enough

graphs, the marginals are nearly uncorrelated. Interestingly,
this parameter depends on the input partition only through its
profile and depends on the network only through its degree
sequence, implying that both the covariance matrix and its
inverse can be computed very efficiently leading to an overall
complexity of O(s2 + m) worst-case time for computing all
the proposed indices. Our indices, which range in interval
[−1, 1] for any graph, supply some gain of information when
compared to other well-established indices. The situation is
much the same as deciding whether the number of heads in
a long series of coin tosses is consistent with the assumption
that the coin is fair. For this purpose, while classical indices
count only the fraction of heads, our indices estimate the
likelihood of the sequence. This is confirmed by the case of
the Homo sapiens PPI network with respect to the location of
corresponding genes on chromosomes. For biological reasons,
the Homo sapiens PPI network is inherently homophilic with
respect to the given partition. However, neither Newman’s
modularity nor the homophily ratio (nor other descriptive
indices) is able to detect this property, whereas ours are.
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