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Across many disciplines spanning from neuroscience and genomics to machine learning, atmospheric science,
and finance, the problems of denoising large data matrices to recover hidden signals obscured by noise, and of
estimating the structure of these signals, is of fundamental importance. A key to solving these problems lies
in understanding how the singular value structure of a signal is deformed by noise. This question has been
thoroughly studied in the well-known spiked matrix model, in which data matrices originate from low-rank
signal matrices perturbed by additive noise matrices, in an asymptotic limit where matrix size tends to infinity but
the signal rank remains finite. We first show, strikingly, that the singular value structure of large finite matrices
(of size ~1000) with even moderate-rank signals, as low as 10, is not accurately predicted by the finite-rank
theory, thereby limiting the application of this theory to real data. To address these deficiencies, we analytically
compute how the singular values and vectors of an arbitrary high-rank signal matrix are deformed by additive
noise. We focus on an asymptotic limit corresponding to an extensive spike model, in which both the signal
rank and the size of the data matrix tend to infinity at a constant ratio. We map out the phase diagram of the
singular value structure of the extensive spike model as a joint function of signal strength and rank. We further
exploit these analytics to derive optimal rotationally invariant denoisers to recover the hidden high-rank signal
from the data, as well as optimal invariant estimators of the signal covariance structure. Our extensive-rank
results yield several conceptual differences compared to the finite-rank case: (1) as signal strength increases,
the singular value spectrum does not directly transition from a unimodal bulk phase to a disconnected phase,
but instead there is a bimodal connected regime separating them; (2) the signal singular vectors can be partially
estimated even in the unimodal bulk regime, and thus the transitions in the data singular value spectrum do
not coincide with a detectability threshold for the signal singular vectors, unlike in the finite-rank theory; (3)
signal singular values interact nontrivially to generate data singular values in the extensive-rank model, whereas
they are noninteracting in the finite-rank theory; and (4) as a result, the more sophisticated data denoisers and
signal covariance estimators we derive, which take into account these nontrivial extensive-rank interactions,
significantly outperform their simpler, noninteracting, finite-rank counterparts, even on data matrices of only
moderate rank. Overall, our results provide fundamental theory governing how high-dimensional signals are
deformed by additive noise, together with practical formulas for optimal denoising and covariance estimation.
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I. INTRODUCTION

Estimating structure in high-dimensional data from noisy
observations constitutes a fundamental problem across many
disciplines, especially in the age of big data. A common sce-
nario is that such data are presented as a large matrix. Such
matrices could contain, for example, the observed time series
of many recorded neurons in neuroscience, the expression
level of many genes across many conditions in genomics, or
the time series of many stock prices in finance. Given such
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data matrices, one often wishes to (1) understand the structure
of the data via its singular value decomposition, (2) denoise
the data in order to find clean signals hidden in the data, and
(3) estimate the covariance structure of these clean hidden
signals. These hidden signals could correspond, for example,
to temporally correlated cell assemblies in neuroscience, gene
modules in genomics, or sectors of correlated stocks in fi-
nance.

These three problems of data understanding, data denois-
ing, and signal-covariance estimation raise fundamental new
challenges in the era of big data, where the number of ob-
servations (e.g., the length of time series or the number
of conditions) is often comparable to the number of vari-
ables (e.g., the number of recorded neurons, genes, or stock
prices). As a result, tools from random matrix theory (RMT)
designed for this high-dimensional regime have grown in
prominence across a wide range of disciplines, including
neuroscience [1], psychology [2], genetics [3], finance [4],
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machine learning [5—10], atmospheric science [11,12], wire-
less communications [13], integrated energy systems [14],
magnetic resonance imaging (including spectroscopy [15,16],
diffusion [17], and functional MRI [18,19]).

In this work we develop RMT tools in order to quanti-
tatively study the basic question of how the singular value
decomposition (SVD) of an arbitrary high-dimensional hid-
den signal matrix is deformed under additive observation
noise. Based on this understanding of the relation between
the data and signal SVDs, we go on to derive both optimal
denoisers of the data to recover the hidden signal as well as
optimal estimators for the signal covariance.

An influential line of prior related research has studied
spiked matrix models, focusing on an asymptotic limit in
which the size of the hidden signal matrix tends to infinity
but its rank remains finite [20—27]. These works consider the
addition of a random noise matrix to the signal to generate
a data matrix, and they study how the singular values and
singular vectors of the data are related to those of the signal.
The finite number of signal eigenvalues or singular values
constitute a set of “spikes” in the signal spectrum, hence the
name spiked matrix model.

A key observation in these models is that the addition of
noise to the signal yields a data matrix that (1) has inflated
singular values relative to the signal and (2) has singular
vectors that are rotated relative to the signal. For the finite-
rank rectangular spiked matrix model, both the degree of
singular-value inflation and the angle of the singular vector
rotation can be explicitly computed [22,23]. Notably, in this
finite-rank regime, the multiple spikes do not interact as they
get deformed from signal to data. This means that to predict
the mapping from a given signal singular value to the corre-
sponding data singular value, as well as the angle between a
data and signal singular vector, one needs to know only the
noise distribution and the singular value of the signal spike
in question; one does not need to know all the other signal
singular values. This underlying simplicity in the relation
between signal and data spectral structure implies that one can
optimally denoise data and optimally estimate signal covari-
ance, by applying shrinkage functions that act independently,
albeit nonlinearly, on each singular value or eigenvalue of the
data [23,28,29]. The idea is that these shrinkage functions
that shrink data singular values independently partially reverse
the independent singular-value inflation and compensate for
the independent singular-vector rotation, both due to additive
noise.

In this work, however, we demonstrate that the as-
sumptions and consequences of the finite-rank model may
constitute a significant limitation for the practical application
of this theory and its associated estimation techniques. For
example, below we will see that the spectral structure of
random matrices of large size (e.g., 1000 x 500) and of even
moderate rank (e.g., 10) cannot be accurately modeled by the
finite-rank spiked matrix model.

This lack of numerical accuracy of the finite-rank theory
for large but finite-size matrices of moderate rank could have
a significant impact on the three problems of spectral un-
derstanding, data denoising, and signal covariance estimation
across the empirical sciences, where the effective rank of
signals is expected to vary significantly, and sometimes even

be quite high. Therefore, it is imperative to develop a theory
that more accurately describes data containing higher-rank
signals. We develop that theory by generalizing the finite-rank
theory to an extensive-rank theory in which the rank of the
signal matrix is proportional to the size of the signal and data
matrices, working in an asymptotic limit where both the size
and rank approach infinity.

We note that it is not immediately obvious how to ex-
tend existing finite-rank results to the extensive regime. The
finite-rank theory [20-22] makes use of algebraic formulas
for matrices with low-rank perturbations that do not directly
generalize, and so one must resort to more elaborate tools
from RMT and free probability. Along these lines, power-
ful theoretical methods have been developed in recent years
for studying the eigendecomposition of sums of square Her-
mitian matrices [30], and deriving techniques for optimally
estimating arbitrary square-symmetric matrices from noisy
observations [31-36].

However, the situation for rectangular matrices, relevant
to data from many fields including neuroscience, genomics
and finance, lags behind that of square matrices. While the
singular value spectrum of sums of rectangular matrices has
been calculated [37—40], and a few works have studied opti-
mal denoising of rectangular matrices under a known (usually
Gaussian) prior [41-43]. there are currently no methods for
determining the deformation of the singular vectors of a rect-
angular signal matrix due to an additive noise matrix.

The outline of our paper is as follows. In Sec. II we
motivate our work with an illustrative numerical study of
the spiked matrix model, showing that the finite-rank theory
fails to accurately predict the outlier singular values and sin-
gular vector deformations in data matrices containing even
moderate-rank signals. In Sec. III we introduce tools from
RMT that we will need to derive our results, including Hermi-
tianization, block matrix resolvents, block Stieltjes transforms
and their inversion formulas, and block R transforms. In
Sec. IV we study how the singular values and singular vectors
of an arbitrary rectangular signal matrix are deformed under
the addition of a noise matrix to generate a data matrix.
To do so, we derive a subordination relation that relates the
resolvent of the Hermitianization of a data matrix to that of
its hidden signal matrix in Sec. IV A. We next employ this
subordination relation to derive expressions for the overlap
between data singular vectors and the signal singular vec-
tors in Sec. IV B. We then apply these results to study the
extensive spike model in which the rank of the signal spike
is assumed to grow linearly with the number of variables
(and observations) in Sec. IV C. There we map out the phase
diagram of the SVD as a joint function of signal strength
and rank ratio. Intriguingly, we find that certain transitions
in the singular value spectrum of the data do not coincide
with the detectability of the signal, as they do in the finite-
rank model. Finally, in Sec. V we exploit the expressions for
singular vector overlaps in order to derive optimal rotationally
invariant estimators for both data denoising (Sec. V A) and
signal-covariance estimation (Sec. V B). We find that unlike
in the finite-rank model, in the extensive-rank model signal
singular values interact nontrivially to generate data singular
values. Therefore, we obtain more sophisticated optimal data
denoisers and signal-covariance estimators that take into ac-
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count these nontrivial extensive-rank interactions, and which
furthermore significantly outperform their simpler, noninter-
acting, finite-rank counterparts.

We note that recently a set of partially overlapping results
appeared on a preprint server [44]. In our discussion section,
we describe the relation and additional contributions of our
work relative to that of [44].

II. A MOTIVATION: INADEQUACIES OF THE
FINITE-RANK SPIKED MATRIX MODEL

LetY be an N; x N, signal matrix. We can think of each of
the N; rows of Y as a variable, and each of the N, columns
as a distinct experimental condition or time point, with ¥;;
representing the clean, uncorrupted value of variable i under
condition j. Now consider a noisy data matrix R, given by

R=Y +X, (D

where X is a random N; x N, additive noise matrix. X is as-
sumed to have well-defined limiting singular value spectrum
in the limit of large N, with fixed aspect ratio, ¢ = N/n,. Fur-
thermore we assume the probability distribution Py (X) over
X is rotationally invariant, meaning Px(X) = Px(0:XO0»),
where O; and O, are orthogonal matrices of size N; x N,
and N, x N,, respectively. These assumptions guarantee the
asymptotic freeness of X and Y. For a general definition of
freeness, see [40].

We are interested in understanding the relationship be-
tween the singular value decomposition (SVD) of the data
matrix R and the SVD of the clean signal matrix Y. In general
we will write the SVD of the data as

R=0,80] = sy, 2)
k
where each Uu, fora=1,2, is an N, x N, matrix with or-
thonormal columns, @i, fork =1, ..., N,, and Sisa diagonal
N1 x N, matrix with §; along the diagonal.
As a motivating example, we will study a version of the
spiked matrix model [20-22] in which the signal matrix Y is
given by

K
Y = SU|U2T = SZulkugkv 3)
k=1

where each U,, for a =1, 2, is an N, x K matrix with or-
thonormal columns, u,4; fork =1, ..., N,, and s is the signal
strength. This signal model can be thought of as a rank K spike
of strength s in that its singular value spectrum has K singular
values all equal to s.

In the finite-rank setting, where K remains finite as
Ny, N; — oo, there is a signal-detectability phase transition
[20,22] in the singular value structure of the data matrix R. For
s < Scrit, Where s¢.; is a critical signal strength that depends
on the singular value spectrum of the noise matrix X, the
entire signal in Y is swamped by the additive noise X and
cannot be seen in the data R. More precisely, in the large-size
limit, when s < s.,; the singular value spectrum of the data
R is identical to the singular value spectrum of the noise X.
Furthermore, no left (right) singular vector of the data matrix
R has an O(1) overlap with the K-dimensional signal subspace

corresponding to the column space of U; (U,). However, for
s > S¢r;y the singular value spectrum of the data R is now not
only composed of a noise bulk, identical to the spectrum of
X, as before, but also acquires K outlier singular values all
equal to 5. The location of the data spike at § occurs at a
slightly larger value than the signal spike at s. This reflects
singular-value inflation in the data R relative to the signal ¥,
due to the addition of noise X. Furthermore, each singular
vector of the data R corresponding to an outlier singular value
acquires a nontrivial O(1) overlap with the K-dimensional sig-
nal subspace of Y even in the asymptotic limit Ny, N; — oo.

The location of the outlier data singular values and
their corresponding singular-vector overlaps with the signal
subspace have been calculated for finite K and general rota-
tionally invariant noise matrices X [22]. In the special case
where the elements of X are i.i.d. Gaussian, explicit formulas
can be derived (see Appendix A for a review). This signal-
detectability phase transition in the finite-rank spiked model
is depicted in Fig. 1 for an i.i.d. Gaussian noise matrix X.

Notably, according to the finite-rank theory, the K spikes
do not interact. More precisely, above the critical signal
strength, in the large-size limit, the K identical singular values
of Y are all predicted to map to K identical outlier singular
values of the data matrix R. Furthermore, the overlaps of the K
corresponding data singular vectors with the signal subspace
are predicted to be identical and completely independent of
the finite value of K (see [45], however, for finite-size fluctua-
tions in the square-symmetric spiked covariance model). More
generally, if the signal Y consists of K different rank 1 spikes
each with a unique signal strength s; for [ =1, ..., K, the
corresponding location of the data spike §; can be computed
by inserting each s; into a single local singular value inflation
function 5(s) (depicted in Fig. 1), without considering the
location of any other signal spike s for I’ # [. In this precise
sense, at finite K the spikes do not interact; one need not
consider the position of any other signal spikes to compute
how any one signal spike is inflated to a data spike. The
same noninteracting picture is true for singular vector overlaps
(Fig. 1(b)).

This lack of interaction between different spikes in the
signal as they are corrupted to generate data spikes allows
optimal denoising operations based on the finite-rank theory
to be remarkably simple. For example, estimators for both
data denoising [23,28,29], which corresponds to trying to
directly estimate the signal Y given the corrupted data R, and
covariance estimation [46], which corresponds to estimating
the true covariance matrix C = YY7 from the data R, both
involve applying a single shrinkage function, which nonlin-
early modifies each data singular value of R in a manner that
acts independently of any other singular value. This shrinkage
function, applied to each data singular value §, in a sense
optimally undoes the singular-value inflation s — § and com-
pensates for the singular-vector rotation u, — #, which arises
in going from signal Y to data R =Y + X. Moreover, the
reason the shrinkage can act independently on each data sin-
gular value is directly related to the property of the finite-rank
theory that each signal singular value is inflated independently
through the same inflation function, while each signal singu-
lar vector is rotated independently through the same random
rotation.
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FIG. 1. Background: Signal-detectability phase transition in the
finite-rank spiked matrix model. (a) The bottom panel (color online)
shows the singular value spectrum of the spiked matrix model given
by the finite-rank theory in the asymptotic limit with aspect ratio,
c= I\N’—; = 0.7 (see Appendix A for formulas). The singular value of
the data matrix, R, is in the x axis, and the strength of the single
nonzero singular value of the signal matrix, Y, is in the y axis. The
“bulk” spectrum of the data is identical to the spectrum of the noise
matrix, X. The bounds of that spectrum are the vertical dashed gray
lines. Above the critical signal, s.,; = c¢'/* (black horizontal), the data
have an outlier singular value shown as a solid red curve. The top two
panels show theory curves corresponding to two horizontal slices,
with s = 0.85, 1.5, together with a histogram of singular values each
of a single instantiation with N, = 2000. The top panel has a single
outlier eigenvalue very close to the theory prediction. The panel
below shows a data spectrum that is indistinguishable from noise.
(b) The overlap of the top left singular vector of the data with the left
singular subspace of the signal, given by the finite-rank theory. The
overlap becomes nonzero at exactly the same critical signal, s.,;, at
which an outlier singular value appears in the data. X is Gaussian
i.i.d. with variance !/, throughout.

In this work, however, we find that the assumptions and
resulting consequences of the finite-rank theory may consti-
tute a significant limitation for the practical application of this
model both to explain the properties of noise corrupted data
as well as to optimally denoise such data. To illustrate, we
test the finite-rank theory for various values of K, with N;

and N, fixed. In Fig. 2 we show simulation results in which
we find substantial deviations between simulations and finite-
rank theory predictions, for both the location of the leading
data singular value outlier and the data-signal singular-vector
overlap, for K as small as 10 with N; = 1000. Thus, even
for moderate numbers of spikes and relatively large matrices,
the finite-rank theory cannot explain the SVD of the data
well (though as mentioned above, see [45], for finite-size
fluctuations in the square-symmetric case). As a consequence,
as we will show below, typical denoising techniques, which
depend crucially on the predicted singular structure of the
data, perform poorly, even for moderate K.

Thus, motivated by the search for better denoisers of
higher-rank data, we extend the finite-rank theory to a
completely different asymptotic limit of extensive rank, in
which the rank K of the data is proportional to the number
of variables N; as both become large. We show that our
extensive-rank theory both (1) more accurately explains the
SVD of large data matrices of even moderate rank and (2)
provides better denoisers in these cases than the finite-rank
theory. And, interestingly, our extensive-rank theory reveals
qualitatively unique phenomena that do not occur at finite
rank, including highly nontrivial interactions between the ex-
tensive number of signal singular values, as they become
corrupted to generate data singular values, under additive
noise.

III. MATHEMATICAL PRELIMINARIES

We review some basic concepts from random matrix theory
and introduce notation. Let M be an N x N Hermitian matrix
M. We denote by Gy (z) the matrix resolvent of M:

Gu(z) == (eI — M)~ “4)

we define the normalized trace operator 7 as
1
T[M] := =Tr[M]. 5
M] N [M] (%)

The Stieltjes transform gy (z) is the normalized trace of
Gy (2):

gm(2) i= Tl — M) (©6)

In this work we will be interested in the singular values
and vectors of rectangular matrices. In order to apply Hermi-
tian matrix methods to a rectangular matrix R € RM*N: e
will work with its Hermitianization, which we denote with

boldface throughout,
0 R
R = [RT O} ) (7)

which is an N x N Hermitian matrix, with N = N; + N>.
The eigenvalues and eigenvectors of R can be written

1, U . .
+s, ﬁ(:lzuz)’ where s is a singular value of R, and uy, u;

are the corresponding left and right singular vectors. This
will allow us to extract information about the singular value
decomposition of a rectangular matrix R from the eigende-
composition of the Hermitian matrix R.

Hermitianization leads naturally to a Hermitian block re-
solvent, which is a function of two complex scalars z; and 2,
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FIG. 2. Finite-rank theory fails to capture the singular value structure of the spiked rectangular matrix model. (a) Singular-value inflation,
i.e., leading data singular value, §;, as a function of signal singular value, s, for spikes of various ranks K. Black shows the finite-rank theory
(which is independent of the rank of a spike). Matrix size in this and all subsequent panels is N; = 1000, N, = 500. Numerical results are
presented as mean and standard deviation over 10 instantiations for each value of » and s. (b) Singular-vector rotation, i.e., overlap of leading
data left singular vector, @i;, with the K-dimensional left singular space of the signal, U;. (c) To break the degeneracy of the spikes with rank
K > 1in (a), we consider a single leading signal spike with singular value s along with K — 1 spikes drawn independently and uniformly in
[0, s]. We plot the leading data singular value as a function of s for various K, compared to finite-rank theory (black) (d). For the same signal
model as in (c), we plot the overlap of the leading data left singular vector with the leading signal singular vector as function of signal strength
s, for different K and for the finite-rank theory (black). We see that the finite-rank theory incorrectly estimates both the singular values and
singular vectors of signals of even moderate rank K. See Appendix A for finite-rank theory formulas.

rather than one:

by R ]l @®)

R —
G (Z) - [_RT Z21N2

where z = (21, z2) is a complex vector. This block resolvent
can be computed explicitly, with each block written in terms
of a standard square-matrix resolvent:

RGgrr(z122)
21Grrr(z122) |

GR(Z) _ I:ZZGRRT (ZlZz) (9)

R" Ggpr(2122)

Analogously, we define the block Stieltjes transform g®(z)
as the two-element complex vector consisting of the normal-
ized traces of each diagonal block of G¥:

gi@) = 1[G @)] = 228rrr (2122). (10a)
£@) = [65@)] = nigrrr(zi22). (10b)

Here we have introduced notation for the blockwise normal-
ized traces:

Ta(M) = ]%Tr[Maa]s (11)

a

where M, is the ath diagonal block of size N, x N,.

Notationally, we write the block vectors and block matrices
gR and G® in bold, while we indicate the component blocks in
standard roman font, with the indices a, b for both scalar, g’; s
and matrix fob blocks, with a, b € {1, 2}. We will also use the
fact that the eigenvalues of RR” and R R differ by exactly
IN] — N;| zeros, implying the two elements of g are related
by g5(z) = ZLegf @) + =5

Each element g’j (z) can be written in terms of the corre-
sponding singular value density:

+o00
Z
g, 22) =/ —zzpf(s)ds, (12a)
—co K122 — S
+o00 Z
Sz, 22) =/ —zpf(s)ds, (12b)
—00 K122 — §

where p®(s) denotes the singular value distribution of R, ac-
counting for N, singular values. Note that for nonzero s with
finite singular value density, pX(s) = cpR(s).

The special case in which the two arguments are equal,
71 = zp = z, will be important, and so we abbreviate: gR (z) :=
gz, 2).

We can write an inversion relation for the singular value
densities using the Sokhotski-Plemelj theorem, which states,

054129-5



LANDAU, MEL, AND GANGULI

PHYSICAL REVIEW E 108, 054129 (2023)

lim,,, o+ Im[ [ rf_(—*lzl dx] = 7 f(0). Applying this theorem to
f(x) = 5 pk(x) yields

2. .
pX(s) = = lim Im[ g% (s — in)]. (13)
7 n—0
Finally, we define the block R transform:

1
RE&) =@ - e (14)

where ¢ € C? is in the range of g¥; we denote by (g%)~!
the functional inverse of the block Stieltjes transform g%,
satisfying (g®)~'[gR(z)] =z; and 1/t is the componentwise
multiplicative inverse of £.

The block R transform will arise naturally in our cal-
culation of the subordination relation for the sum of free
rectangular matrices, R =Y + X, and as we shall verify, it is
additive for independent, rotationally invariant matrices:

RE&) =R @)+ R¥@). (15)

IV. THE SINGULAR VALUE DECOMPOSITION OF SUMS
OF RECTANGULAR MATRICES

In this section we characterize how an additive noise matrix
X deforms the singular values and vectors of a signal matrix
Y to generate singular values and vectors of the data matrix
R =Y + X [see (1) and following text]. We consider general
signal matrices of the form

Y =U,SU;, (16)

where each U, is an N, x N, orthonormal matrix (a = 1, 2),
and S is N; x N, diagonal matrix.

We begin by deriving an asymptotically exact subordina-
tion formula relating the block resolvents (9) of R and Y in
the limit N;, N, — oo with the aspect ratio ¢ = Mi/n, fixed.
From this, we extract both the singular value spectrum of R,
as well as the overlaps between the singular vectors of R and
those of the signal matrix, Y.

A. A subordination relation for the sum of rectangular matrices

Exploiting the rotational invariance of Py (X ), we first cal-
culate the block resolvent of R as an expectation over arbitrary
rotations of the noise X. Thus, we write R =Y + 01X 02T R
where O, are Haar-distributed orthogonal N, x N, matrices.
We can write the Hermitianization (7) of R in terms of the
Hermitianized X and Y:

R=Y +0X0", (17)

0, 0
0o o

The main result of this section is the following subordi-
nation relation for the expectation of the block resolvent Gk,
taken over the random block-orthogonal matrix O:

EolG*(2)]1 = G" (z - R*(¢"(2))). (18)

As mentioned above, this notation refers to the special case
in which the argument to G¥ is the two-dimensional com-
plex vector with equal arguments, z; = z; = z. Note that
the argument to G, by a slight abuse of notation, is the

where we have written O = [

vector z — R¥ (gR(z)) for a = 1, 2. In Appendix B we present
the detailed derivation for this case, which is sufficient for
computing the singular values and associated singular-vector
overlaps. We provide a sketch of the calculation here. The
general case follows.

We first write the analog of a partition function,

ZR(Y) = det (zI — R)™", (19)

and observe that we can write the desired matrix inverse as a
derivative of the corresponding free energy:

GR(z) = 2% log ZR(Y). (20)

We would like to average this over the block-orthogonal
matrix O, yielding a “quenched” average free energy. In Ap-
pendix B 1 we show that in the large N limit, the quenched and
annealed averages are equivalent. In short, viewing log Z¥ as
a function of O, we find it has a Lipschitz constant propor-
tional to !/, and then use the concentration of measure of
the orthogonal group, SO(N), with additional concentration
inequalities to show that

. 1 R . 1 R
A}l_{go ﬁEo[IOgZ 1= Nh—>néo ]TJIOgEo[Z ). @D
We can therefore calculate our desired block resolvent as
d
EolG"(2)] = 25 log Eg[Z%(Y)]. (22)

We proceed by writing the determinant as a Gaussian integral,
dv 1

ZRY=/—eX ——vT@ZI —R)w|, 23

W= ] & p[2< ) (23)

and then we substitute R =Y + OX O, extract terms that do
not depend on O, and take the expectation of the terms that
do, which yields an intermediate integral,

X (v) = Ep[e* 0X0™y), (24)

This integral is analogous to the Harish-Chandra-Itzykson-
Zuber (HCIZ) or spherical integral, which appears in
the calculation of the subordination relation for sums of
square-symmetric matrices [33,34,36]. We compute this
“block-spherical” integral asymptotically in Appendix C and
highlight key points of the calculation here.

First, we observe the key difference between our calcula-
tion and the square-symmetric case. In the square-symmetric
case, the expectation is over a single Haar-distributed orthog-
onal matrix that rotates v arbitrarily, and so the expectation
depends only on the norm of v. In our rectangular case,
however, O has two blocks, and they rotate the N;- and N,-
dimensional blocks of v separately, so that IX (v) depends on
the norms of each of these two blocks. Therefore, we define
the two-component vector, ¢ with components

1 2
Iy = Zva”vu” . (25)
We calculate the expectation (24) by performing an inte-
gral over an arbitrary N-dimensional vector, while enforcing
blockwise norm constraints using the Fourier representation
of the delta function, and introducing integration variables, ¢,
and ¢».
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To compute the integral, we make a saddle-point approx-
imation in the asymptotic limit of large N. Appealingly, we
find the saddle-point conditions are of the form

(26a)
(26b)

h = q58xx7(q19>),
t = q18xx(q1q>)-

That is, the block Stieltjes transform, g*(g*) = ¢, arises natu-
rally, and the saddle point of the block-spherical integral (24)
is its functional inverse evaluated at the vector of blockwise
norms of v.

Inserting the saddle-point solution, we find that asymptoti-
cally

I*(v) = exp [%’H"(t)], (27)

where, for a neighborhood of values of ¢ around 0, the saddle-

point free energy itself, HX (¢), has gradient with elements
proportional to the block R transform (14):

dHX(t) N, _

i TN R, (@). (28)

Thus, the block R transform arises via the antiderivative of the

logarithm of the block-spherical integral, analogously to the

regular R transform in the case of square-symmetric matrices.

Note that given the definition in 24, it is straightforward
to see that I®(v) = IY (v)I* (v), and thus HR(t) = HY (¢t) +
HX(t). Therefore, we have established the additivity of the
block R transform as well.

Continuing with the derivation of the subordination rela-
tion (18), we next substitute the result for /¥ (v) back into the
Gaussian integral over v (23), and then we introduce another
pair of integration variables, £, in order to decouple v from its
blockwise norms, ¢. Performing the Gaussian integral we find

Ep[ZR(Y)] o f dt df exp (%VPX’Y(t,f)), (29)
with

PX’Y(tf)'——l(NtA Notaty) + HX (¢
B i=- 1t + Nototy) + @)

1 .
-5 logdet G¥ (z —£). (30)

Note that the block resolvent of Y arises here naturally as a
function of the two-element vector, z — £, despite the fact that
we set out to find GX evaluated at the point (z, z).

The integrals over ¢ and f yield an additional pair of
saddle-point conditions. The first requires #* = R* (¢*) and
combining with the second gives

t* =g"(z - R*@t")). (31)

We have thus found the desired annealed free energy,
2log Ep[ 28] = NPXY (¢, R¥ (t*)) [see (30)].

We next take the derivative with respect to Y (see Ap-
pendix B for a more careful treatment), which gives

EplG*(2)] = G" (z — R*(¢")). (32)

Finally to find ¢*, we take the blockwise normalized traces
to find gf(z) = g"(z — R*(¢*)) = t*, and that completes the
derivation of the block resolvent subordination relation (18).

We note that the saddle-point condition (31) turns out to be
the subordination relation for the block Stieltjes transform:

) =¢"(z- R*"&")). (33)

Note that while gR is evaluated at the scalar point (z, z),
the argument to g¥ is the vector subordination function ¢ =
z — R*(g"(z)) whose components are distinct in general.

The singular value spectrum of the sum of rectangular ma-
trices can thus be obtained by first finding the block Stieltjes
transform, either by employing the additivity of the block R
transform or by solving the subordination relation (33), and
then using the inversion relation (13).

B. Deformation of singular vectors due to additive noise

Turning now to the singular vectors of the data matrix
R=U08 UzT =Y + X, we quantify the effect of the noise, X,
on the signal, Y = U;SU,, via the matrix of squared overlaps
between the clean singular vectors of the signal, U, with a =
1, 2 for left and right, respectively, and the noise-corrupted
singular vectors of the data, U,, written as (UaT U,)?.

In the noiseless case X = 0, one has (UaT U,)? = Iy,, signi-
fying perfect correspondence between signal and data singular
vectors. In the presence of substantial noise, the overlaps of a
signal singular vector are generically distributed over order N,
data singular vectors and are of order !/n,; therefore we define
the rescaled expected square overlap between a given singular
vector, @i, of R with corresponding singular value §, and a
given singular vector, u, of Y, with corresponding singular
value s, where once again a = 1, 2 for left and right singular
vectors, respectively:

D,(5,5) = N.E[ (8 ug)’]. (34)

To see how to obtain the expected square overlaps from
the block resolvent, GR(z), we write each of the diagonal
blocks, G4 (z)R (9), in terms of their eigendecomposition, and
multiply on both sides by a “target” singular vector of Y, e.g.,
u, with associated singular value s:

Ny
Z N 2
1y G (Dtta = ) 5 (g ta) (35)
k=1 k

If we choose z = § — in where pX(3) ~ O(1), with N;! «
n < 1, and take the imaginary part, then we get a weighted
average of the square overlaps of a macroscopic number of
singular vectors of R, @14, that have singular values close to §,
with the target singular vector u,, each weighted by 7/20% (5).
If we first take the limit of large N, and then take n — 0 we
obtain the expectation

2
lim =Im[u] GR,(§ — inua] = pR® PG, ). (36)
n—>0 7
Now we use the subordination relation (18) to replace the

resolvent of R with the resolvent of Y: GR (z) = G¥,(£(2))
where we have written the two-component vector

{(z) =z - R¥E@). (37)
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Since u, is an eigenvector of Gﬁa(gl, &) with eigenvalue
% where b =2fora=1andb = 1 fora = 2, we find

S16—5?
) . 56— in)
d> ) = 1 I 9’
169 = R ® 1 ™ 06— it G —im) — i —
(38a)
A ‘ 66— in)
@3, 5) = lim T :
209 = RO MGG = G — i) — i — 57
(38b)

These expressions can be written in terms of the real and
imaginary parts of the block R transform of the noise X. In
the following section we provide simplified expressions for
the important case of Gaussian noise.

1. Arbitrary signal with Gaussian noise

We show in Appendix D that the block R transform of an
Ny X N, (with ¢ = ]Nii) Gaussian matrix with i.i.d. entries of

variance o°/n, is

X 2f B2
R t)=0 <ct1>' (39)
Note that from the definition of the R transform, one can find
that R4 (¢)t, = cR{ ()1, for any rectangular A with aspect
ratio ¢, and (39) is the only pair of linear functions of ¢ that
satisfies this constraint.

We substitute (39) into the block Stieltjes transform sub-
ordination relation yielding gR(z) =g"(¢) with ¢ =z —
02gR(z) and & =z — co?gl(z), and then use the identity
L) =cgfz) + % (for arbitrary rectangular R, the spectra
of RRT and RTR differ only by a set of 0 eigenvalues). Then
using the definition g’l'(l;) = Lgyyr (£182), we arrive at

1 —
K@) = L()gyyr <§2(Z)(§2(Z) - UzTC>>, (40)
with

0(2) ==z — ca’di(2). 41)

This is a self-consistency equation for the block Stieltjes trans-
form of R, gR(z), that depends on the noise variance o2, the
aspect ratio ¢, and the standard Stieltjes transform of the signal
covariance, gyyr (2).

Once this equation is solved, the singular vector overlaps
can be obtained as well. We introduce notation for the real and
imaginary parts of the block Stieltjes transform, gf(5) = hff +
ifR, where we assume that the spectral density at § is finite.
Then we insert this into (39) to get the real and imaginary parts
of the block R transform of X. After defining, for notational
ease,

v(z) := Retr(2) = z — ca*hf(2), (42)

we can finally simplify the overlaps (38) for the case of Gaus-
sian noise:

v($BS) — co? A, 5)

LAG, )1 + [fFBG)]

[V(§) — 021£]BB) — co? A, )
LAG. )1 + [fRB®)]

D,(8,s5) = (43a)

Dy(8,5) =

, (43b)

where we have

AG, ) = v(@)[v(ﬁ) - 02:} — [+ 2t (18],
S
(44a)
BG) = 2002|:v(3“) _ o2l _Ac] (44b)
28

Formula (43a) is confirmed in Fig. 3, which shows the left
singular vector overlaps between data and signal, when the
signal, Y, is Gaussian as well. The bottom color plot can be
thought of as an input-output map for the singular value struc-
ture under additive noise. It shows that a signal singular vector
associated with a given singular value s undergoes, loosely
speaking, both “diffusion” and “inflation,” aligning partially
with data singular vectors across a range of singular values
with a peak associated with larger singular values, § > s. In
the upper three panels we observe that individual overlaps are
not self-averaging; a smooth overlap function emerges only
when one averages either over many overlaps within a range
of singular values, or over many instantiations.

We stress that these formulas for the overlap of data singu-
lar vectors with signal singular vectors do not depend directly
on the unobserved signal Y. Rather, they depend only on the
noise variance and the block Stieltjes transform, g’f(z), of the
noisy data matrix, R. Furthermore, g’f(z) can be estimated
empirically via kernel methods for the empirical spectral den-
sity and its Hilbert transform [32,35,36]. This suggests that
significant information about the structure of the unobserved
extensive signal can be inferred from noisy empirical data, and
this will lay the foundation for the optimal estimators derived
below.

C. SVD of the extensive spike model

We now return to the spiked matrix model R =Y + X,
with signal Y = sU, U2T, where s is a scalar, and U, are N, x K
matrices with orthogonal columns. But now we assume the
rank of the spike grows linearly with the number of rows
at a fixed rank ratio, b, i.e., K = bN;, while the aspect ratio
¢ = MNi/n, is fixed as before. We will assume the elements of
the noise matrix X are i.i.d. Gaussian: X;; ~ N(O, 1%2). In the
following we first discuss the singular values and then the
singular vectors of the extensive-rank model.

1. Singular value spectrum of the extensive spike model

YYT has K eigenvalues equal to s> and N; — K zero eigen-
values. Its Stieltjes transform is therefore found to be

74+ (b —1)s?

2z — %) @

gryr(2) =
We can now make use of the self-consistency equation for
g¥(z) (40). Momentarily writing g in place of g%(z) and sim-
plifying, we find

[(42 - ];c>g— 1}[(@2 ! _c>§2 —52} = bs*, (46)
z z

where we write ¢, =z — co’g as above. This is a quartic
polynomial for g = g%(z). We solve this numerically for z near
the real line in order to find the density of singular values of
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FIG. 3. Singular vector overlaps of sums of Gaussians. Bottom
plot (color online) shows the theoretical prediction of the logarithm
of the overlap, log,, ®(5, s) (Eq. (43a)), between the left singular
vectors of R =Y + X and those of Y, as a bivariate function of the
associated singular values § of R and s of Y. Dashed line is identity
s = §. The signal Y and noise X are both rectangular Gaussian ma-
trices with aspect ratio ¢ = Ni/n, = 3/2. Elements of Y are i.i.d. with
variance 03/1\12 where a),z = 3. Elements of X are i.i.d. with variance
¢/n, with 2 = 1. Top three panels show singular vector overlaps for
three horizontal slices associated with three fixed “target” signal sin-
gular values s = 1.5, 2.5, 3.5, for 10 realizations of random matrices
with N; = 1500 and N, = 1000. Each gray dot denotes an overlap
between a left singular vector of R with singular value § (position on
x axis) with the left singular vector of Y with singular value closest
to s. Red dots reflect binning the singular values of R from all 10
realizations, with number of bins set to /N, giving bin width ~0.13.
Blue is the theoretical prediction from @, (8, s) in (43a). Note that
as the signal singular value s increases, (3, s) as a function of §
becomes more concentrated about a value larger than s. This reflects
the fact that singular vector structure in the signal Y at singular
value s is mapped to singular vector structure in the data R at larger
singular values §, due to singular value inflation under the addition of
noise X.

R (see Appendix E for the polynomial coefficients and details
of numerical solution).

For strong signal s, the spectrum in the extensive case
differs from the finite rank case most clearly in that singular
values reflecting the signal do not concentrate at a single data
singular value. Rather (see Fig. 4 top) for sufficiently strong
signal s, the presence of noise blurs the signal singular values
into a continuous bulk that is disconnected from the noise

0.7
0.6
" 0.5
S 1.4
2
o) 0.4
o]
1.2
2 0.3
2
v 1.0
0.2
0.8
—— finite K: outlier 0.1

——- finite K: bulk edge

o
)

=== finite K: ¢t

05 10 15 20 25 30
Data Singular Values $

FIG. 4. Signal-strength transition in the SV density of the ex-
tensive spike model. Each row of the bottom color map shows
theoretical predictions for the singular value density of the extensive
spike model, pf(3), corresponding to different signal strengths s
(along y axis) at a fixed rank ratio of b = X/n; = 0.25. In all panels
the aspect ratio is fixed to ¢ = M/n, = 0.7. Features of the finite-rank
spike model are shown as lines for comparison. The horizontal black
dashed line indicates the threshold signal strength s.,;; above which
the finite-rank model acquires an outlier singular value. The red curve
indicates the position of this outlier singular value. The vertical gray
dashed lines indicate the edges of the bulk spectrum of the finite-rank
model. The top three panels, corresponding to horizontal slices of the
color maps, plot the singular value density at three different signal
strengths s = 0.8, 1.5, and 2. Solid blue curves indicate theoretical
predictions from numerically solving (46), while gray histograms in-
dicate the spectral density from a single realization with N, = 2000.
For comparison, the red vertical spike indicates the position of outlier
singular value in the finite-rank theory, while the gray dashed spike
indicates the edge of the noise bulk in this theory. Together these
panels demonstrate that as s increases, the singular value density
undergoes first a crossover from a unimodal to a bimodal regime, and
then a phase transition from a connected to a disconnected phase.

bulk. This signal bulk appears near the single outlier predicted
by the finite-rank theory, but has significant spread.

At weak signals s there is a single, unimodal bulk spectrum,
just as in the finite-rank setting, but in contrast, these weak
signals make their presence felt by extending the leading edge
of the bulk beyond the edge of the spectrum predicted by the
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FIG. 5. Rank-ratio transitions in the SV density of the extensive spike model. Each row of the bottom color maps show theoretical
predictions for the singular value density pf(5) corresponding to different rank ratios b (y axis) at a fixed signal strength, and all color
maps have same color scale. Top three panels indicate matching theory (blue curves) and empirics of a single realization (gray histograms)
for three rank ratios b = 0.05, 0.25, 0.5, and the aspect ratio is fixed to ¢ = M/n, = 0.7 with N, = 2000. Comparisons to the finite-rank theory
are shown using the same conventions as in Fig. 4. (a) Results for s = 1.8, illustrating that for sufficiently strong signal the singular value
density remains in the connected phase for all values of b. (b) Results for s = 1.55, illustrating that for intermediate signal strengths the density
undergoes a transition from disconnected to connected as the rank ratio b increases. (c) Results for s = 0.9, illustrating that for subthreshold
signals the density remains connected for all b. s, = ¢'/* &~ 0.915 throughout.

finite-rank theory, even when the signal strength s is below
the critical signal strength s.,; predicted by finite-rank model
(Fig. 4 third panel).

At intermediate signal strength s, the singular value distri-
bution exhibits a connected bimodal regime not present in the
finite-rank model (Fig. 4 second panel).

Thus, as s increases, we see two qualitative changes: first
a crossover from a single unimodal bulk to a single bimodal
bulk, and then from one connected bulk to two disconnected
bulks. This final splitting of the signal bulk from the noise
bulk is a phase transition as the block Stieltjes transform goes
from having a single branch cut to two disjoint branch cuts.
This transition happens at significantly larger signal s than the
signal-detectability phase transition in the finite-rank regime
(Fig. 4 bottom).

In the limit of low rank (small ) the spectrum approaches
the finite-rank theory as expected (Appendix A). Interestingly,
we find that as a function of rank ratio b, there are three
distinct regimes. For sufficiently strong signals (Fig. 5(a)), the
signal bulk remains disjoint from the noise bulk for all 5. For
intermediate signals (Fig. 5(b)), the two bulks merge but the
spectrum remains bimodal for all b. Finally, for weak signals
(Fig. 5(c)), there is a single connected bulk for all b.

2. Singular vector subspace overlap in the extensive spike model

We now turn to the singular vectors of the extensive spike
model. For simplicity we focus on the left singular vectors.

Since the K nonzero singular values of the signal are de-
generate, the only meaningful overlap to study is a subspace
overlap, or the projection of the data singular vectors, @y,
onto the entire subspace defined by U;. Therefore we compute

K

“ﬁlTkUl ”2 = Z (ﬁlTkulm)z-

m=1

(47)

Since this is an extensive sum, we expect that it is self-
averaging and should be well predicted by b® (5, s), where
® is defined in (43).

After solving (46) for the block Stieltjes transform of R,
we insert the result in (43) to find @, (3, s). In Appendix A we
return to the simulation results presented in Fig. 2 and show
that the extensive-rank theory predicts both the leading outlier
singular value and the subspace overlap of the corresponding
singular vector, even when the finite-rank theory fails.

In Fig. 6 we explore the phase diagram of the extensive-
rank model and successfully confirm the predictions of the
extensive-rank theory for singular vector overlaps by com-
paring these predictions to numerical simulations. For strong
signal s (Fig. 6 top panel), the overlap of the data singular
vectors with the true signal subspace is reasonably approxi-
mated by the finite-rank theory [22]. However, for moderate
signals (Fig. 6 second panel) the data singular vectors interact,
competing for the signal subspace. Singular vectors associated
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FIG. 6. Singular vector overlaps in the extensive spike model.
Each row of the bottom color plot shows the theoretical prediction
for the overlap of a left singular vector with singular value § of
the data matrix R =Y + X, with the entire K-dimensional signal
subspace of Y (i.e., the squared norm of the projection of the singular
vector onto this subspace). The prediction is given by b®,(5, s),
using (43) after numerically solving for g§(3) from (46). Different
rows along the y axis correspond to different signal strengths s for
Y. Comparisons to the finite-rank theory are shown using the same
conventions as in Fig. 4. The top three panels show horizontal slices
for s = 0.75, 1.4, 2.0. Solid gray curves indicate the singular value
density of the data matrix R in the extensive-rank model. Blue dots
indicate numerical calculations for the overlap for a single realization
with N, = 2000. Solid light blue lines through the blue dots indicate
matching theoretical predictions for this overlap. For comparison,
the horizontal dashed line indicates the overlap predicted by the
finite-rank theory (which depends only on s and not §). The third
panel indicates that the signal subspace of Y is detectable in the top
data singular vectors of R, even at small signal strengths s below
the transition in the singular value density of R from unimodal to
bimodal. The aspect ratio is ¢ = M/n, = 0.7, while the rank ratio for
Y is fixed at b = /v, = 0.1.

with the leading edge of the signal bulk have higher subspace
overlap with the signal, while those at the lower edge overlap
less. Perhaps most intriguingly, even for weak signals below
the finite-rank phase transition at s = s.,; the top data singular
vectors still overlap significantly with the signal subspace
(Fig. 6 third panel). Note, this overlap is nontrivial and O(1)
even when the singular value spectrum of the data is in the
unimodal bulk regime.

We observe that the extensive spike model exhibits a sin-
gular value inflation in its singular-vector overlaps. Not only
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FIG. 7. Singular vector overlaps disregard singular value phases.
Two-dimensional phase diagram shows the average “excess” sub-
space overlap (48) of the top b fraction of data singular vectors with
a signal of strength s (y axis) and rank ratio b (x axis). The (lower)
gray line separates the unimodal and bimodal regimes of the SV
spectrum, and the (upper) black line separates the connected phase
from the disconnected phase. The singular vector overlap does not
respect the boundaries of the SV spectrum. The signal impacts the
data via significant overlaps with the signal subspace well below
the boundary between unimodal and bimodal regimes. Aspect ratio
c=0.7.

are data singular values larger than the corresponding signal
singular values, just as in the finite-rank model, but also the
singular-vector overlap peaks at the upper edge of the data
singular values.

Figure 7 summarizes the results of this section with a
two-dimensional phase diagram in the signal-strength vs rank
(s-b) plane. It shows the boundaries between three regimes
of the singular value spectrum: unimodal, bimodal, and dis-
connected. Additionally, the color map shows the average
excess signal subspace overlap of the singular vectors asso-
ciated with the top b fraction of singular values. Since, by
chance, any random vector is expected to have an overlap b
with the signal subspace, we compute the excess overlap as
® (3, 5) = b(D(3, 5) — 1). We then average the excess overlap
across the singular vectors associated with the top b singular
values, that is,

/ (3, 5)pf () ds, (48)

where 7 is given by b = [* pR(3)d53.

Importantly, the figure demonstrates that in contrast to the
finite-rank setting, the transitions in the data singular value
spectrum of the data do not coincide with the detectability of
the signal. Rather, the alignment of the data singular vectors
with the signal subspace is a smooth function of both signal
strength s and rank ratio b, and nonzero excess overlap can
occur even in the unimodal regime.

V. OPTIMAL ROTATIONALLY INVARIANT ESTIMATORS

We now consider two estimation problems given noisy ob-
servations, R =Y + X: (1) denoising R in order to optimally
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reconstruct ¥ and (2) estimation of the true signal covariance,
C =YYT. We focus on the case where both signal ¥ and
noise X are rotationally invariant (Py(M) = Py(O1MO;) for
arbitrary orthogonal matrices O;, O,, and similarly for X).
In this setting it is natural to consider rotationally invariant
estimators F that transform consistently with rotations of the
data: F(O1RO,) = O1F (R)0O, [47,48]. Such F can alter only
the singular values of R while leaving the singular vectors un-
changed. More generally, when Y is not rotationally invariant,
our results yield the best estimator that modifies only singular
values of R.

Our problem thus reduces to determining optimal shrink-
age functions for the singular values. In the finite-rank case,
distinct singular values and their associated singular vectors
of Y respond independently to noise, so the optimal shrinkage
of § depends only on § [23,29,46]. As we show below, this is
no longer the case in the extensive-rank regime. The optimal
shrinkage for each singular value generally depends on the
entire data singular value spectrum.

A. Denoising rectangular data

We first derive a minimal mean-square error (MMSE)
denoiser to reconstruct the rotationally invariant signal, Y,
from the noisy data, R. Under the assumption of rotational
invariance, the denoised matrix is constrained to have the
same singular vectors as the data R and thus takes the form
Y = U1¢(S)U] . The MSE can be written

E =

L Te(Y = V)Y = 7)T
1N T -

Nl Wy ot 97 6) =29 G Y. (49)

Minimizing with respect to ¢(5,,) gives the optimal shrinkage
function,

¢*(§m) - a{mYﬁZma (50)

which appears to require knowledge of the very matrix being
estimated, namely, Y. However, in the large-size limit it is
possible to estimate ¢*(§,,) via the resolvent GX(z). We first
write

TIY GR ()], =Tr[YRTGRR»r (]
—Z o

As zis brought toward the singular value §,, the sum is increas-
ingly dominated by the contribution from &1,,Y iz = ¢*(3,).
We find

ullYu21 (51)

(3 = i( 5 in lim Im{ulYG*G —im]}.  (52)

We next apply the subordination relation (18), yielding a
product of Y with a Y resolvent, whose trace is readily found:

ulYGR )l = ulYG' (Ol =08/ () —1,  (53)

where £,(z) = z — RX(gR(z)), and we have used the identity
7[CGc(2)] = z8¢(z) — 1 for arbitrary symmetric C.

Since g'(¢) = gR(@ (33), we obtain

"% = lim Im{(l(s —ingiG—in}, (54

R( ) n—>
which depends only on the block Stieltjes transform of the em-
pirical data matrix, R, and the block R transform of the noise,
X. Importantly, the dependence on the unknown signal Y is
gone, making this formula amenable to practical applications,
at least when the noise distribution of X is known.

For i.i.d. Gaussian noise with known variance we have

2
) N )
R¥(g) = 0g> and the general relation g»(z) = cgi(z) + T’
so (54) simplifies considerably. Writing the real and imaginary
parts, g8(z) = hR(z) + ifR(z), we obtain the following simple
expression depending only on the variance of the noise, and
the Hilbert transform of the observed data spectral density:

¢*() = § — 2c0*HRGE) — 02¥. (55)
This expression for the Gaussian case was derived previously
in [41].

Figure 8 compares (55) to the optimal shrinkage found
based on the finite-rank theory [29]. The extensive-rank
formulas recover many more significant singular values
(F1g 8(a)) Moreover the mean-square error of Y* =
U680, is superior to that of the finite-rank den01ser
steadily improving as a function of the signal rank, while
the finite-rank denoiser worsens (Fig. 8(b)). In fact, for our
simulations with Ny = 1000 and N, = 500, the extensive-rank
denoiser outperformed the finite-rank denoiser for all K > 5,
across the range of signal strengths tested. Finally, given an
estimate of the noise variance o2, we are able to numerically
estimate g&(5) with kernel methods (Appendix F) and com-
pute an empirical shrinkage function that is very close to the
theoretical optimum (Fig. 8(c)).

B. Estimating the signal covariance

We now derive an MMSE-optimal rotationally invariant es-
timator for the signal covariance, C = YY7 . Just as in [31,33],
and similarly to our results in the previous section, the optimal
estimator is given by C* = U, ¥*(S)U[, where

Y*(3) = g, City,. (56)
We observe that the top-left block of the square of the Hermi-
tianization Y is given by C, and so
Z
YG'l =)  ———#l,Ciy. 57
[Y2G* @), ;zz—ﬁf 1Caiy (57)

Thus, we can calculate the optimal shrinkage function by the
inversion relation (13):

2
v 3) = PR M hm Im{t,[Y?GRGE —in)]}.  (58)
Now we apply the subordination relation, G®(z) = G¥ (¢£(z))
with ¢, = z — RX(g%(z)), which gives Y>GR(z) = Y*’G" (¢),

which has top-left block &Y Y7 Gyyr (£18).
Again, using the identity t[CG¢(2)] = zg¢(z) — 1 for arbi-
trary symmetric C, we have

ulY’GR* ()] = &[agl (ci1e) — 1]. (59)
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FIG. 8. Optimal denoising of extensive spikes. (a) Each row of the bottom color map shows the optimal shrinkage function ¢*(8) (55)
for denoising data from the extensive spike model. Different rows on the y axis correspond to different rank ratios b = £/n, of the signal Y,
while the signal strength s of Y is fixed at s = 1.8 and the aspect ratio is fixed at ¢ = 0.7. The top three panels show horizontal slices with
b =0.25,0, 1, 0.01. Blue (darker) curves indicate the optimal shrinkage function for the extensive-rank model, while orange (lighter) curves
indicate the optimal shrinkage function for the finite-rank model [29] (7) (which does not depend on b). These panels indicate that the optimal
shrinkage function for the extensive-rank model balances singular values more than that of the finite-rank model by more (less) aggressively
shrinking larger (smaller) singular values. (b) Comparison of mean-square error in rectangular data denoising of K spikes, as a function of K for
fixed signal strength s = 2, using the optimal shrinkage function for the finite-rank model (orange) vs that of the extensive spike model (blue).
Even at small spike numbers of K = 10 for N; = 1000 x N, = 500 sized data matrices, the extensive denoiser outperforms the finite-rank
denoiser, and at larger K the extensive (finite-rank) denoiser gets better (worse). (c) Empirical shrinkage and comparison of optimal shrinkage
function for two different errors: in blue (darker) denoising the rectangular signal matrix, ¢*(§) (55), and in green (lighter) estimating the
Ni x N signal covariance matrix /¥*(8) (61), for signal strength s = 1.5 and rank ratio b = 0.1, with aspect ratio ¢ = 0.7. Lighter curves
show the theoretical optima found using Eq. (46). Darker dots show empirical shrinkage obtained via kernel estimation (see Appendix F) of the
block Stieltjes transform from the data singular values with N, = 2000. (d) Comparison between multiplicative model (spiked covariance) and
additive model (spiked rectangular model) with K = 50. Top: Eigenvalue spectra of data covariance (RRT) for multiplicative model and additive
model. Bottom: Optimal shrinkage for covariance estimation under the wrong model. Data spectrum generated by additive model, shrinkage
function of multiplicative model [31] (13) vs the correct, additive model. (¢) Mean-square error in covariance estimation as a function of K
using the multiplicative model (orange) vs the correct, additive model (blue). Throughout (d) and (e), s = 2 with N; = 1000 and N, = 1500,
and the multiplicative model is displayed in orange (lighter) and the additive model is displayed in blue (darker).

R and its Hilbert transform, which can be estimated directly
2 from data.

— In Fig. 8 we show the optimal shrinkage function for

7Py (8) n=0 the extensive spike model, and demonstrate that it can be

x (;1 ¢ —imgG —in) — 1)] (60)  approximated given only an estimate of the noise variance

and the empirical data matrix, R (Fig. 8(c)). We find that the

Once again, for i.i.d. Gaussian noise with known variance o optimal singular value shrinkage of singular values derived for

We therefore conclude for general noise matrix, X:

Yr($) = lim Im[£(8 — in)

*N,?

our estimator (60) simplifies considerably. Using the optimal
shrinkage function found above for rectangular denoising,
*(3) = § — 2co*hfR — 02%, where AF is the real part of
g8 (8), we finally obtain

. . . ,1—c
N6 =¢(s)<¢(s)+o 3 >
—co*(co?|gF B> — 1). (61)

Just as in optimal data denoising, we find that given an
estimate of the noise variance, o2, the optimal shrinkage for
covariance estimation depends only on the spectral density of

covariance estimation (61), /¥ (5), is substantially different
than ¢(3) (55) obtained for denoising the rectangular signal
(Fig. 8(c)). The denoising shrinkage suppresses the noise
more aggressively, but suppresses the signal singular values
more as well.

Finally, we compare the shrinkage obtained from assuming
a multiplicative form of noise instead of the additive spiked
rectangular model studied here. In the finite-rank regime,
the spiked rectangular model can be instead modeled as a
multiplicative model with data arising form a spiked covari-
ance. Concretely, the data in the multiplicative model are
generated as Ry;r = /Cuuir X, 1.€., each column is sampled
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from a spiked covariance: C,,,; = YY7 + I. In the finite-rank
regime, with Gaussian noise, the two models yield identi-
cal spectra and covariance-eigenvector overlaps. The optimal
shrinkage for covariance estimation for the multiplicative
model for arbitrary C,,;; has previously been reported [31]
Eq. (13) for Gaussian noise and [33] Eq. (IV.8) for more
general noise], and here we consider the impact of employing
the multiplicative shrinkage formula on data generated from
the additive spiked rectangular model. We observe (Fig. 8(d)
top) that for small rank ratio (b = 0.05) the two models give
fairly similar eigenvalue distributions. Nevertheless, applying
the optimal multiplicative shrinkage on the additive model
data gives poor results: the shrinkage obtained is nonmono-
tonic in the data eigenvalue (Fig. 8(d) bottom). Furthermore,
the mean-square error in covariance estimation obtained with
the multiplicative shrinkage worsens as a function of rank

(Fig. 8(e)).

VI. DISCUSSION

While one approach to estimation depends on prior infor-
mation about the structure of the signal (such as sparsity of
singular vectors, for example), we have followed a line of
work on rotationally invariant estimation that assumes there
is no special basis for either the signal or the noise [47,48]. In
this approach, knowledge of the expected deformation of the
singular value decomposition (SVD) of the data due to noise
allows for the explicit calculation of optimal estimators.

In the case of finite-rank signals, where the impact of
additive noise on singular values and vectors is known
[21,22], formulas for optimal shrinkage for both denoising
[23,28,29] and covariance estimation [46] have been found.
For extensive-rank signals, however, while formulas for the
singular value spectrum of the free sum of rectangular ma-
trices are known [37,38,40], there are no prior results for
the singular vectors of sums of generic rectangular matrices
(though see [44] for contemporaneous results).

Even in the setting of square, Hermitian matrices, results
on eigenvectors of sums are relatively new [30,31]. Recent
work derived a subordination relation for the product of
square symmetric matrices and applied it to a “multiplicative”
noise model in which each observation of high-dimensional
data is drawn independently from some unknown, poten-
tially extensive-rank, covariance matrix [33]. In that context,
knowledge of the overlaps of the data covariance with the
unobserved population covariance is sufficient to enable the
construction of an optimal rotationally invariant estimator
[31,33,35,36].

We have derived analogous results for signals with additive
noise: we have computed an asymptotically exact subordi-
nation relation for the block resolvent of the free sum of
rectangular matrices, i.e., for the resolvent of the Hermi-
tianization of the sum in terms of the resolvents of the
Hermitianization of the summands. From the subordination
relation, we derived the expected overlap between singular
vectors of the sum and singular vectors of the summands.
These overlaps quantify how singular vectors are deformed
by additive noise. We have calculated separate optimal nonlin-
ear singular-value shrinkage expressions for signal denoising
and for covariance estimation. Under the assumption of i.i.d.

Gaussian noise these shrinkage functions depend only on the
noise variance and the empirical data singular value density,
which we have shown can be estimated by kernel methods.

We have applied our results in order to study the extensive
spike model. We found a significant improvement in estimat-
ing signals with even fairly low rank ratios, over methods
that are based on the finite-rank theory. Our results may
have significant impact on ongoing research questions around
spiked matrix models [24-27], such as the question of the
detectability of spikes or optimal estimates for the number of
spikes, for example.

The subordination relation derived here is closely related to
operator-valued free probability, which provides a systematic
calculus for block matrices with orthogonally or unitarily
invariant blocks, such as the 2 x 2-block Hermitianizations
Y, X, R. In that approach, spectral properties of a matrix are
encoded via 2 x 2 operator-valued Stieltjes and R transforms,
whose diagonal elements correspond exactly to the block
Stieltjes and R transforms defined here. A fundamental re-
sult in this context is an additive subordination relation for
the operator-valued Stieltjes transform, which is an identical
formula to (33) [40].

We comment briefly on our derivation of the block resol-
vent subordination, which is summarized in Sec. IV A and
treated fully in Appendix B. First, we note that previous work
derived resolvent subordination relations for square symmet-
ric matrices using the replica method [33,34,36]. These works
assume the replicas decouple, which results in a calculation
that is equivalent to computing the annealed free energy. Here
we used concentration of measure arguments to prove that
the annealed approximation is asymptotically correct (Ap-
pendix B 1).

In the course of our derivation of the subordination
relation we encountered the expectation over arbitrary block-
orthogonal rotations of the Hermitianization of the noise
matrix [Eq. (24) and Appendix C], which we called a “block
spherical integral.”” As noted above, this integral plays an
analogous role to the HCIZ spherical integral which appears
in the derivation of the subordination relation of square sym-
metric matrices [36]. In that setting, the logarithm of the
rank-1 spherical integral yields the antiderivative of the stan-
dard R transform for square symmetric matrices [49]. To
our knowledge, the particular block spherical integral in our
work (Appendix C) has not been studied previously. In fact,
it is very closely related to the rectangular spherical inte-
gral, whose logarithm is the antiderivative of the so-called
rectangular R transform [37]. In our setting, two such rect-
angular spherical integrals are coupled, and the logarithm
of the result is the antiderivative of the block R transform
(14) (up to componentwise proportionality constants related
to the aspect ratio). While the rectangular R transform is
additive, its relationship to familiar RMT objects such as the
Stieltjes transform is quite involved. In contrast, the block
‘R transform that arises from the block spherical integral is
a natural extension of the scalar R transform, with a simple
definition in terms of the functional inverse of the block Stielt-
jes transform. Furthermore, as mentioned above, the block R
transform is essentially a form of the more general operator R
transform from operator-valued free probability. This formu-
lation is appealing because it provides a direct link between

054129-14



SINGULAR VECTORS OF SUMS OF RECTANGULAR ...

PHYSICAL REVIEW E 108, 054129 (2023)

a new class of spherical integrals and operator-valued free
probability.

We stress that even under the assumption of Gaussian i.i.d.
noise, the optimal estimators we obtained in Sec. V are not
quite bona fide empirical estimators, as they depend on an es-
timate of the noise variance. This may not be a large obstacle,
but we leave it for future work. We do note that while under
the assumption of finite-rank signals, appropriate noise esti-
mates can be obtained straightforwardly, for example, from
the median data singular value (see [28], for example), this is
no longer the case in the extensive regime that we study. In
empirical contexts in which one has access to multiple noisy
instantiations of the same underlying signal, however, a robust
estimate of the noise variance may be readily available.

Other recent work has also studied estimation problems
in the extensive-rank regime. Reference [50] studied the dis-
tribution of pairwise correlations in the extensive regime.
Reference [41] studied optimal denoising under a known,
factorized extensive-rank prior, and arrived at the same shrink-
age function we find for the special case of Gaussian i.i.d.
noise (55). References [43] and [42] studied both denoising
and matrix factorization (dictionary learning) with known,
extensive-rank prior.

Finally, recently a preprint [44] presented work partially
overlapping with ours. They derived the subordination re-
lation for the resolvent of Hermitianizations as well as the
optimal rotationally invariant data denoiser, and additionally
established a relationship between the rectangular spherical
integral and the asymptotic mutual information between data
and signal. However, unlike our work, this contemporaneous
work (1) does not calculate the optimal estimator of the signal
covariance; (2) does not explore the phase diagram of exten-
sive spike model and its associated conceptual insights about
the decoupling of singular value phases from singular vector
detectability that occurs at extensive but not finite rank; (3)
does not extensively numerically explore the inaccuracy and
inferior data-denoising and signal-estimation performance of
the finite-rank model compared to the extensive-rank model,
a key motivation for extensive rank theory; (4) at a technical
level [44] follows the approach of [33] using a decou-
pled replica approach yielding an annealed approximation,
whereas we prove the annealed approximation is accurate
using results from concentration of measure; and (5) also at a
technical level [44] employs the rectangular spherical integral
resulting in rectangular R transforms, whereas we introduce
the block spherical integral yielding the block R transform,
thereby allowing us to obtain simpler formulas.

We close by noting that our results for optimal estima-
tors depend on the assumption of rotational (orthogonal)
invariance. Extending this work to derive estimators for
extensive-rank signals with structured priors is an important
topic for future study. The rectangular subordination relation
and the resulting formulas for singular vector distortion due
to additive noise hold for arbitrary signal matrices. These may
prove to be of fundamental importance from the perspective of
signal estimation in the regime of high-dimensional statistics,
as any attempt to estimate the structure of a signal in the
presence of noise must overcome both the distortion of the
signal’s singular value spectrum and the deformation of the
signal’s singular vectors.
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APPENDIX A: FINITE-RANK THEORY FOR THE SPIKED
MATRIX MODEL

We review formulas from [22] for the finite-rank spiked
matrix model, R = sU, U2T + X, where the U, are N, x K with
orthonormal columns, and X is arandom N; x N, matrix with
well-defined singular value spectrum in the large-size limit
with fixed aspect ratio ¢ = NM/n,.

In the case where the noise X is i.i.d. Gaussian with vari-
ance !/n,, the critical signal strength below which the signal is
undetectable is s..; = c7*. The top K singular values of R are
given by

N Y[ (re Ty
e

In Fig. 9 we show that in the limit of small rank ratio, the
singular value density obtained from the extensive-rank the-
ory approaches this result from finite-rank theory. For the
square-symmetric setting, see also [45] for derivation of the
fluctuations around this asymptotic limit, which take the form
of the eigenvalues of a K x K random matrix.

for s > s.is

(AT)
otherwise.
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FIG. 9. Singular value density of extensive spike model in the
low-rank limit. Color plot shows singular value density of extensive
spike model with aspect ratio ¢ = Mi/n, and signal strength s = 1.5.
The rank ratio, b = K/n,, varies along the y axis. Top three pan-
els show horizontal slices for 5 = 0.001, 0.005, 0.01 together with
empirical histograms of individual model instantiations with N, =
2000. The extensive-rank theory converges to the finite-rank theory
as b gets small.
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FIG. 10. Extensive-rank theory captures the singular value struc-
ture of the spiked rectangular matrix model. Compare Fig. 2.
(a) Leading data singular value, §;, as a function of signal singular
value, s;, for various ranked spikes. (b) Projection of leading data
left singular vector, u;, on the K-dimensional left singular space
of the signal. Dashed lines show extensive-rank theory. The two
panels match Figs. 2(a) and 2(b), with Ny = 1000 and N, = 500 and
numerical results presented as mean and standard deviation over 10
instantiations for each value of b and s. This figure shows that the
extensive-rank theory captures the deviations from finite-rank theory
at finite Ny and N,.

The overlaps of the corresponding singular vectors, #@,; for

[ =1,...,K, with the signal subspaces, U,, for a = 1, 2 are
given by
4
A 2 =5 fors > Sq
U — S4+CS2 crit A2
“u” ! ” {0 otherwise (A22)
2 S=¢ for s> S
~ U — s4+52 crit . A2b
||”21 2 ” {O otherwise ( )

In Fig. 10 we return to the simulation results from Fig. 2
displaying both the leading singular value and the overlap for
various values of K, together with the theory results from the
extensive-rank theory.

For a generic noise matrix, X, with block Stieltjes trans-
form, g¥(z), [22] defines the D transform, which in our
notation is the product of the elements of g¥(z) (where the
argument has z; = z, = z):

Dx(2) = gf ()83 (2). (A3)

Then the critical signal satisfies

Dy(ry) = -, (A4)
crit
where x is the supremum of the support of the singular value
spectrum of X.
For suprathreshold signals, s > s, the data singular value
outlier, §, satisfies

1
Dx(§) = 2 (AS5)

and the two overlaps, corresponding to blocks a = 1 and a =
2 for left and right singular vectors, respectively, are given by

28 ®

AT 2
Il = 5 0

(A6)

APPENDIX B: DERIVATION OF THE BLOCK-RESOLVENT
SUBORDINATION RELATION

Here we calculate the asymptotic subordination relation
(18), found in Sec. IV A, for the block resolvent of the free
sum of rectangular matrices R =Y + 0;X0!, and O, Haar-
distributed orthogonal matrices of size N, for a = 1,2. We
write N = N; + N, and study the large N limit with fixed
aspect ratio ¢ = M/n,. For notational ease we introduce the
ratio of each block’s size to the entire matrix:

g, = Na (B1)
o=
We begin by writing
M= —R=zl-(Y+0X0), (B2)

where O = [OO1 (()) ]. Next we define the partition function,
2

ZR(Y) := (det M)~"*, which we can write as a Gaussian in-
tegral:

dv 1
ZRy) = / - exp <——vTMv>. (B3)
o= 2

2

We also define a corresponding free energy
FRY) :=2log ZR(Y), (B4)

and the desired block resolvent is G*(z) = M~' = S FR(Y).

Prior work on the case of square symmetric matrices has
employed the replica trick to compute this quenched average
[33,34,36,44]. In our notation, this amounts to approximating
log ZR = lim,_,¢ (ZR%, and then computing E5[G"(2)] =
lim,,_o Eo[(ZF)*! %] via n Gaussian integrals. Prior work
has assumed that the replicas do not couple, which effectively
amounts to computing the annealed average, log Eo[ZX(Y)].

Instead, we show in Appendix B 1 using concentration
inequalities that the annealed calculation is in fact asymptoti-
cally exact. In particular, as N — oo,

Eo[lzv log ZR(Y)i| - ]%log EolZR(Y)]. (BS)

Writing out the expectation and separating factors that
depend on O, we have

dv T (o]
EolZR ()] =/ Nef%” @=T
2
x Egle:? 0X0"v), (B6)

The expectation over O on the right hand side is a rank-1
block spherical integral. In Appendix C, we derive an asymp-
totic expression for the expectation, which depends only on,
RX, the block R transform of the noise matrix X, and the
blockwise norms of the vector, v. Introducing the two-element

vector, ¢ whose ath entry is ]% lvell?, we have
XD N
Eo[e%”TOXOT”] = exp <5Hx(t)), (B7)
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where in anticipation of a saddle-point condition below, we
write HX () as a contour integral within C? from 0 to ¢:

t
H (1) :=/ dw - [86 RX ()], (B8)
0

where = %(%’1) and © is elementwise product. This gives
b

EglZR(Y)] = / (d—”Ne—é"”Z’—Y)" exp (EHX(t)).

N 2
(B9)

In order to decouple v from ¢, we introduce integration
variables and Fourier expressions for the delta-function con-
straints §(Nut, — [|vg1?):

di, 1, ,
- / 1, f - oxp (= SiuNata — [0a1?)).  (BLO)
4 2

‘We now have

dt, df, 1 S N
[ 2R _ alla _L1nif X
EplZ (Y)]—/<|a| o e >exp<2H (t))

X /Lex (—lvT(l—T—Y)v>
Wy AT |
(B11)

where we have introduced the diagonal N x N matrix, T,
which has 7, along the first N; diagonal elements followed by
f> along the remaining N, elements.

The integral over v is a Gaussian integral with inverse
covariance (zI — T —Y) (which is positive-definite for suffi-
ciently large 7). Crucially, this covariance is exactly, G¥ (z — )
the block resolvent of ¥ with a shifted argument, z — . Note
that the block resolvent, as a function of two complex num-
bers, has emerged here in our calculation.

The result is the inverse square root of the determinant:

/ dve 2 YW o getzf —Y —T)2.  (B12)
Thus, ignoring proportionality constants we have
E[ZR(Y)] o / dt df exp <%VPX’Y(t, i)), (B13)
with
PYY (1) := — Bify — Potafs + HX ()
- %log det(zI =Y —T), (B14)

where, remember, S, := Ne/N.

We expect this integral to concentrate around its saddle
point in the large-size limit. We find that taking the derivative
of PXY (¢, ) with respect to ¢, gives the following appealing
saddle-point condition for #:

f=R*@). (B15)

In order to take the derivatives with respect to f,, we find it
helpful to write out N, singular values s,, of Y (including N, —
N; zeros when N, > Njp). Then (zI — Y — T') decouples into

fi

2 x 2 matrices of the form [Z _s
“Om

—s
"], and that allows
z—10h

us to write

det(af =Y —T) = (z— i)™

N>
X l—[ [(Z — f])(Z — fz) — Srzn]

m=1

Then we find that taking the derivative of (B14) gives the final
saddle-point condition:

= (z—b)gyyr((z — )z — 1)), (B16)
h = (z—fH)gyry ((z — 11)(z — 1)) (B17)

We can write this concisely in vector notation:
t* =g" (z - R*")). (B18)

Thus, asymptotically, the desired free energy is
Eo[FR(Y)] = NPXY ¢, R* (t*)).

Informally, to derive the matrix subordination relation,
we differentiate FX, which, from (B14), yields (zI — T —
Y)~! = G"(z — R(t*)). But we argued above that - FR(Y) =
G*(z), which gives the subordination relation.

More formally, consider a Hermitian test matrix, A,
with a bounded spectral distribution, and then observe that
1%,% logdet(M + yA) = t[AM~']. Thus, we substitute ¥ —
Y + yA into the expression for F® (B14) and differentiate to
find

Jlim T[AE[GR (2)]] = Jlim T[AGY (z — R*(*))]. (B19)

(U

Using A proportional to either [IN ! 8] or [ 1, we
2

0 0 Iy
can now take the normalized blockwise traces of both sides,
yielding

) =g - RXt")). (B20)

Thus, comparing to (B18) we have t* = g®(z), and (B20)
becomes the subordination relation for the block Stieltjes
transform. Substituting t* = g®(z) into (B19), we obtain the
desired resolvent relation

T[AEG[GR ()] = T[AG" (z — R¥ (¢ (2)))].

for all Hermitian test matrices A with bounded spectrum, or
as written informally in the main text, ED[GR @D1=6GY(z —

R* (" (2))).

(B21)

1. Proof that the annealed free energy asymptotically equals the
quenched free energy

Suppose A, B are Hermitian matrices with bounded spec-

trum. Define the function
1

f(0) = N log det[z] — (A + OBO™)], (B22)

for arbitrary orthogonal O € SO(N). For sufficiently large

z, the matrix in the determinant is always positive, and this

is a smooth function on SO(N) bounded above and below

by constants cy := log[z & (||All,, + IBll,,)], where || - 1|,

is the operator norm. For such z, we prove the following
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Lipschitz bound below (see Sec. B 1 a for proof):

1£(01) — F(O)] < %

where p:=7|Bll,,e”“~ and | -, is the Euclidean norm

X1, = /TrXTX].

In particular, we will be interested in the case that the
orthogonal matrix O is block diagonal with blocks O, €
SO(N,), and thus O is a member of the product space
SON;) x SO(N,) with Nj + N, = N. The group SO(N,)

with Haar measure and Hilbert-Schmidt metric obeys a log-
4

101 = O2llz, (B23)

arithmic Sobolev inequality with constant -, so the prod-
uct space has Sobolev constant max, ﬁ = yzxiz’ where

y = min(%, %) ([51], Theorems 5.9, 5.16), and we can
apply Theorem 5.5 of [51], yielding

2
P [If(O) — Eolf(O)]] > %r} < 2exp <—(7/N - 2)%),
(B24)

forall r > 0.
Writing H :=Ep[f(0)], and defining M :=z—A —
OBOT (so that det M = &"/(©), this implies

r2
Pldet (M) > eNIHYNI £ 0e=PN-D (B25)

Since det(M) < "+, we can upper bound the expectation:
2 T
Eoldet (M)] < (1 — 2e~ YN =25 ) NH+/Nr

+ 2~ N2 New (B26)

Choosing r = /8cy /v, we find that }\, log Ep[det(M)] is less
than or equal to

1 T —00
ﬁ lOg[(l _ 267(N72)c+/y )eNH+\/NTr + 2620+y] N H

1
= Eollog det(M)],

which shows that the limiting annealed average is less than
or equal to the limiting quenched average. We could obtain
a lower bound via a similar argument, but we have directly
via Jensen’s inequality that the quenched average is less
than or equal to the annealed average, Ilon[log det(M)] <

1%, log Ep[det(M)], so in the limit they are equal:
.1 1
Nh_r)noo N]Eo[log det (M)] = Nll_r)r;O ¥ log Ep[det (M)]. (B27)

a. Lipschitz bound

To prove (B23), note that the gradient of f (B22) is
1
Vof(0) = —ZNM_‘OB, (B28)

where, as above, M = z — (A + OBOT). Thus, the ordinary
Euclidean norm of the gradient is

1
IVof(O)ll, = 2]VIII‘/I_loBIIz (B29)
= 13\/ [Tr[M~20B20T7]. (B30)

M=% and OB?0" are positive definite Hermitian matrices,
so Tr[M20B*0"] < N||B?|,,IM~2||,,,- From M's definition

we have [M~2|,, < [z = (|All,, + I1Bll,,)] 7> = e, and
SO

1Vor Ol < 2l (B31)
O e N
This shows that f changes by at most % times

the geodesic distance on the group: |f(O;)— f(0y)| <
&”‘X’/d(Ol,Oz)g@w). The geodesic distance is upper

e~

bounded by 7 /2 times the Euclidean distance ([51], p. 159),
SO

7| Bl

[£(01) = f(O2)] < 2101 — 0. (B32)
1 o JN 1 2
APPENDIX C: RANK-1 BLOCK SPHERICAL
HCIZ INTEGRAL

In this section we introduce the “block spherical integral,”
which extends the HCIZ integral to the setting of Hermitian-
izations of rectangular matrices.

We consider an Ny x N, matrix, X, with N =N, + N,
and consider the limit of large N with fixed ¢ = M/n,. For
notational ease we will introduce

Ba =+ (ChH

for botha =1, 2.
In the general-rank setting we write

X(T) = Eo[exp <%VTrT0XDT>], (C2)

where O = [%1

0, are Haar-distributed N, x N, matrices, and T is an arbi-
trary N X N matrix.

We here solve the rank-1 case, which arises in Appendix B
in the calculation of the subordination relation. In order to
match the normalization there, we write T = ]i\,va, where
the individual elements, v;, are O(1). We have

00 ] is a block-orthogonal matrix, i.e., both
2

X(T) = Eo[exp (%vT(_)XOTv)]. (C3)

We write v = (zl) in block form, and observe that the
2

block-orthogonal O preserves the within-block norms of v.
Therefore, we define

w, := 0lv,, (C4)

for a = 1, 2, and perform integrals over arbitrary w = (z;)

while enforcing norm constraints within blocks. We define the
two-component vector ¢:

£ = lval? (C5)
L
a Na
Then we can write
Z@,X)
(T = , C6
(T) 7¢.0) (C6)
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where we have defined

dw I
Z(t,X)::/Wexp Ew Xw

x [ 8Cwall® = Nata). (C7)

a=1,2

We calculate Z(#, X) by using the Fourier representation
of the delta function, over the imaginary axis: §(x) =
/ 100 exp(=4) 44 This gives

—ioco 4ri

4ri
a=1,2

Z(t.X) = / [T 4o piovame

dw
Q)"

e W@ Xw (Cy)

where we have introduced the N x N diagonal matrix, Q,
which has g on its first Ny diagonal elements, and g, on the
remaining N, elements.

The Gaussian integral over w now yields det(Q — X)~">.
Writing N, singular values of X as x,, (which includes N, —
N zeros in the case N, > N;), we can write

Ny
det@-X)=¢" ™ [[ (g2 —x2).  (©9)
m=1

Thus, at this stage we have

 dqy dgp [N ¥ ]
Zt,X) = —F2(t, C10
t. X) [iw DL ew| 3P| €10
with
FX(t,q) = Biqit1 + Bagotr + (B2 — B1) log i
1 &
-5 Zlog (q192 — ). (C11)

m=1

To find the saddle point, we take partial derivatives with
respect to ¢ and ¢, and find

h =g 8xx7(41q3), (C12)

= q18xrx(q143)- (C13)

For notational clarity, in this section we define the func-
tional inverse of the block Stieltjes transform, BX@t) =

@)1 (), satisfying
B g @)=z

In the limit of large z;, z2, we have g¥ (z) ~ é and g (z) ~ %,
and therefore for small 71, 1, we have B (¢) ~ % and BY (¢) ~

%. Generally, the functional inverse, BX (¢) exists for ¢ with
sufficiently small norm.

Thus, the saddle-point condition for Z(¢, X') can be written
succinctly as ¢* = BX(¢).

Finally, we find the asymptotic value of IX (v) (C10) by
also solving the saddle point for Z(¢, 0). For X = 0 we have
gxx7Z =z, so that the saddle-point condition for Z(¢, 0) is
simply ¢* = ;7! This yields F°(¢, ¢*) = Y, B.(1 + logt,).

(Cl14)

We therefore arrive at our asymptotic approximation for
the rank-1 block spherical integral:

IX(T) = exp %VHX(t), (C15)
where we have
HY@t) = Z Ba[taBX ) — logt, — 1]
a=1,2
1 )
-5 log det(B* (¢) — X), (C16)

where we have written B* (¢) to indicate the N x N diagonal
matrix with B (¢) along the top N, diagonal elements, and
B (t) along the remaining N>.

We observe an appealing relationship between the rank-1
block spherical integral and the block R transform. By the
saddle-point conditions, the partial derivatives of FX(¢, ¢*)
with respect to g, are zero. Therefore the gradient of HX with
respect to ¢ treats BX as constant, and we have simply

dHX(t) " 1\ .o«
d[a - lga (Ba (t) - E) - IBaRa (t)

(C17)
We therefore write HX () as a contour integral in CZ

t
HY () =/0 dw - (B O R 1)), (C18)

where © is the elementwise product and 8 = ( 13;) = 1%,(%;) =
1 C

APPENDIX D: THE BLOCK R TRANSFORM
OF GAUSSIAN NOISE

In this Appendix we calculate the block R transform for
the Ny x N, (with ¢ = M/n,) matrix X with i.i.d. Gaussian
elements: X;; ~ N(0, ;—j).

For notational clarity, here we write the functional inverse
of the block Stieltjes transform for any rectangular matrix, A,
as BA(t) := (g*)~1(t), satisfying

B¢ () =z. (D1)

Note that from the definition of g%(z) one can find a
relationship between the two elements of the inverse block
Stieltjes transform:

HBI () = et Bi@), (D2)

where c is the aspect ratio of A.
The block R transform is defined as

RAGt) = BA(¢t) - % (D3)

where the multiplicative inverse, !/, is elementwise.

To find B, we observe that in general the product of the
two elements of g¥(z) is a scalar function that depends only
on the product of the elements of z; that is, g} ()¢ (z) =
21228xx7 (2122)8x7x (z122). Therefore, we define

Ax(2) := zgxx7 (2)gx7x (2). (D4)
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We can find B (¢) by first inverting Ay (z), and then

B¥@&)BY(t) = Ay (1t). (D5)
For the Gaussian matrix, X, we have
24+ 021 +e)—/(z—x2)(z —x2)
gxxr(z) = P (D6)
0
with
x: =o(1£4/0). (D7)
From there we find
z—o’(l+o)+,/z—x})z—x2)
Ax(z) = 5o . (D)
co
Some further algebra yields
-1 4 1 2
Ay (t)=c0t~|—;+a(1+c). (D9)
Thus, we have
1
BX@&)BY(t) = co*tits + —+ o(1+o). (D10)
12

Using the general relationship between elements of B(t) (D2)
yields a quadratic equation for Bf. We choose the root that
yields B ~ 1/, in the large ¢ limit, and then use (D2) to find
BX, finally arriving at

1

B¥@) = —+ o’y (D11)
1
1

BX(t) = —+ co’ty. (D12)
2

Finally this yields for the block R transform:
X\ _ 2f 12
R'@t)=0 (ct1>' (D13)

As a side note we point out that from the relationship
between elements of the block Stieltjes inverse (D2) it follows

that
HRA@M) = ety R @), (D14)

for all rectangular A with aspect ratio c.

APPENDIX E: BLOCK STIELTJES TRANSFORM
AND SINGULAR VALUE DENSITY
OF THE EXTENSIVE SPIKED MODEL

We report the quartic equation from Sec. IV C for the first
element of the block Stieltjes transform of the N; x N, exten-

sive spiked model, R = sU,U; + X, with rank ratio b = K/n,
and aspect ratio ¢ = Ni/n,. For notational simplicity, in this
section we write g := gf(z). Multiplying out (46) yields a
quartic:

Ag* +Bg +C& +Dg+E=0 (El)
with
A=—¢, (E2)
2 1—c¢
B=c*3z-2 , (E3)
Z
2

2 l—c 2

Czc[—Sz —(—) —5c+4+s], (E4)
Z

3 2 2 I—c
D=z74+@lc—-2—-5s")z+ (1 —2c+s) , (E5)

Z
E=—-72—c+1+(1—-b)s’. (E6)

In order to obtain the singular value density pR($) numerically,
we use the roots method of the NumPy polynomial class in
Python (3.9.7), to solve with z =§ — 1077i, and select the
root with the largest imaginary part. To our knowledge there
is no guarantee that the root with largest imaginary part is the
correct root, but we find this works in practice.

APPENDIX F: KERNEL ESTIMATES OF EMPIRICAL
SPECTRAL DENSITIES

In order to employ our optimal estimators in empirical
settings (Sec. V), we need to be able to estimate the block
Stieltjes transform, g¥(3), from data. Developing optimal al-
gorithms to achieve this is left for future work, but here we use
a technique inspired by [36] and [35] to demonstrate proof of
principle. We use this kernel on the extensive spike model in
Fig. 8(c).

Given N; data singular values, {5,} (assuming N; < N,
without loss of generality), we define a smoothed block
Stieltjes transform:

N

1 Z
g = — _—, F1
HOES ;zz—a,a—inm (F1)

where 7,, is a local bandwidth term given by
Sm

N
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