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Stochastic model for the transfer of gaseous particles in polymer–carbon-nanotube
nanocomposites with interfacial regions
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In this work, a stochastic model of gaseous transfer in polymer–carbon-nanotube (CNT) nanocomposites is
presented. The model takes into account interfacial areas, i.e., polymer depletion regions. The local regime
of transport is controlled by the density of the polymer. In a dense polymer, this regime corresponds to the
ordinary diffusion, while in free volume regions, it corresponds to the ballistic transport. The introduction
of a free volume and/or a depleted polymer layer near to a CNT wall leads to the emergence of anomalous
diffusion. We have demonstrated how the anomalous diffusion regime changes in the presence of nanotubes for
different distributions of polymer density. The presented approach allows us to describe the threshold effect in
the diffusion coefficient as a function of CNTs density in polymer-CNT nanocomposites.
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I. INTRODUCTION

The study of particle transfer processes in inhomogeneous
systems of complex geometry is an importance problem in
various fields such as nanoelectronics, chemical and mem-
brane technologies, geology, aerospace, and medical fields.
Examples of such systems are heterogeneous geological for-
mations, oxide films growing on metal surfaces in aggressive
media, cell membranes, and various composite materials, in-
cluding polymer-based composites.

Polymers are widely used promising materials. They are
robust, light, and resistant to various chemical phenomena,
which has led to their ubiquitous use today. However, as has
been repeatedly demonstrated experimentally, the properties
of polymers (including transport properties) can be signif-
icantly improved. This can be achieved by adding carbon
nanofillers to the polymer, for example, carbon nanotubes
(CNTs).

Transfer processes in polymer-CNT systems are directly
related to their structure. As experimental and theoretical
studies show, changes in the geometry of such systems are
often expressed in a nonlinear increase or decrease in the
coefficients of electrical conductivity, diffusion, permeability,
etc. [1–11]. Therefore, this leads to an efficient acceleration or
deceleration of the transfer process. Obviously, it is extremely
important for the manufacturing processes.

One of the practically important areas where polymer-
CNTs are applied is the field of membrane technologies.
Here, so-called mixed matrix membranes, designed for the
separation and purification of light gases, are used. In this
work, we limited ourselves to considering specific systems:
polyvinyl trimethyl silane (PVTMS)-CNT experiments [2,7].
Researchers have studied permeability as a function of the
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CNT fraction in the system and have suggested the presence
of a highly permeable layer of the modified polymer near the
CNT surface, with a characteristic size of the order of the
diameter of nanotubes. In Ref. [7], the thickness of the mem-
branes is ∼25 µm, the average CNT length is about 2 µm, and
average outer CNT diameter is about 20–70 nm. However,
our model can be easily adapted to analogous systems—for
example, with polysulfone [1,8] or polymethyl methacrylate
(PMMA) [6].

The transport properties of such systems depend on many
factors: the type of polymer, the density of the carbon fillers,
the type of CNTs, and their distribution within the polymer.
Dependence on a large number of parameters leads to the
fact that the transport properties vary over a very wide range.
Under these conditions, experimental studies aimed at finding
nanocomposites with optimal properties can be very time con-
suming and expensive. As a result, there is a need to develop
an apparatus for the quantitative and qualitative prediction of
the characteristics of nanocomposites.

In this article, we consider the process of diffusion transfer
in polymeric CNT composites, namely, the transfer of light
gases (H2, N2, CH4, C3H8, CO2, etc.). It is known that there
are three ways to transfer gas particles: through the polymer
matrix, through open CNTs (internal channel), and through
interfacial regions resulting from poor adhesion between the
polymer matrix and CNTs [1,2,8,12]. In cases when the char-
acteristic size of the interfacial voids significantly exceeds the
characteristic size of the CNT internal channels or when CNTs
are closed, transport through CNTs can be neglected. Then,
interfacial regions are a key element to explain the change in
the mechanism of transport processes.

The incorporation of CNTs into a polymer, as noted above,
is accompanied by an increase in the free volume due to poor
adhesion between the polymer matrix and CNTs. This makes
these volume elements easily permeable to gas particles. This
assumption will be valid if the mean free path of a particle
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in a polymer is much smaller than the characteristic size of
such a region [13–15]. Then the regime of particle transfer
will be determined both by their collisions with the CNT walls
and by directional particle jumps between collisions, which
should lead to a faster regime of particle transfer. Similar
considerations regarding the change in the transport regime
upon collision with CNT walls are given, for example, in [14]
and [16], in terms of Knudsen number. In [14], the effect of
superdiffusion of propane transport in open CNTs is demon-
strated by the molecular dynamics method. As it was shown in
[16], the hydrogen transfer regime depends on both the pore
diameter and the particle loading and changes from single-file
diffusion to ballistic.

The complexity of developing a gas transfer model is
mainly due to the spatial heterogeneity of the system: under
conditions of a strongly inhomogeneous medium, problems
arise in the correct formulation and solution of transport equa-
tions. Methods such as [19], based on spatial homogenization,
are associated with difficulties in numerically partitioning
space. Also, various two-phase models, such as the Maxwell
model [20], do not allow us to describe the nonlinear threshold
effect mentioned above. In some other works, for example,
Refs. [13–18], they try to model the transfer processes by
the methods of molecular dynamics. However, all these works
make it possible to reveal only local effects affecting transport,
but do not allow one to describe transport in micron-size
systems as a whole.

Existing theoretical models for various heterogeneous me-
dia [21–27] (as far as the authors know, there are no such
models for polymer-CNT systems), based on the use of the
apparatus of random processes, almost always include some a
priori assumptions associated with the use of the apparatus of
non-Gaussian statistics. These assumptions are about a stable
type of distribution of particles over jumps and/or waiting
times between them, associated with the further use of the
fractional differential apparatus. Such a priori assumptions
have no physical justification, at least for our chosen system.
Therefore, issues related to the appearance of stable distribu-
tions, namely, the physical mechanism leading to this type of
distribution, in the polymer-CNT systems require a separate
study.

In the present study, we have developed a mathematical
model with a complex particle transfer mechanism, which is a
further development of the experience of the previous works
[28–30]. This mechanism combines the regimes of ballistic
transfer, normal diffusion, and multiple collisions of a particle
with CNT walls, depending on the localization of a particle
in one or another region of the heterogeneous medium. The
proposed model introduces a spatial function that corresponds
to the change in polymer density from the CNT wall to the
polymer region (see Sec. II for details). Then a system of
stochastic equations is solved to find the increments of ve-
locities and coordinates of a particle. Its solution corresponds
to different transport regimes depending on the localization
of the particle: ordinary diffusion in the polymer, reflection
upon collision with the CNT wall, and directional transfer
near the CNT wall. The latter smoothly turns into ordinary
diffusion as the particle moves away from a nanotube wall.
Such a transfer mechanism seems to be physically justified
based on the considerations outlined above.

II. STOCHASTIC MODEL

In our previous work on particle transport in polymer-CNT
systems [28], we considered a one-dimensional formulation,
where the following transfer mechanism was regarded. If the
particle is in the polymer region, normal diffusion occurs, and
in the regions corresponding to CNTs, ballistic diffusion takes
place. In this approach, it was impossible to take into account
the reflection of particles from the tubes and related effects.
Therefore, only the transfer of particles in the system, where
the usual polymer alternates with free volume regions, was
modeled. To simulate it, we considered the following system
of stochastic differential equations (SDEs):

dx = vdt,

dv = χ (x)(−γ vdt + σδW ), (1)

where v is the particle velocity γ is the attenuation coefficient
that is inversely proportional to the characteristic decay time,
W is the Wiener process, and σ = const is the dispersion;
the function χ takes the value of one for the polymer and
smoothly but sharply goes to values close to zero for the free
volume. A size of a transferred gaseous molecule is included
in the parameter σ . The function χ regulates the change of
transfer regime. At χ = 0, this is the ballistic transfer; χ = 1
corresponds to the usual diffusion. With this formulation of
the problem, the anomalous diffusion was observed.

The generalization of the system (1) to the multidimen-
sional case is quite obvious. However, to describe a real
system, CNTs and elastic collisions of particles with their
walls must be added to the model (see, also, [31–33]). Af-
ter a collision with a wall, a particle will acquire velocity
v′ = v − 2n(v · n), where v is the velocity before the collision
and n is normal to a CNT wall. Since SDEs were supposed to
be solved numerically, we have introduced the term 2n(v · n)
into the expression for the velocity increment with a certain
coefficient μq. This coefficient can be considered as an in-
verse time of the particle interaction with a wall. During the
numerical calculations, μq was taken as an inverse time step,
while the vector field n was set to be different from zero
only in a small vicinity of the CNTs (see below). Thus, we
wrote down a system of SDEs that is convenient for numerical
calculations,

dr = vdt,

dv = χ (r)(−γ vdt + σδW) − 2n(v · n)μqdt, (2)

where χ (r) is the function corresponding to the polymer den-
sity and W are the independent Wiener processes. Here and
below, we consider a two-dimensional problem in Cartesian
coordinates (x, y).

The SDEs (2) describe the complex transfer mechanism
of a particle in a heterogeneous polymer-CNT system, taking
into account the reflection of a particle from the outer sur-
face of a tube. The transition regions of polymer depletion
are also considered: as a particle approaches a CNT wall
from polymer, the rate of its velocity change decreases. Thus,
the transfer regime is related to the definition of the spatial
function χ . In contrast to [15,29], we do not assume any
priority direction of particle motion near the tubes.
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Usually, in 3D-geometry authors used cylindrical form for
describing CNTs. Its projection onto the two-dimensional
(2D) plane is a rectangle. However, since we want to de-
fine an everywhere continuous function, we introduce an
approximation—a rectangle with smooth corners, that is, a
superellipse. This step is necessary to correctly define the
normal field used in our approach.

In this work, superellipses were chosen for the geomet-
ric representation of CNTs. The choice of the superellipses
(instead of rectangles) is connected with the need to define
a smooth contour function. It allows us to define the normal
vector field correctly.

First, we defined the contour function f (x, y, x0, y0, θ0) for
any tube,

f =
(

(x − x0) cos θ0 − (y − y0) sin θ0

a

)2m

+
(

(x − x0) sin θ0 + (y − y0) cos θ0

b

)2m

− 1, (3)

where (x0, y0) is a geometrical center of a tube, θ0 is a tilt
angle, a is a half length of a tube and b its half-width, and m
is an integer number characterizing the roundness of the tube
corners. The relation f = 1 with fixed x0, y0, θ0, m determines
a superellipse.

Next, we introduced an auxiliary function which is a
smooth approximation of the Heaviside step function,

� = 1

2
− 1

π
arctan[k f (x, y, x0, y0, θ0)], (4)

where k is a coefficient that characterizes its sharpness. The
function � takes the maximum value equal to one inside a
tube and zero outside.

The χ function from (2) should be defined in such a way
that regions of polymer depletion appear near the outer surface
of a nanotube. The χ function should be designed so that
χ = 0 at a CNT boundary and 0 < χ � 1 outside a tube
(see Fig. 1). Inside a CNT, −1 � χ < 0; however, this is not
significant because, due to the reflection from the walls, the
particle cannot enter there. As mentioned earlier, we consider
only the case of closed CNTs, so internal channels are not
taken into account. Then, χ may be determined by the product
of the � functions for all tubes,

χ (x, y) = 2 ·
N∏

i=1

[1 − �i(x, y, x0i, y0i, θ0i, kχ )] − 1, (5)

where N is the number of CNTs and kχ is a sharpness pa-
rameter specific of χ . In the limiting case of large values of
kχ , χ is a step function and changes from 0 to 1 at a CNT
boundary. Physically, this case corresponds to the absence
of a free volume or to the strong adhesion of the polymer
to a CNT. By varying the parameter kχ , one can introduce
a transition region corresponding to a smooth change of the
polymer density from the value 0 to 1 as one moves away
from a CNT. We can also shift the transition region in such
a way that voids remain near the walls (χ = 0), and at some
distance from the wall, χ approaches 1.

FIG. 1. Schematic representation of CNTs, transition layer, and
field of normals. The black contours correspond to the outer bound-
ary of CNTs. The transition layer is shown with green shades. The
normal vectors are shown by arrows.

To solve SDEs (2), it is necessary to define a normal vector
field n. For each tube, we defined a normal field as follows:

ni = ∇ fi

|∇ fi| · �i(x, y, x0i, y0i, θ0i, knorm), (6)

where parameter knorm is responsible for the distance from
the CNT boundary on which the normal field acts. To get the
cumulative normal field n, it is necessary to take the sum of
ni over all CNTs (see Fig. 1). Thus, when a particle is away
from a tube, the vector field n has no effect on it. When it
approaches a tube, the function χ becomes zero and only the
second term in (2) works, due to which the reflection occurs,
because in the numerical calculations we chose values of the
coefficient μ to be equal to the inverse time step.

Given the details described above, we solved (2) using the
Monte Carlo method. In the presented approach, a particle
moves in a heterogeneous system: the CNT–transition region–
polymer and its mechanism of motion changes in accordance
with its spatial position, as shown above.

III. DETAILS OF NUMERICAL MODELING

To solve SDEs (2), we used dimensionless quantities
l and τ , which are the characteristic parameters of the
length and time, respectively. Dimensionless space param-
eters were chosen in accordance with the work [7], where
the CNT’s length is about 2×10−4 cm, the outer CNT’s di-
ameter is about (2−7)×10−6 cm, the membrane’s thickness
is about (2.5−3)×10−3 cm, and the typical diffusion coeffi-
cient in the PVTMS polymer is about D = 10−7 cm2/s [34].
Thus, we have chosen parameters l = 2×10−4 cm and τ =
1.25×10−2 s. Further, we work in dimensionless quantities.
In the SDEs (2), we took γ = 10 and σ = 2.5 to satisfy
the relations for the timescale τ in the diffusion coefficient
D = σ 2/2γ 2.
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FIG. 2. Two-dimensional distribution of the final positions of a
particle at t = 104 for η = 0.18.

Calculations were performed on a square system with the
linear dimension L = 15 with periodic boundary conditions.
First, the system is randomly filled with superellipses uni-
formly distributed in 2D space. All superellipses have an
impermeable solid core with dimensions a = 0.5, b = 0.025
and parameter m = 7 (see Fig. 3). The CNT’s density may be
defined as η = Sse · N/L2, where L is the size of the system, N
is the number of objects, and Sse is area of superellipse, which
can be expressed via the gamma function �,

Sse = 4ab
�(1 + 1/m)2

�(1 + 2/m)
. (7)

For each density, we have generated 100 random input
configurations of nanotubes, where the superellipse density
was varied in the range of 0 to 0.324. For a given configu-
ration, the following trajectory implementation scheme was
used. Initially, a particle is located at (L/2, L/2). If this point
is inside a CNT, then the algorithm searches for a point near
the starting point that does not belong to the CNT. Then the
particle moves according to the system of equations (2) until
the time t = 104 is reached. In total, we performed 5×105

simulations: 5×103 trajectories for each of 100 spatial config-
urations of the superellipses.

At the output, we get an offset vector from the start-
ing point (x − xstart, y − ystart ), by which we build a two-
dimensional distribution. The random process described by
the system of Eq. (2) must be axisymmetric on a large statis-
tics (see Fig. 2). Therefore, we made a slice at x = 0 and
analyzed it. The obtained distribution was fitted as a stable
one, which has the following characteristic function [35]:

ϕ(s) = exp

{
iδs − |cs|α

[
1 − iβ sgn(s) tan

(
πα

2

)]}
, (8)

where −∞ < δ < ∞, c � 0, 0 < α � 2, and −1 � β � 1
are the distribution parameters. The characteristic exponent
α determines the form of the distribution function, location
parameter δ is the position of the maximum of the distribution,
scale parameter c is the width of the distribution, and the

FIG. 3. Stable distribution parameter α as a function of the
CNT’s density η for cases A (solid line), B (dashed line), and C
(dotted line).

skewness parameter β determines the distribution asymmetry.
Further, we analyzed the distribution fitting parameters for
different types of the transition functions χ to estimate the
influence of the local regime in near-wall areas and their size
on the overall transfer regime.

IV. RESULTS AND DISCUSSION

Since we consider a symmetric random process, the fitting
of the obtained distributions shows that both parameters of
skewness β and location δ are about zero. The scale parameter
c does not influence the form of a distribution. Therefore, the
most interesting parameter is α, which is responsible for a dif-
ference of transfer regime from the ordinary diffusion. Thus,
to investigate the influence of the polymer depleted regions on
the transfer regime, we have calculated α as a function of the
CNT’s density η for three different functions χ .

In the first case (case A), we considered a sharp form of χ

with a shift. It was defined to be zero on the distance about
three CNT diameters from a tube wall. Then it becomes unity,
which corresponds to a huge value of kχ . In this case, for
high densities η, almost all the space which is not occupied by
CNTs has χ = 0. Hence, the transfer regime is mostly deter-
mined by collisions with the walls and ballistics. It is similar
to a billiard ball moving in the geometry of random corridors.
Then a particle should fly through these free volume corri-
dors for distances much greater than those it would pass in
the ordinary diffusion. This leads to the strongly pronounced
anomalous diffusion and a decreasing α with η increasing,
which is a consequence of 〈r2〉 growth. At low densities, the
transfer regime is limited to the normal diffusion due to the
lack of free volume changing the local regime. This can be
clearly seen in Fig. 3, where these results are presented.
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In case B, we decreased the size of the near-wall area,
setting χ to be zero at one CNT diameter. As can be seen
from Fig. 3, α decreases with increasing the CNT’s density η,
reaching a value of about 1.8. However, this decrease is quite
lower than in the case A. It is related to the fact that the particle
spends more time in the polymer, where it moves according to
the normal diffusion.

In contrast to the first two cases, in case C, a smooth tran-
sition from the diffusion to ballistics regimes (smooth χ ) was
considered. Here the free volume areas are absent; instead,
there are sparse regions whose density smoothly changes [see
Eq. (5)]. It reduces the effect of anomalous transfer for a fixed
density of tubes compared to the above cases.

We deliberately defined the density of the tubes in terms of
“hard cores” without a permeable shell, as is done in many
percolation problems. It allowed us to estimate the effect
of the size of the permeable region on transfer for identical
structures. It is important to note that as can be seen from
Fig. 3, the inflection point shifts to the right for each sub-
sequent case (A, B, C). Apparently, the largest drop of α

is related to the percolation effect. A percolation cluster of
free volume creates perforating ways for the particle transfer.
According to percolation theory, this leads to the threshold
effect. It cannot be described with a simple linear dependence
(as in many two-phase models such as in Ref. [20]) D(φ) =
φ · D1 + (1 − φ) · D2, where D1 is the diffusion coefficient in
polymer and D2 is the diffusion coefficient in free volume.

The Einstein’s relation is usually used to define the dif-
fusion coefficient from experiments, 〈r2〉 ∼ 2nDefft , where
n is the space dimension (n = 2 in our case). However, for
anomalous transfer, the diffusion coefficient must be defined
in another way. For example, in [36], it is suggested to use
〈r2〉 ∼ 4Dτ (t/τ )μ, where μ = 2βs/α and βs = 1 is a param-
eter responsible for the effects of memory. If we take t = 125 s
(a typical time of an experiment [34]) and τ = 1.25×10−2 s
(see Sec. III), then Deff/D ∼ (t/τ )μ−1. For cases A and B, α

changes from 2 to the minimum values α = 1 and α = 1.8,
respectively. It corresponds to the change of Deff/D within
the entire range of the CNT’s density η in 104 and 2.8 times,
respectively. As far as case A is concerned, such a low value
of α = 1 is barely achievable in real experiments, while the
second value 2.8 from case B agrees well with the experimen-
tal data for the oxygen molecules [7]. Moreover, this ratio is
controlled by the parameter σ and can be changed for different
molecules sizes (see Sec. II). Thus, we can carry out similar
calculations for other gas molecules.

This result is quite expected. Of all the cases we con-
sidered, it is case B, in which agreement with experiment
was obtained, that best reflects the structure of the sample
[7]: when the size of the highly permeable channels is ap-
proximately equal to the diameter of the CNT (see Sec. I).
Thus, the presented 2D model allows us not only to qualita-
tively describe the nonlinear threshold effect in the diffusion
(permeability) coefficient, but also to approach quantitative
estimates, taking into account the transition layer at the CNT
interface.

More accurate quantitative results may be obtained by con-
sidering a 3D problem and choosing σ appropriately. Also, the
μ exponent in 3D should differ from a 2D case. According to
our preliminary estimates, when moving from a 2D to a 3D

model, the resulting effect should become less pronounced.
However, this estimation must be tested in detail.

However, even using the two-dimensional model, we can
claim a rough quantitative assessment of the transport charac-
teristics. The use of the two-dimensional model in this work
is associated with two aspects. First, in the work [7], the
sizes of the composite sample were the following: the film
thickness is about 25 µm and the area is about 3.5 cm2, i.e.,
a thin film is used, which in a rough approximation can be
considered as a 2D system. Second, numerical calculations of
a similar three-dimensional model are possible at this stage of
the implementation of our model; however, they will still be
quite expensive.

V. CONCLUSION

We have investigated the diffusion of gases in a hetero-
geneous environment, which reflects the transport properties
of polymer-CNT nanocomposites. The transfer regime of a
particle is related to the complex geometry of the system
and controlled by the CNT’s density η and a spatial func-
tion χ . This function determines the density of the polymer
and makes it possible to introduce a transition layer at the
CNT interface and, therefore, take into account free volume
regions (see Fig. 1). Our model is constructed to change the
particle transfer regime when the value of χ changes. The
limiting cases of the particle transfer are the ordinary diffusion
in the polymer and the ballistic regime in the free volume
regions.

The influence of the three different shapes of function χ

was analyzed. The results show the nonlinear dependence of
the parameter α on the CNT’s density, which characterizes
the deviation of the transfer regime from ordinary diffusion.
The change of this regime is most pronounced for case A,
where the free volume regions have a size about three CNT
diameters. For case B, when the size of the free volume area
is about one CNT diameter, this effect of transfer change is
less than in case A. Free volume regions were not considered
in case C. Here, the near-wall regions are represented by a
soft transition of polymer density at the CNT boundaries,
due to which α drop occurs at higher CNT densities (see
Fig. 3). Thus, in each of the three cases, anomalous diffusion
is observed with an increase in the CNT’s density.

The presented approach allows us to explain the threshold
effect in a diffusion coefficient as a function of the CNT’s
density (see bottom of Sec. IV) and agrees well with the exper-
imental data [7] for the transport of oxygen in PVTMS-CNTs.
This model can be easily extended in a number of directions.
First, it can be expanded to the three-dimensional case. We
believe that the appropriate 3D model will allow us to obtain
more accurate quantitative results for gaseous mass transfer in
polymer-CNT nanocomposites. These results may be directly
compared to experimental data. Also, agglomeration effects
[37] can be included in our model. It is a quite important
aspect for the real experiments because usually they cannot be
fully avoided. Moreover, the presented model may be applied
to the other polymer types with incorporated CNTs, where the
threshold effect for the diffusion coefficient or permeability
takes place [6,8,38].
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