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Long-range hoppings in quantum disordered systems are known to yield quantum multifractality, the features
of which can go beyond the characteristic properties associated with an Anderson transition. Indeed, critical
dynamics of long-range quantum systems can exhibit anomalous dynamical behaviors distinct from those at the
Anderson transition in finite dimensions. In this paper, we propose a phenomenological model of wave packet
expansion in long-range hopping systems. We consider both their multifractal properties and the algebraic fat
tails induced by the long-range hoppings. Using this model, we analytically derive the dynamics of moments and
inverse participation ratios of the time-evolving wave packets, in connection with the multifractal dimension of
the system. To validate our predictions, we perform numerical simulations of a Floquet model that is analogous
to the power law random banded matrix ensemble. Unlike the Anderson transition in finite dimensions, the
dynamics of such systems cannot be adequately described by a single parameter scaling law that solely depends
on time. Instead, it becomes crucial to establish scaling laws involving both the finite size and the time. Explicit
scaling laws for the observables under consideration are presented. Our findings are of considerable interest
towards applications in the fields of many-body localization and Anderson localization on random graphs, where
long-range effects arise due to the inherent topology of the Hilbert space.
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I. INTRODUCTION

The study of eigenstate transitions in quantum-disordered
systems has attracted a strong interest recently [1]. One cel-
ebrated example is the Anderson transition arising from the
interplay between interference effects and disorder, which
separates a phase where quantum states are localized from
a phase where states are delocalized [2–4]. At the Ander-
son transition, a property called “multifractality” emerges as
a consequence of strong and scale invariant spatial fluctu-
ations of the states, intermediate between localization and
delocalization [5–7]. Given the importance of the Ander-
son transition, multifractal properties have been extensively
investigated, both theoretically and experimentally, in finite
dimensions [8–13] and in random matrix ensembles [14–16].
Recently, it was discovered that quantum multifractality can
be observed not only at critical points but also in phases called
“extended nonergodic” [17,18]. For example, the many-body
localized phase has been shown to have multifractal properties
on the Hilbert space [19–21]. The emergence of such non-
ergodic extended phases has also been described in random
matrix ensembles [18,22–31], on the Cayley tree [32–35], in
Floquet systems [36–41], in the presence of fractal disorder
[42], or in the presence of long-range correlations of disorder
[43,44].

*lemarie@irsamc.ups-tlse.fr

Quantum multifractality can be characterized by the mo-
ments Pq of order q of eigenstate amplitudes:

〈Pq〉 =
〈∑

i

|�α (i)|2q

〉
∼ N−Dq (q−1), (1)

where the sum is over the N sites (indexed by i) of the
system, with the eigenstate amplitudes |�α (i)|2 normalized
as

∑
i |�α (i)|2 = 1. 〈〉 denotes an averaging over disorder

and eigenstates in a certain energy window. An algebraic
scaling of 〈Pq〉 with N defines a multifractal dimension Dq.
Dq = 1 indicates an ergodic delocalized behavior, while Dq =
0 is a signature of localization. These behaviors are gener-
ally observed at a sufficiently large scale, e.g., N � �, the
correlation or localization volume. Remarkably, 0 < Dq < 1
indicates scale-invariant multifractal behaviors, the full char-
acterization of which is based on a spectrum of multifractal
dimensions [3]. Multifractal eigenstates thus occupy an ex-
tensive region which is however an algebraically vanishing
fraction of the system: this is why they are called “nonergodic
delocalized” [17,18], in contrast to ergodic delocalized states
which occupy a finite fraction of the system.

As a characteristic property of the Anderson transition
in finite dimensions [9,10,15,45,46], quantum multifractal-
ity is even richer in the presence of long-range hoppings.
One well-known example is the power-law random banded
matrix (PRBM) model [14,15]. Similarly, Floquet models,
particularly the Ruijsenaars-Schneider ensemble [47,48], ex-
hibit intriguing properties of quantum multifractality. There,
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long-range hoppings introduce anomalous properties beyond
typical features at the Anderson transition in finite dimen-
sions. For example, they result in an unusually large critical
regime [49], can break a fundamental symmetry of the
multifractal spectrum [50], and induce correlation-induced
localization [51]. In this paper, we explore how long-range
hoppings also give rise to anomalous dynamical properties.

In terms of detecting the Anderson transition, solely ob-
serving the expansion of a wave packet already serves as a
convenient tool. Indeed, this has been extensively studied both
theoretically and experimentally [11–13,52–54]. Precisely at
the Anderson transition point, the wave packet expansion
exhibits an anomalous diffusion behavior that lies between
localization and diffusion [11–13,52,54], which needs a more
careful quantitative analysis of the wave packet spatial profile
to see the impact of multifractality. The expansion dynam-
ics has also been shown to be even more anomalous in
quasicrystal systems due to the hierarchical structure of the
eigenspectrum [55]. Other observables such as the return
probability or the coherent back and forward scattering peaks
are more useful to study the multifractal properties of the
eigenstates and eigenspectrum [56–64].

Investigation of the quantum dynamics in long-range
hopping systems [56–58,60,65–67] in connection with mul-
tifractality is more challenging, insofar as the dynamics is
strongly affected by the algebraic tails induced by the long-
range hoppings (analogous to Lévy flights [67]), as we will
show in this paper (see also [28,68]). In particular, the strong
boundary effects caused by the algebraic tails present a severe
challenge in computational studies. As shown in this paper, it
is not possible to circumvent these strong boundary effects by
increasing the system size. In other words, one cannot reach
a regime where expansion of a wave packet is not affected by
finite-size effects, thus requiring more scaling analysis than in
the case of the Anderson transition studied both theoretically
and experimentally in different platforms [12,13,52,53,63].
Interestingly, in the cases we consider, it is necessary to take
into account systematically the boundary effects via a scaling
in time, in addition to the system size. Indeed, the focus of
this paper is on understanding the subtle critical dynamical
behaviors induced by long-range hopping via a two parameter
(time and size) scaling approach. Some results were already
discussed in Refs. [28,68] using different approaches. This
paper distinguishes itself from these studies by providing a
coherent description of long-range coupling effects based on
a unified model of wave packet propagation in these systems.

Studies of the dynamics of quantum systems are gener-
ally computationally expensive. In comparison, simulating
the dynamical counterpart of Floquet kicked systems can be
made more efficient, as is clear in the kicked rotor dynam-
ics implemented via fast Fourier transforms [69]. Besides
their computational efficiency, Floquet kicked systems also
exhibit rich dynamical behaviors such as dynamical localiza-
tion [70,71], or Floquet time crystals [72]. In this paper, we
employ a Floquet kicked model with algebraically long-range
hoppings and eigenstates with multifractal properties [73] to
simulate numerically the critical dynamics in such long-range
hopping systems. We propose scaling laws the scaling param-
eters of which include both time and system size, for different
observables, based on a general and simple phenomenological

model of wave packet expansion in the type of systems con-
sidered. Our analytical and numerical results demonstrate
distinct dynamical behaviors depending on the observables
considered.

As an outlook, we note that algebraic fat tails in time
evolving wave packets are also relevant to studies of quantum
dynamics on various graphs of infinite effective dimension,
such as Anderson localization in random graphs [50,74,75] or
the Hilbert space of a many-body localized system [76–78].
The Hilbert spaces of these systems have network structure
where the number Nr of sites at distance r from the localiza-
tion center of a wave packet grows exponentially, therefore the
exponential decay of the wave packet with distance r can be
regarded as an algebraic behavior as a function of Nr . Under
the new coordinate Nr , important localization measures like
the inverse participation ratio can be more easily studied since
the network structure is simplified to one dimension. Hence,
our findings hold potential relevance in this context, which has
recently gathered significant attention.

The rest of the paper is organized as follows. In Sec. II, we
introduce the kicked Floquet model we consider and discuss
its multifractal properties. In Sec. III, we recall the temporal
behavior and finite-size dependence of the return probability
〈R0〉 and generalize these known results to higher moments
〈R0

q(t )〉. In Sec. IV, we propose a general phenomenologi-
cal model of wave packet expansion in long-range hopping
systems with multifractal properties, based on both analytical
arguments and numerical observations. In Sec. V, we derive
from the phenomenological model the dynamics and time and
size scaling laws for two other important types of observables
(some may be accessible experimentally): the average kth mo-
ments of a wave packet 〈pk〉 and the qth inverse participation
ratio 〈Pq(t )〉. We present numerical results that validate our
predictions. We conclude our paper in Sec. VI.

II. THE MULTIFRACTAL KICKED ROTOR MODEL

In this paper, we investigate a variant of the quantum
kicked rotor [70,71] that we call the “multifractal kicked ro-
tor” (MKR) model, with Hamiltonian [73]

H = p2

2
+ KV (q)

∑
n

δ(t − nT ), (2)

where

V (q) =
{

ln(q/π ), q ∈ [0, π ),
ln(2 − q/π ), q ∈ [π, 2π ),

(3)

and V (q + 2π ) = V (q), the Floquet period T of which is set
to be T = 1 in the rest of the paper. Hamiltonian Eq. (2) yields
a Floquet operator U = exp(−p2/2h̄) exp[−iKV (q)/h̄],
which can be quantized in a truncated Hilbert space with
dimension N with p = Ph̄, with P an integer between −N

2

and N
2 − 1, and q = 2πQ−ε

N , with Q an integer between 1 and
N satisfying periodic boundary conditions in both P and Q.

However, note that we have assigned the value of ε = 1 for
q ∈ [π, 2π ) (i.e., when Q = 1, . . . , N

2 ), while for other values
of q we have set ε = 0 to prevent numerical divergence. These
slight shifts disrupt the symmetry of the kicking potential
in Eq. (3) around the axis q = π . The conventional time-
reversal symmetry is typically defined as t → −t , q → q,
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and p → −p when analyzing the transport properties of wave
packets in the q space (which we denote as the direct space).
In this context, the transformation p → −p represents an in-
version in the reciprocal space. In the case of kicked systems,
where the emphasis is on the transport properties in the mo-
mentum space (p space), the reciprocal space becomes the q
space, and the standard momentum inversion associated with
time-reversal symmetry in Hamiltonian systems is modified
to spatial inversion. Hence, the adapted definition of time-
reversal symmetry for kicked systems is typically expressed as
t → −t , q → −q, and p → p (see [79,80]). However, in our
system, q is defined in the range [0, 2π ), requiring a modifica-
tion of spatial inversion to q → q − π . This alteration differs
from the conventional spatial inversion (q → −q) only by a
trivial global phase factor. Consequently, the asymmetry intro-
duced in the kicking potential V (q) breaks the transformation
q → q − π , thereby breaking the time-reversal symmetry of
the Hamiltonian.

The phases corresponding to the kinetic energy �P ≡
P2h̄/2 are pseudorandom phases when h̄ is irrational with 2π

[81–83]. Here, we consider �P as fully random phases, uni-
formly distributed over [0, 2π ). In our numerical simulations,
disorder averaging is performed over various configurations of
these random phases. Without loss of generality, we set h̄ = 1
in the rest of the paper. We can therefore treat p and P as the
same variable, and we will no longer use the notation P in the
following.

The Floquet operator can be explicitly expressed in the
momentum space using a discrete Fourier transform as

Upp′ = e−i�p

N∑
Q=1

FpQe−iKV (2πQ/N )F−1
Qp′ , (4)

where FpQ = 1√
N

e2iπ pQ/N . Due to the singular behavior of
V (q) when q → 0 (2π ), the amplitudes of the matrix ele-
ments of Upp′ decay as

|Upp′ | ∼ 1

|p − p′| (5)

for large |p − p′| (note that there is another higher-order
singularity at q = π which can be neglected; see [73] and
Appendix A for more details). In Appendix B, we charac-
terize the multifractal properties of the MKR model, and
in particular extract the multifractal dimension D2 = 0.71
for K = 10 by analyzing the system size dependence of
eigenstate moments numerically. Another Floquet system,
the Ruijsenaars-Schneider model with similar long-range
hopping amplitudes, has been extensively studied for its
multifractal properties [48], spectral statistics [84], and rich
dynamics [66]. Additionally, it is worth noting that by general-
izing the kicking potential V (q) of the MKR model to V (q) =
|q|β , the model hosts delocalized eigenstates for β < 0 and
localized eigenstates for β > 0 (see [73]). The potential V (q)
chosen in this paper corresponds to the limit as β → 0, i.e.,
the critical case.

III. RETURN PROBABILITY R0

Before describing the behavior of observables which are
significantly affected by the long-range hoppings introduced

FIG. 1. Dynamics of 〈Rq
0〉 in the MKR model Eq. (2) for K =

10 and q = 0.1, 1.0, and 2.0 from top to bottom. The dashed lines
indicate fits with an algebraic law, validating Eq. (6) for t < t∗

N with
Dμ

2 = 0.64. The system size is N = 215. Inset: Finite-size scaling of
saturation values of 〈Rq

0(t → ∞)〉, verifying Eq. (7) for t > t∗
N with

Dψ

2 = 0.70. The multifractal dimensions Dμ

2 ≈ Dψ

2 ≈ D2 = 0.71, as
expected for this type of system [60]. Numerical results have been
averaged over 4800 random phase configurations.

above, we recall the properties of a dynamical observable,
the return probability R0, which has been extensively inves-
tigated as a characteristic signature of quantum multifractality
[57,58,63,85,86]. Starting from an initial condition ψ (p, t =
0) = δp,0, R0 is defined as R0 ≡ |ψ (p = 0, t )|2. As a result of
multifractal properties, R0 decays as a power law with time,
〈R0〉 ∼ t−Dμ

2 where Dμ
2 is the multifractal dimension of the

spectral measure (see [56–58,60,87] and Appendix C).
In our paper, higher moments 〈Rq

0〉 with q > 0 will play a
key role. Due to narrow distributions of large wave function
amplitudes |ψ |2 in such systems (see [50] and Appendix E),
the power-law decay of 〈R0〉 can be simply generalized to 〈Rq

0〉
with q > 0 as 〈

Rq
0

〉 ∼ t−qDμ
2 , (6)

as illustrated in Fig. 1.
On the other hand, in a finite system of size N , there exists

a characteristic time scale t∗
N after which R0 reaches a finite

stationary value, equal to the inverse participation ratio 〈P2〉
[Eq. (1)], i.e., 〈R0(t → ∞)〉 = 〈P2〉 ∼ N−Dψ

2 , where Dψ

2 is
the spatial multifractal dimension of the eigenstates [65,68].
Similarly, we find that the size dependence of 〈Rq

0〉 at large
times follows: 〈

Rq
0(t → ∞)

〉 ∼ N−qDψ

2 . (7)

Therefore, the characteristic time t∗
N should scale as

t∗
N ∼ NDψ

2 /Dμ
2 . (8)

t∗
N reduces to the Heisenberg time (inverse of the mean level

spacing 2π/N) for systems with Dψ

2 = Dμ
2 [57–59]. Com-

bining the above relations, we can infer the following two
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FIG. 2. Demonstration of the scaling property Eq. (9) for the re-
turn probability R0 in the MKR model Eq. (2): the data corresponding
to different system sizes N = 210, 211, . . . , 215 and different times t ∈
[10, 105] all collapse onto a single scaling curve when 〈R0〉 × NDψ

2 is
plotted as a function of the scaled time t/t∗

N . The dashed line indicates
a fit by the power law 〈R0〉 ∼ t−Dμ

2 with Dμ

2 ≈ 0.64. Inset: Corre-
sponding raw data 〈R0〉. Curves from top to bottom correspond to
system sizes N = 210, 211, . . . , 215, respectively. Results have been
averaged over 4800 disorder configurations with the kicked strength
K = 10.

parameter scaling behavior for R0:〈
Rq

0(t, N )
〉 = N−qDψ

2 g(t/t∗
N ). (9)

The numerical data for the MKR verify the above scaling
relations. Results presented in Fig. 1 validate Eqs. (6) and (7).
By fitting the corresponding data, we extract the multifractal
dimensions Dμ

2 = 0.64 and Dψ

2 = 0.70. In Fig. 2, the collapse

of R0 onto a single scaling curve when 〈R0〉NDψ

2 is plotted
as a function of t/t∗

N confirms the validity of the proposed
scaling law Eq. (9). In Appendix D, we show similar scal-
ing properties for 〈Rq

0〉 with q = 0.1 and 2. Similar scaling
properties for 〈R0〉 (i.e., q = 1) have been observed in [59]
in both single-particle and many-body quantum systems. It is
worth noting that there are other dynamical observables that
can detect multifractality with dimensions other than D2. For
instance, the coherent forward scattering peak, the dynamics
of which is also governed by the information dimension D1,
has been explored [62,64].

IV. PHENOMENOLOGICAL MODEL FOR THE
EXPANSION OF A WAVE PACKET IN MULTIFRACTAL

SYSTEMS WITH ALGEBRAIC LONG-RANGE HOPPINGS

We shall now describe the rich and subtle effects of al-
gebraic long-range hoppings on the critical dynamics of a
wave packet, effects that cannot be characterized using the
widely used return probability. We construct in this section a
phenomenological model, based on known analytical results
and simple arguments such as wave packet normalization, and
validate this model by numerical simulations using the MKR

FIG. 3. Average probability distribution of wave packets
〈|ψ (p, t )|2〉 at different times for the MKR model with initial con-
dition ψ (p, t = 0) = δp,0. The dashed lines show the two power-law
behaviors corresponding to Eq. (10) and the multifractal wavefront
pc. Results have been averaged over 4800 disorder configurations
with the kicked strength K = 10 for system size N = 215.

model Eq. (2). Here we restrict our analysis to the regime
p > 0, since we expect similar scaling behavior for p < 0, as
the wave packet is initialized as ψ (p, t = 0) = δp,0.

Starting from a wave packet initialized at a single site
p = 0, long-range hoppings will induce a power-law tail of
the wave packet. This tail is primarily determined by the
hopping elements before any interference effects induced by
multifractality occur. If the long-range hoppings follow the
behavior described in Eq. (5), then the tail of the wave packet
behaves as 〈|ψ (p)|2〉 ∼ p−2, the so-called Lévy flight tail
[67]. However, in the vicinity of the site p = 0 where the
wave packet was initialized, a nontrivial power-law decay
〈|ψ (p)|2〉 ∼ pDψ

2 −1 dynamically emerges, which is controlled
by the spatial correlation dimension Dψ

2 of the wave function
[63,65,67,86].

Figure 3 represents the averaged probability distribution of
a wave packet initialized at p = 0, 〈|ψ (p, t )|2〉 at different
times, for the MKR model Eq. (2). Two distinct power-law
decays with p are clearly visible: a fast decay 〈|ψ (p, t )|2〉 ∼
p−2 at large p � pc, and a slower decay 〈|ψ (p, t )|2〉 ∼ pDψ

2 −1

close to the initial condition p � pc. The crossover scale pc

has a nontrivial dependence on time which we will describe in
the following. It is equivalent to the characteristic scale men-
tioned in [85,86], which distinguishes the scaling behaviors of
the density correlation function in the position-frequency rep-
resentation, specifically between the large and small position
regimes. Crucially for our paper, we also observe that other
moments of wave packet amplitudes, 〈|ψ (p, t )|2q〉 with q > 0,
obey a similar behavior [see Eq. (10)]. The distributions for
different q thus share the same shape, in particular the same
pc (see Appendix E for more details).

Based on these observations, we propose the follow-
ing phenomenological model for the average probability
distributions of the generalized wave packets 〈|ψ (p, t )|2q〉
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TABLE I. Summary of the analytical predictions of the finite-time and finite-size dependence of the dynamics of the kth moments 〈pk〉 and
qth inverse participation ratios 〈Pq(t )〉.

〈pk〉 〈Pq〉
Observable k < λ − 1 k > λ − 1 0 < q < 1

λ

1
λ

< q < 1

1−Dψ
2

q > 1

1−Dψ
2

Finite-time dependence t k(Dμ
2 /Dψ

2 ) t (λ−1)Dμ
2 /Dψ

2 t q(λ−1)Dμ
2 /Dψ

2 t (1−q)Dμ/
2 Dψ

2 t−qDμ
2

Finite-size dependence Nk Nk N1−q N1−q N−qDψ
2

Scaling law Nkg(t/t∗
N ) N1−qg(t/t∗

N ) N−qDψ
2 g(t/t∗

N )

for q > 0:

〈|ψ (p, t )|2q〉 =
⎧⎨
⎩

〈
Rq

0

〉
p−qμ, 1 � p < pc,

B
[

p
pc

]−qλ

, pc < p � N
2 ,

(10)

where λ is the exponent of the power-law tail at large p � pc

(λ = 2 in the MKR model), μ = 1 − Dψ

2 is the exponent of
the power law decay at small p � pc, related to the multifrac-
tal dimension Dψ

2 , and B = 〈Rq
0〉[pc]−qμ. Note that our model

is valid only above a microscopic cutoff taken as pmin = 1
here. This cutoff usually corresponds to the mean free path
(see, e.g., [63]). In the following, we will neglect contributions
below this cutoff, which are not of our interest here.

The crossover scale pc between the two power-law regimes
can be interpreted as a multifractal wavefront. Its dynam-
ics and finite-size scaling play an important role in the
following. They can be understood simply by invoking nor-

malization of the wave packet ||ψ ||2 ≡ ∑p= N
2 −1

p=− N
2

|ψ (p, t )|2 �
2

∫ N
2

1 |ψ (p, t )|2 d p, where we have taken into account the fact
that the wave packet is symmetric with respect to the origin
and neglected contributions below the cutoff p < 1. There-
fore,

1 = ||ψ ||2 � 2

[∫ pc

1
〈R0〉p−μd p +

∫ N
2

pc

B

(
p

pc

)−λ

d p

]

= 2〈R0〉
1 − μ

(
pc

1−μ − 1
)

+ 2〈R0〉pc
−μ

1 − λ

[
pc

λ

(
N

2

)1−λ

− pc

]
. (11)

The previous expression can be simplified, using μ = 1 −
Dψ

2 , as

(
1

Dψ

2

+ 1

λ − 1

)
pc

Dψ

2 − 1

λ − 1
pc

λ+Dψ

2 −1

(
N

2

)1−λ

� 1

2〈R0〉 + 1

Dψ

2

. (12)

The second term in the left-hand side of the above equal-
ity vanishes when N → ∞ if λ > 1, as is the case in
the MKR model considered. Using 〈R0〉 ∼ t−Dμ

2 for t <

t∗
N [Eq. (8)], we get the following dynamical behavior

of pc:

pc ∼ t
Dμ

2

Dψ
2 , (t � t∗

N ). (13)

In the limit of large times t � t∗
N , substituting R0(t → ∞) =

P2 ∼ N−Dψ

2 , one gets

pc(t → ∞) ∼ N. (t � t∗
N ). (14)

As said above, we have shown in Appendix E that the multi-
fractal wavefront pc is the same for generalized wave packets
〈|ψ (p, t )|2q〉 with different q. Moreover, we anticipate that our
wave packet descriptions are not bound by specific models,
as our reasoning relies solely on two fundamental properties
of the system: multifractality and long-range hoppings. In
Appendix F, we present the averaged probability distribution
of wave packets for the PRBM model [14,15].

V. TWO PARAMETER SCALING IN SIZE AND TIME
FOR CRITICAL QUANTUM DYNAMICS

OF ALGEBRAICALLY LONG-RANGE SYSTEMS

In this section, we employ the phenomenological model in-
troduced in Eq. (10) to derive the critical dynamics dependent
on time and size, in terms of the average kth moments of a
wave packet 〈pk〉. The observation of 〈pk〉 is possible in cold
atom systems [11,13] and ultrasound experiments [9], thus
making it an experimentally accessible observable. Further-
more, we examine the qth inverse participation ratio 〈Pq(t )〉,
which is a significant quantity in standard multifractal analysis
(see [66] for more information). Based on these dynamical
observables, we propose scaling laws that are dependent on
both time and size. In Table I, we summarize the analytical
predictions of the finite-time and size-dependent dynamics
for both observables. The MKR model of Eq. (2) is used to
numerically verify the predicted critical dynamics and their
respective scaling laws.

A. kth moment 〈pk〉 of a wave packet

The average kth moments of a wave packet 〈pk〉

〈pk〉 =
p= N

2 −1∑
p=− N

2

|p|k〈|ψ (p, t )|2〉 (15)

reflect the diffusive properties of a system. Note that we have
defined the moments using an absolute value of p since the
wave packet is symmetric with respect to the origin p = 0.
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FIG. 4. Demonstration of the scaling property Eq. (19) for the
moment of the wave packet 〈p

1
2 〉 in the MKR model Eq. (2): the data

corresponding to different system sizes N = 210, 211, . . . , 215 and
different times t ∈ [10, 105] all collapse onto a single scaling curve
when 〈p

1
2 〉/N

1
2 is plotted as a function of the scaled time t/t∗

N . The

dashed line indicates a fit by the power law 〈p
1
2 〉 ∼ t

1
2

Dμ
2

Dψ
2 . Inset: Cor-

responding raw data 〈p
1
2 〉. Curves from top to bottom correspond to

system sizes N = 210, 211, . . . , 215, respectively. Results have been
averaged over 4800 disorder configurations with the kicked strength
K = 10.

Based on the phenomenological model proposed in Eq. (10),

〈pk〉 ≈ 2
∫ N

2

1
〈|ψ (p, t )|2〉pkd p

=
∫ pc

1
2〈R0〉pk−μd p +

∫ N
2

pc

2Bpλ
c pk−λd p

= 2〈R0〉
k + 1 − μ

(
pk+1−μ

c − 1
)

+ 2〈R0〉
k + 1 − λ

[
pλ−μ

c

(
N

2

)k+1−λ

− pk+1−μ
c

]
. (16)

Combining the time-dependent analysis of pc and 〈R0〉 in
Eq. (16), the time-dependent dynamics of 〈pk〉 can be derived
as

〈pk〉 ∼ 〈R0〉pk+1−μ
c + 〈R0〉pλ−μ

c Nk+1−λ

∼ t
k

Dμ
2

Dψ
2 + t

(λ−1)
Dμ

2

Dψ
2 Nk+1−λ, (17)

for t � t∗
N .

For k < λ − 1, the second term of Eq. (17) vanishes when
N → ∞, yielding 〈pk〉 ∼ t k(Dμ

2 /Dψ

2 ). This regime was previ-
ously investigated in the Fibonacci chain and Harper model in
[65]. Nevertheless, for k > λ − 1, the second term dominates,
contributing 〈pk〉 ∼ t (λ−1)Dμ

2 /Dψ

2 . For the MKR model, the
power-law tail exponent λ = 2, which yields 〈pk〉 ∼ tDμ

2 /Dψ

2

for k > 1 and 〈pk〉 ∼ t kDμ
2 /Dψ

2 for 0 < k < 1. The numerical
results shown in Figs. 4 and 5 confirm such predictions. The

FIG. 5. Demonstration of the scaling property Eq. (19) for the
moment of the wave packet 〈p2〉 in the MKR model Eq. (2): the data
corresponding to different system sizes N = 210, 211, . . . , 215 and
different times t ∈ [10, 105] all collapse onto a single scaling curve
when 〈p2〉/N2 is plotted as a function of the scaled time t/t∗

N . The

dashed line indicates a fit by the power law 〈p2〉 ∼ tDμ
2 /Dψ

2 . Inset: Cor-
responding raw data 〈p2〉. Curves from top to bottom correspond to
system sizes N = 210, 211, . . . , 215, respectively. Results have been
averaged over 4800 disorder configurations with the kicked strength
K = 10.

diffusive exponents for 〈pk〉 are independent of k when k >

λ − 1, which is a nontrivial consequence of the power-law tail
of the wave packet induced by algebraic long-range hoppings.

Furthermore, using the finite-size scaling of pc ∼ N and
R0 ∼ N−Dψ

2 at large t � t∗
N , we can also derive the finite-size

scaling of 〈pk〉:
〈pk (t → ∞)〉 ∼ Nk . (18)

Finally, a two parameter scaling law for 〈pk〉 can be naturally
proposed based on the time dependence of Eq. (17) and the
finite-size dependence of Eq. (18):

〈pk (t, N )〉 = Nkg(t/t∗
N ). (19)

The presented numerical results in Figs. 4 and 5 demonstrate
that the data for 〈p2〉 of the MKR model adhere to the pro-
posed scaling behavior. The data collapse onto a single scaling
curve when 〈p2〉/N2 is plotted as a function of t/t∗

N . Addi-
tionally, in Appendix D, we provide numerical data for 〈p3〉
and 〈p5〉, which confirm the validity of the aforementioned
predictions.

B. qth inverse participation ratio 〈Pq(t )〉 of a wave packet

We now turn to another key observable for multifractal
properties, the generalized inverse participation ratios. As we
are interested in the dynamics of a wave packet, we do not
consider the 〈Pq〉 of the eigenstates [Eq. (1)], but the 〈Pq(t )〉
of the time-evolving wave packet at a certain instant t :

〈Pq(t )〉 ≡
〈p= N

2 −1∑
p=− N

2

|ψ (p, t )|2q

〉
. (20)

054127-6



CRITICAL DYNAMICS OF LONG-RANGE QUANTUM … PHYSICAL REVIEW E 108, 054127 (2023)

FIG. 6. Demonstration of the scaling property Eq. (25) for 〈Pq〉
in the MKR model Eq. (2) when q = 0.1: the data corresponding to
different system sizes N = 210, 211, . . . , 215 and different times t ∈
[10, 105] all collapse onto a single scaling curve when 〈Pq〉/N1−q is
plotted as a function of the scaled time t/t∗

N . The dashed line indicates

a fit by the power law 〈Pq〉 ∼ t q(λ−1)Dμ
2 /Dψ

2 . Inset: Corresponding raw
data 〈Pq〉. Curves from top to bottom correspond to system sizes N =
210, 211, . . . , 215, respectively. Results have been averaged over 4800
disorder configurations with the kicked strength K = 10.

We will study how 〈Pq(t )〉 scales with system size, but also
characterize its temporal behavior. The scaling with system
size of the moments 〈Pq〉 of eigenstates captures the multifrac-
tality of critical systems directly, exhibiting distinct algebraic
behaviors for different values of q. By contrast, the mo-
ments 〈Pq(t )〉 for a time-evolving wave packet are different
as they are nonequilibrium observables capturing the dy-
namical growth of the participation volume of the eigenstate
(e.g., 〈P2(t )〉 being the inverse volume occupied by the wave
packet).

Similar to the analysis of the average kth moments 〈pk〉,
〈Pq(t )〉 can be calculated as

〈Pq(t )〉 = 2
∫ N

2

1
〈|ψ (p, t )|2q〉d p

=
∫ pc

1
2
〈
Rq

0

〉
p−qμd p +

∫ N
2

pc

2Bq pqλ
c p−qλd p

= 2
〈
Rq

0

〉
1 − qμ

(
p1−qμ

c − 1
)

+ 2
〈
Rq

0

〉
1 − qλ

[
pq(λ−μ)

c

(
N

2

)1−qλ

− p1−qμ
c

]

∼ t
(1−q)

Dμ
2

Dψ
2 + t

q(λ−1)
Dμ

2

Dψ
2 N1−qλ. (21)

When N → ∞, for q > 1/λ, i.e., q > 1
2 for λ = 2, the sec-

ond term of the right hand side of Eq. (21) vanishes, yielding
the time-dependent decay 〈Pq〉 ∼ t (1−q)Dμ

2 /Dψ

2 . Otherwise, for
q < 1/λ, i.e., q < 1

2 for λ = 2, the second term dominates,

resulting in a time-dependent increase 〈Pq〉 ∼ t q(λ−1)Dμ
2 /Dψ

2 .

FIG. 7. Demonstration of the scaling property Eq. (25) for 〈Pq〉
in the MKR model Eq. (2) when q = 2: the data corresponding to
different system sizes N = 210, 211, . . . , 215 and different times t ∈
[10, 105] all collapse onto a single scaling curve when 〈Pq〉/N1−q is
plotted as a function of the scaled time t/t∗

N . The dashed line indicates

a fit by the power law 〈Pq〉 ∼ t (1−q)Dμ
2 /Dψ

2 . Inset: Corresponding raw
data 〈Pq〉. Curves from top to bottom correspond to system sizes N =
210, 211, . . . , 215, respectively. Results have been averaged over 4800
disorder configurations with the kicked strength K = 10.

Applying a similar analysis for the finite-size saturation value
at t � t∗

N yields

〈Pq(t → ∞)〉 ∼ N−qDψ

2 N1−qμ ∼ N1−q. (22)

However, Eq. (21) is valid only if p1−qμ
c − 1 > 0, i.e.,

q < 1
1−Dψ

2

. If q > 1
1−Dψ

2

, the contribution of the multifractal

wavefront in the integral is smaller than or close to 1. The

term 〈Rq
0〉

1−qμ
(p1−qμ

c − 1) is then dominated by 〈Rq
0〉, yielding

〈Pq〉 � 2
〈
Rq

0

〉
1 − qμ

+ 2
〈
Rq

0

〉
1 − qλ

pq(λ−μ)
c

(
N

2

)1−qλ

∼ t−qDμ
2 + t

q(λ−1)
Dμ

2

Dψ
2 N1−qλ, (23)

and

〈Pq(t → ∞)〉 ∼ N−qDψ

2 . (24)

Equation (23) shows another regime where 〈Pq〉 ∼ t−qDμ
2

when q > 1
1−Dψ

2

and 1/λ. Combining the derivations above,

two scaling laws can be proposed as

〈Pq(t, N )〉 = N1−qg(t/t∗
N ), 0 < q <

1

1 − Dψ

2

,

〈Pq(t, N )〉 = N−qDψ

2 g(t/t∗
N ), q >

1

1 − Dψ

2

. (25)

Applying the above insights to the MKR model consid-
ered here, overall it is clear that there are three regimes
where Pq varies with distinct exponents. For q < 0.5, 〈Pq〉 ∼
t q(λ−1)Dμ

2 /Dψ

2 ; for 0.5 < q < 1
1−Dψ

2

≈ 3.3, 〈Pq〉 ∼ t (1−q)Dμ
2 /Dψ

2 ;
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FIG. 8. Demonstration of the scaling property Eq. (25) for 〈Pq〉
in the MKR model Eq. (2) when q = 4: the data corresponding
to different system sizes N = 210, 211, . . . , 215 and different times
t ∈ [10, 105] all collapse onto a single scaling curve when 〈Pq〉/N1−q

is plotted as a function of the scaled time t/t∗
N . The dashed line

indicates a fit by the power law 〈Pq〉 ∼ t−qDμ
2 . Inset: Corresponding

raw data 〈Pq〉. Curves from top to bottom correspond to system sizes
N = 210, 211, . . . , 215, respectively. Results have been averaged over
4800 disorder configurations with the kicked strength K = 10.

and for q > 1
1−Dψ

2

, 〈Pq〉 ∼ t−qDμ
2 . Figures 6–8 present the

collapse of data for q = 0.1, 2, and 4, corresponding to the
three distinct dynamical regimes. The different dynamical
exponents are in good agreement with the predictions, and
the collapse of the rescaled data confirms the validity of the
proposed scaling laws; similar numerical observations are also
reported in [68] with the power-law banded Anderson model.

VI. CONCLUSION

In conclusion, we have presented a thorough investigation
into the wave packet dynamics of disordered quantum critical
systems, exploring the anomalous effects of long-range hop-
pings in the presence of multifractal properties eigenstates.
Our paper indicates that long-range hoppings can induce
subtle and rich dynamical behaviors. For example, the wave
packet variance may increase linearly with time, namely,
〈p2〉 ∼ t , which could be akin to a diffusive behavior [28]
though the system is multifractal. The multifractal properties
of the wave packet dynamics itself, as characterized by the
〈Pq(t )〉, are all related to the fractal dimension D2, but, ac-
cording to the value of q, can have different scaling behaviors
on system size N and time t .

Algebraic tails of time-evolving wave packets appear
generically in systems with long-range couplings, but also
effectively in localization problems on graphs of infinite di-
mensionality, such as in many-body localization. For these
systems, this paper indicates that we cannot avoid finite-size
effects, and that these effects can be taken into account via
a two parameter scaling theory depending on time t and the
system size N .

It would be interesting to extend our study to either de-
localized or localized phases of disordered systems with
long-range hoppings, where the couplings decrease with a
smaller or larger exponent than in the critical case, re-
spectively (in one-dimensional cases, the couplings would
decrease with an exponent different from −1).
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APPENDIX A: POWER-LAW DECAY
OF THE AMPLITUDES OF FLOQUET

MATRIX ELEMENTS |Up,p′ |
In this Appendix, we relate the power-law decay of the

amplitudes of Floquet matrix elements |Up,p′ | in momentum
space with the singularity of the kicked potential V (q) in real
space.

We consider the regime K � 1 and make a first-order
expansion in K of the Floquet operator Eq. (4) as

Upp′ = ei�pδpp′ − iKei�p

N∑
Q=1

FpQV (2πQ/N )F−1
Qp′ . (A1)

Therefore,

|Upp′ | � K

∣∣∣∣∣
N∑

Q=1

FpQV (2πQ/N )F−1
Qp′

∣∣∣∣∣ (A2)

for p �= p′. Next, we evaluate the Fourier transform

N∑
Q=1

FpQV (2πQ/N )F−1
Qp′ =

N∑
Q=1

1

N
e2iπ (p−p′ )Q/NV

(
2πQ

N

)
(A3)

as an integral. Notice that the potential V (q) is symmetric with
respect to q = π ; hence,

1

2π

∫ 2π

0
V (q)ei(p−p′ )qdq

= 1

π
Re

∫ π

0
ln(q)ei(p−p′ )qdq

∼
|p−p′|→+∞

Re
i

|p − p′|
∞∑

r=0

cr (ln |p − p′|)1−r, (A4)

where the coefficients cr follow [88]:

cr = (−1)r

(
1

r

) r∑
k=0

(
r

k

)(
π i

2

)(r−k)

. (A5)
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FIG. 9. The decay of off-diagonal matrix elements |Upp′ |; the
dashed lines correspond to Eq. (A6), verifying the conjecture even
for large K .

The dominating term is therefore

|Upp′ | ∼ 1

|p − p′| . (A6)

Note that V (q) has another singularity at q = π , which is
of higher order (first-derivative), compared to the singularity
when q = 0(2π ) (zeroth order); therefore, we only take into
account the lowest order.

Although the above arguments are based on a first-order
expansion in K valid for K � 1, numerical data presented in
Fig. 9 show that Eq. (A6) is valid even for larger values of K .

APPENDIX B: MULTIFRACTAL PROPERTIES
OF THE MKR MODEL

Quantum multifractality can be characterized by the mo-
ments Pq [Eq. (1)] of eigenstate amplitudes |�α (i)|2, 〈Pq〉 ∼
N−τq , where τq = Dq(q − 1), Dq are the multifractal dimen-
sions, and N is the system size. Numerically, we compute τq

by

τq(N ) = −[log2〈Pq(N )〉 − log2〈Pq(N/2)〉]. (B1)

The numerical data are shown in Fig. 10 and confirm the
multifractal properties of the MKR model, and in particular
D2 ≈ 0.71.

APPENDIX C: DYNAMICS OF R0

AND THE MULTIFRACTAL DIMENSIONS

The return probability R0 can be expressed as R0 ≡
|〈ψ (t )|ψ (0)〉|2. When starting from a single site j, the initial
wave function |ψ (0)〉 in the eigenbasis |φk〉 is given by

|ψ (0)〉 = | j〉 =
∑

k

φk ( j)|φk〉, (C1)

FIG. 10. Multifractal spectrum τq of the MKR model for K =
10, showing clear deviations from the ergodic behavior. τq is de-
termined through Eq. (B1) for different system sizes, from N = 211

to 215. The data all lie on a single curve, which confirms the alge-
braic behavior of the eigenstate moments 〈Pq〉 with N . Inset: Inverse
participation ratio 〈P2〉 ∼ N−D2 with D2 ≈ 0.71. Results have been
averaged over 9600 to 38 400 disorder configurations for different
system sizes ranging from N = 215 to 211.

with φk ( j) = 〈φk| j〉, and the evolved wave function at time t
is

|ψ (t )〉 = e−iEkt
∑

k

φk ( j)|φk〉. (C2)

Hence, the expression for R0(t ) becomes

R0(t ) =
∑
k,l

e−i(Ek−El )t |φk ( j)|2|φl ( j)|2. (C3)

In the limit as t approaches infinity, only the diagonal terms
(k = l) contribute to the averaging, yielding

〈R0(t → ∞)〉 =
∑

k

|φk ( j)|4 ∼ N−Dψ

2 , (C4)

where Dψ

2 is defined as the spatial multifractal dimension. In
the regime of finite time, the dynamics of R0 is determined
by the off-diagonal elements. Equation (C3) can be rewritten
using an integral representation:

R0(t ) − R0(∞) =
∑
k �=l

e−i(Ek−El )t |φk ( j)|2|φl ( j)|2

=
∫

dωK (ω, j)e−iωt , (C5)

where

K (ω, j) = ρ
(

E + ω

2
; j

)
ρ
(

E − ω

2
; j

)
(C6)

represents the correlation of two local densities of states
(LDOSs), ρ(E ; j) = ∑N

k=1 |φk ( j)|2δ(E − Ek ).
Generally, the properties of the LDOS are influenced by

both the eigenstates and the eigenspectrum. In our system, the
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FIG. 11. Scaled 〈Rq
0〉 × NDqψ

2 as a function of the scaled time t/t∗
N for two different q values, q = 0.1 for the upper panel and q = 2 for the

lower one, with the kicked strength K = 10. The dashed line represents a fit of the dynamics by 〈Rq
0〉 ∼ t−qDμ

2 . Insets: 〈Rq
0〉 as a function of

time t . Curves from the top to bottom correspond to system sizes N = 210, 211, . . . , 215, respectively.

eigenstates exhibit nontrivial multifractal properties charac-
terized by the Dψ

q dimensions. Similarly, the eigenspectrum
can have nontrivial properties, as observed in systems such as
the Harper model, the Fibonacci chain, or the Aubry-André
model, where the spectrum has a Cantor setlike structure
[55,59,65,89]. In such cases, the global density of states
ν(E ) = 1

N

∑N
k=1 δ(E − Ek ) is characterized by a set of mul-

tifractal dimensions D0
q, as discussed in [89]. This fractal

structure of the spectrum contributes to the nontrivial scaling
behavior of the LDOS correlation. The fractal dimensions of
the LDOS Dμ

q are connected to both the fractal dimension
of the eigenstates Dψ

q and the eigenspectrum D0
q, ex-

pressed as Dμ
2 = Dψ

2 D1+Dψ

2
, as demonstrated for the Fibonacci

chain [89,90].
The global spectrum of the model we employed is contin-

uous, lacking fractal properties. Therefore, the LDOS inherits
nontrivial properties solely from the multifractality of wave
functions and we have Dμ

2 = Dψ

2 . Nevertheless, such LDOS
can be described as a random Cantor set [60].

From the fractal properties of the LDOS, the correlation
function 〈K (ω)〉, average of K (ω, j) over the site j and disor-
der, behaves as shown in previous studies [56,60,87]:

〈K (ω)〉 ∼ ω1−Dμ
2 . (C7)

FIG. 12. Scaled moments of the wave packet 〈pk〉/Nk as a function of the scaled time t/t∗
N , for two different values of k, k = 3 in the left

panel and k = 5 in the right panel. The dashed line represents a fit of the dynamics with 〈pk〉 ∼ tDμ
2 /Dψ

2 . Inset: Moments of the wave packet
〈pk〉 as a function of the evolution time t . Curves from bottom to top correspond to system sizes N = 210, 211, . . . , 215, respectively.
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FIG. 13. Averaged probability distribution 〈|ψ (p, t )|2q〉 at different times for the MKR model with three different values of q, q = 0.2 in
the left panel and q = 4 in the right panel. The dashed lines show the power-law behaviors corresponding to Eq. (10). Curves from top to
bottom correspond to increasing time t . Here the kicked strength K = 10 and the system size N = 212.

Consequently, employing Eq. (C5), we can deduce the av-
eraged return probability 〈R0(t )〉, exhibiting the following
scaling behavior:

〈R0(t )〉 ∼ t−Dμ
2 . (C8)

APPENDIX D: TWO PARAMETER SCALING
PROPERTIES OF 〈Rq

0〉 AND 〈pk〉
Figure 11 presents numerical data for 〈Rq

0〉 of the MKR
model [Eq. (2)] for different q values, confirming the validity
of the proposed two parameter scaling law Eq. (9).

In Fig. 12, we show numerical data for 〈pk〉 for two dif-
ferent k > 1 values, showing the universality of the prediction

〈pk〉 ∼ tDμ
2 /Dψ

2 and the validity of the proposed scaling laws
[Eq. (19)].

APPENDIX E: AVERAGE GENERALIZED WAVE PACKET
〈|ψ(p, t )|2q〉 FOR DIFFERENT q VALUES

AND PROBABILITY DISTRIBUTION OF WAVE
FUNCTION AMPLITUDES |ψ|2

Figure 13 presents numerical data for the generalized wave
packets 〈|ψ (p, t )|2q〉, showing the same shape across different
q values, in particular the same multifractal wavefront pc.

In Fig. 14, we present the probability distribution of α =
− ln |ψ (p, t )|2/ ln N for different p and t values. On the right

FIG. 14. Probability distributions of α = − ln |ψ (p, t )|2/ ln N for the MKR model at various p values from p = 0 to 1000, from right to
left. In the left panel, we show data at time t = 10, while t = 1000 in the right panel. The system size is N = 212. The dashed lines show fits of
the exponential tails P(α) ∼ N−λα induced by Gaussian fluctuations and responsible for algebraic fat tails of the distribution of wave function
amplitudes |ψ |2 at small amplitudes. However, such an exponential tail is absent for small α, i.e., large wave function amplitudes |ψ |2, the
regime of interest when calculating positive moments 〈|ψ (p, t )||2q〉 with q > 0.
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FIG. 15. Probability distributions of α = − ln |ψ (p, t )|2/ ln N for the critical PRBM model [14,15]. The black dashed lines represent
fits of the exponential tails P(α) ∼ N−λα induced by Gaussian fluctuations and the blue dashed lines represent fits of the exponential tails
P(α) ∼ N−μα due to the algebraic localization effect [50]; such tails break down our assumption that 〈|ψ (r, t )|2q〉 ∼ 〈|ψ (r, t )|2〉q and therefore
break down the proposed scaling law for 〈Pq〉.

side of the distribution corresponding to small wave function
amplitudes |ψ |2, we observe that there is an anomalously wide
distribution P(α) ∼ N−λα . Such distributions can be related to
the Porter-Thomas law P(α) ∼ Nβ(1−α)/2 exp(− 1

2βN1−α ) as
small amplitudes |ψ (p, t )|2 are described by random matrix
theory [50,91], where β = 1, 2 is the Dyson index corre-
sponding to the orthogonal ensemble and unitary ensemble.
Hence, when α � 1 and N � 1, P(α) ∼ N−λα with λ = β/2.

FIG. 16. Demonstration of the scaling property Eq. (9) for the
return probability R0 in the PRBM model Eq. (F1): the data corre-
sponding to different system sizes N = 27, 28, . . . , 210 and different
times t ∈ [10, 104] all collapse onto a single scaling curve when

〈R0〉 × NDψ
2 is plotted as a function of the scaled time t/t∗

N . The
dashed line indicates a fit by the power law 〈R0〉 ∼ t−Dμ

2 with Dψ

2 ≈
Dμ

2 ≈ 0.13. Results have been averaged over 3600 disorder configu-
rations with b = 0.1.

We confirm such scaling behavior of Gaussian fluctuations
both in the MKR model (β = 2) and the critical PRBM model
(β = 1) [14,15] (see Fig. 15).

However, on the left side of the distribution corresponding
to large wave function amplitudes |ψ |2, P(α) decreases faster
than exponentially, indicating the absence of an algebraic fat
for the corresponding distribution of |ψ (p, t )|2 at large am-
plitudes |ψ (p, t )|2. This absence of large fluctuations at large
amplitudes is responsible for 〈|ψ (p, t )|2q〉 ∼ 〈|ψ (p, t )|2〉q for
q > 0. Hence, the shape of 〈|ψ (p, t )2q|〉 as a function of p is

FIG. 17. Average probability distribution of wave packets
〈|ψ (r, t )|2〉 at different times in the PRBM model Eq. (F1) with
initial condition ψ (r, t = 0) = δr,0, where we denote r = |i − j|. The
dashed lines show the two power-law behaviors corresponding to
Eq. (10) with Dψ

2 ≈ 0.13 and the multifractal wavefront rc. Results
have been averaged over 3600 disorder configurations with b = 0.1
for system size N = 210.
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the same for different q > 0 values; in particular they have the
same pc.

APPENDIX F: ADDITIONAL RESULTS
FOR THE PRBM MODEL

Here, we present additional results for the wave packet
dynamics in the PRBM model [14,15], a paradigmatic model
of quantum multifractality [3]. This model consists of N × N
Hermitian matrices Ĥ with independent Gaussian random
variables as matrix elements, where 〈Hi j〉 = 0 and the vari-
ance is given by

〈|Hi j |2〉 =
{

β−1, i = j,[
1 + ( |i− j|

b

)2]−1
, i �= j.

(F1)

Here, β = 1 for real Hermitian matrices and β = 2 for com-
plex Hermitian matrices, representing the Dyson indices for
the orthogonal class and the unitary class, respectively. In the
limit |i − j| � b, the behavior simplifies to

√
〈|Hi j |2〉 � b

|i − j| . (F2)

This behavior exhibits multifractality and long-range hopping,
fundamental features that underlie our wave packet descrip-
tions. We anticipate that the wave packets in this model will
exhibit similar behavior as described by Eq. (10).

We conducted numerical simulations for the dynamics of
this model using the equation

|ψ (t )〉 = V exp(−i�t )V †|ψ (0)〉, (F3)

where � represents the diagonal matrix of eigenvalues and
V is the orthogonal matrix formed by the corresponding
eigenstates. The initial state was localized in a single site,
defined as |ψ (t = 0)〉 = |r = 0〉. Due to the necessity of exact
diagonalization of the Hamiltonian matrix, the system size
was considerably limited compared to the Floquet model de-
scribed in the main text.

FIG. 18. Demonstration of the scaling property Eq. (19) for the
moment of the wave packet 〈r2〉 in the PRBM model Eq. (F1): the
data corresponding to different system sizes N = 27, 28, . . . , 210 and
different times t ∈ [10, 104] all collapse onto a single scaling curve
when 〈r2〉/N2 is plotted as a function of the scaled time t/t∗

N . The

dashed line indicates a fit by the power law 〈r2〉 ∼ tDμ
2 /Dψ

2 . Results
have been averaged over 3600 disorder configurations with b = 0.1.

In Fig. 16, the collapse of 〈R0(t )〉 into a single scaling curve
when 〈R0(t )〉NDψ

2 is plotted against t/t∗
N validates the pro-

posed scaling law [Eq. (9)]. Figure 17 illustrates the averaged
probability distribution of the wave packet initialized at r = 0,
〈|ψ (r, t )|2〉, at different times, confirming the universality of
our model. Additionally, the numerical results presented in
Fig. 18 demonstrate that the data for 〈r2〉 in this model con-
form to the proposed scaling behavior.

However, it is important to note that reproducing the scal-
ing laws for 〈Pq〉 for the parameter b = 0.1 posed challenges.
This is due to a nontrivial fat tail in the probability distri-
bution of the wave function amplitudes at b = 0.1, resulting
in 〈|ψ (r, t )|2q〉 �= 〈|ψ (r, t )|2〉q (see Fig. 15). This discrepancy
breaks down the proposed scaling law for 〈Pq〉.
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