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We study the effect of spatially varying potential and diffusivity on the dispersion of a tracer particle in
single-file diffusion. Noninteracting particles in such a system exhibit normal diffusion at late times, which is
characterized by an effective diffusion constant Deff . Here we demonstrate the physically appealing result that the
dispersion of single-file tracers in this system has the same long-time behavior as that for Brownian particles in a
spatially homogeneous system with constant diffusivity Deff . Our results are based on a late-time analysis of the
Fokker-Planck equation, motivated by the mathematical theory of homogenization. The findings are confirmed
by numerical simulations for both annealed and quenched initial conditions.
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I. INTRODUCTION

Transport properties in heterogeneous media can often be
quantified on large length and timescales in terms of effec-
tive transport coefficients. For example, consider a Brownian
particle diffusing in one dimension with a local diffusivity
D(x) subjected to an external potential φ(x), both of which
vary periodically with the same period �. The Fokker-Planck
equation (FPE) describing the evolution of the particle’s prob-
ability density function p(x, t ) is

∂ p(x, t )

∂t
= Ĥ p(x, t ), Ĥ ≡ ∂

∂x

[
D(x)

(
β

dφ(x)

dx
+ ∂

∂x

)]
,

(1)

where β = (kBT )−1 is the inverse temperature. The mean-
squared displacement (MSD) of the particle at late-times
behaves as

〈[X (t ) − X (0)]2〉 � 2Defft, (2)

where Deff is called the effective (or, late-time) diffusion
constant.

The first derivation of Deff is attributed to Lifson and Jack-
son [1]. Given that Eq. (1) cannot be solved analytically in
general, their argument was based on calculating the mean
first-passage time to some large distance from the starting
point. They argued that at large length scales and late times,
the process is still diffusive, and can be described by a simple
Brownian motion with an effective diffusion constant, Deff .
This means that the particle obeys the effective FPE

∂ p(x, t )

∂t
= Ĥeff p(x, t ), Ĥeff ≡ Deff

∂2

∂x2
. (3)

Upon computing the mean first-passage time for Eq. (1), a
comparison with that of Eq. (3) yields the Lifson-Jackson
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formula,

Deff = �2[ ∫ �

0 dxeβφ(x)/D(x)
][ ∫ �

0 dxe−βφ(x)
] . (4)

Various direct computations of Deff [2–5] from the defini-
tion of the MSD in Eq. (2) reassuringly agree with Eq. (4), as
one might expect from physical intuition. The Lifson-Jackson
formula has been verified in a number of experimental set-
tings, in particular, and of importance for our current study, the
dependence on variations in the potential, which can be mod-
ulated in the context of optical trapping [6–8]. It can further be
shown that the late-time asymptotic correction to Eq. (2) is a
constant [9], and so the decay of the time-dependent diffusion
coefficient is algebraic (∼1/t) rather than exponential. One
should bear in mind that the mean first-passage time argument
occasionally breaks down as in, e.g., the Sinai model [10] for
diffusion in a Brownian random potential, where the tracer’s
motion is subdiffusive [11].

At the same time, the problem of single-file diffusion
(SFD) has received much attention from both a theoreti-
cal [12–29] and, more recently, experimental point of view
[30–35]. SFD occurs in one-dimensional systems where parti-
cles cannot cross each other due to a hard-core repulsion term
in their interactions. One way of treating this quantitatively
is by ignoring the hard-core interaction, and relabelling the
particles when they cross each other. The processes so gener-
ated are referred to as elastically colliding stochastic processes
[29]. Within this picture, a tracer particle, which was initially
at the origin must have the same number of particles to its left
at all times. If the density profile of the particles at time t is
given by ρ(x, t ), we get the constraint∫ Y (t )

−∞
dxρ(x, t ) =

∫ 0

−∞
dxρ(x, 0), (5)

where Y (t ) is the tracer’s (stochastic) position at time t . Using
this observation, the MSD of the tracer particle can be com-
puted directly at late times by appealing to the central limit
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theorem (CLT); a method we will use in this paper. Additional
methods, useful for the case of pure Brownian motion (i.e.,
no interactions except for the hard-core repulsion), include
the Bethe Ansatz for the full joint probability density function
[25], and the macroscopic fluctuation theory [27,36–38].

There are two types of averages in play when treating SFD.
The first average is over the thermal noise acting upon each
of the individual particles, which we will denote by 〈· · · 〉.
The second average is over the initial conditions, that is, the
position at which each particle starts, which we will denote
by · · ·. Consequently, there are two possible definitions for
the MSD [19]: the so-called annealed variance

〈Y 2(t )〉ac = 〈Y 2(t )〉 − 〈Y (t )〉 〈Y (t )〉, (6a)

and the quenched variance

〈Y 2(t )〉qc = 〈Y 2(t )〉 − 〈Y (t )〉 〈Y (t )〉. (6b)

The initial conditions are assumed to be periodic with �0 and
have an average particle density denoted by ρ.

For free Brownian motion, numerous authors (e.g.,
Refs. [15,20,27]) have shown that

〈Y 2(t )〉ac = 2

ρ

√
Dt

π
(7a)

and

〈Y 2(t )〉qc =
√

2

ρ

√
Dt

π
, (7b)

where D is the bare diffusion constant of the particles. The
subdiffusive behavior is a consequence of the hard-core inter-
action. We also see that the annealed MSD is larger than the
quenched one as the fluctuations in the initial conditions of
the former lead to additional fluctuations in the displacement
of the tracer.

We now come to the main question of this paper. When
considering systems with a periodically varying potential and
diffusivity (instead of pure Brownian diffusion), can one sim-
ply replace the bare diffusion coefficient D in Eqs. (7a) and
(7b) with Deff at late times? That is, write

〈Y 2(t )〉ac = 2

ρ

√
Defft

π
(8a)

and

〈Y 2(t )〉qc =
√

2

ρ

√
Defft

π
. (8b)

Simulations of SFD under a periodic potential [39,40] support
Eq. (8a) (and furthermore this idea also works when a constant
applied force is added to that produced by the periodic poten-
tial). Within liquid theory, a very similar expression to Eq. (8a)
for a tracer’s MSD has been derived for ensembles of SFD
particles with pairwise interactions [13]. A general inequality
relation between late-time diffusion coefficients and entropy
has been derived recently, becoming particularly tight for SFD
[41]. As far as we know there have been no numerical studies
of the effect of locally varying diffusivity in SFD.

Here we will show analytically that Eqs. (8a) and (8b)
do indeed hold at late times. To do so, we will exploit
Eq. (5)—the link between SFD and the effusion problem
for noninteracting Brownian particles described by the FPE,

Eq. (1). The effusion problem, which counts the number of
crossings from left (right) to right (left) at the origin, can
be solved by a late-time asymptotic analysis of the FPE
for a single particle. The method we use is closely related
to the mathematical theory of homogenization [42–44]. The
fact that the transport coefficient we compute is that of a
tracer makes our prediction particularly relevant for optical
trapping experiments [35] where a spatially varying potential
can be generated. For example, theoretical results such as
Eq. (4) have been confirmed in experiments on single colloids
[45,46].

The paper is organized as follows. In Sec. II, we recall how
the MSD of a tracer particle can be described in terms of an
effusion problem. There we give an explicit expression for the
MSD in terms of the solution to the single-particle FPE. In
Sec. III, we carry out an asymptotic analysis of these results
to prove Eqs. (8a) and (8b). In Sec. IV, we confirm our ana-
lytical predictions using the results of a numerical simulation.
Finally, we conclude and discuss possible applications and
extensions of our results in Sec. V.

II. LINK BETWEEN SINGLE-FILE DIFFUSION
AND EFFUSION

Here we recall the basic arguments given in Refs. [29,47],
which link the displacement of a single-file tracer with the
effusion of noninteracting Brownian processes to the left and
right of the origin. The key starting point for our analysis is
Eq. (5), which can be rewritten as

∫ Y (t )

0
dxρ(x, t ) =

∫ 0

−∞
dxρ(x, 0) −

∫ 0

−∞
dxρ(x, t ). (9)

We first consider the left-hand side. If we assume that
the typical value of Y (t ) grows as a function of t , then at
sufficiently late times, we will have |Y (t )| 	 �. Thus, the
integral on the left-hand side can be approximated, using the
CLT, by

∫ Y (t )

0
dxρ(x, t ) � ρY (t ), (10)

with corrections O(
√

ρ|Y (t )|).
The right-hand side of Eq. (9) is linked to an effusion

problem as follows. Suppose the particles initially to the left
and right of the origin are two different particle types (say,
left type and right type). The two particle types are noninter-
acting, and both obey the same FPE. Denote their densities
as ρL(x, t ) and ρR(x, t ). This implies that, in the beginning,
ρL(x > 0, 0) = 0 and ρR(x < 0, 0) = 0, while the total den-
sity is simply ρ(x, t ) = ρL(x, t ) + ρR(x, t ). We define N+(t )
[N−(t )] to be the number of particles that were initially to the
left (right) at time 0 and are on the right (left) at time t . Clearly,

N+(t ) =
∫ ∞

0
dxρL(x, t ), (11a)

N−(t ) =
∫ 0

−∞
dxρR(x, t ). (11b)
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We impose conservation of the left-type particle number
through∫ ∞

0
dxρL(x, t ) +

∫ 0

−∞
dxρL(x, t ) =

∫ 0

−∞
dxρL(x, 0). (12)

Combining Eqs. (11) and (12), we relate the change in density
to the number of crossings,

N+(t ) − N−(t ) =
∫ 0

−∞
dxρL(x, 0) −

∫ 0

−∞
dxρL(x, t )

−
∫ 0

−∞
dxρR(x, t )

=
∫ 0

−∞
dxρ(x, 0) −

∫ 0

−∞
dxρ(x, t ). (13)

Using the asymptotic Eq. (10) and the effusion-related
Eq. (13), Eq. (9) may be rewritten as

Y (t ) = 1

ρ
[N+(t ) − N−(t )]. (14)

Thus we have established the link between SFD and two
independent effusion processes. The random variables N+(t )
and N−(t ) are independent and identically distributed. Both
the annealed and quenched variances (which are identical for
the first moment) are given by 〈Y (t )〉a = 〈Y (t )〉q = 0 in the
absence of bias. Expanding and using the independence and
identical distribution of N+(t ) and N−(t ), we can write the
annealed and quenched variances solely in terms of moments
of, say, N+(t ),

〈Y 2(t )〉ac = 2

ρ2 (〈N2+(t )〉 − 〈N+(t )〉 〈N+(t )〉) ≡ 2

ρ2 〈N2
+(t )〉ac,

(15a)

〈Y 2(t )〉qc = 2

ρ2 (〈N2+(t )〉 − 〈N+(t )〉 〈N+(t )〉) ≡ 2

ρ2 〈N2
+(t )〉qc.

(15b)

Therefore, the MSD is given in terms of a single-sided effu-
sion problem as studied in Ref. [47].

Now we examine the effusion problem more closely. The
value of N+(t ) can be written as

N+(t ) =
M∑

m=1

�[Xm(t )], (16)

where �(x) is the Heaviside theta function, Xm(t ) is the dif-
fusion process described by the FPE [Eq. (1)], and M is the
number of particles that started to the left of the origin. We
proceed by taking the averages over noise and initial condi-
tions explicitly. If p(x, t |x0, 0) is the solution of Eq. (1) [for the
initial condition p(x, 0|x0, 0) = δ(x − x0)], the average value
of N+(t ) over the thermal noise is

〈N+(t )〉 =
M∑

m=1

∫ ∞

0
dxp(x, t |x0m; 0), (17)

where {x0m} is a list of the particles’ initial positions that are
to the left of the origin. Suppose the particles’ positions are
drawn from a periodic initial distribution P0(x), with a wave-
length �0 which does not have to be the same as that of the

potential or diffusivity (being �). We define it to be normalized
within one cell,

∫ �0

0 dxP0(x) = 1, so the initial density of par-
ticles to the left of the origin is then ρL(x) = (�0M/L)P0(x),
where L is the (large) size of the left half of the box. Thus, the
average value of 〈N+(t )〉 over the initial positions is

〈N+(t )〉 =
∫ 0

−L
dx0ρL(x0)

∫ ∞

0
dxp(x, t |x0m; 0)

= M
∫ 0

−L
dx0

�0

L
P0(x0)

∫ ∞

0
dxp(x, t |x0m; 0)

= ρ�0

∫ 0

−∞
dx0P0(x0)

∫ ∞

0
dxp(x, t |x0, 0), (18)

where we have taken the limits M → ∞ and L → ∞, while
keeping ρ = M/L fixed.

Finally, we compute the quenched and annealed variances.
Since the particles’ Brownian motions (i.e., the thermal noise
values) are independent, we have

〈N2
+(t )〉 =

M∑
m=1

〈�[Xm(t )]〉 +
M∑

m=1

M∑
n �=m

〈�[Xm(t )]〉〈�[Xn(t )]〉,

(19a)

and thus

〈N2
+(t )〉 − 〈N+(t )〉2 =

M∑
m=1

〈�[Xm(t )]〉 −
M∑

m=1

〈�[Xm(t )]〉2,

(19b)

where we have used �2 = �. Since the particle positions
are drawn from the initial distribution independently (unlike
the case we consider in Appendix; see below), averaging
Eq. (19a) over the initial positions yields

〈N2+(t )〉 =
∫ 0

−∞
dx0ρL(x0)

∫ ∞

0
dxp(x, t |x0, 0)

+ 〈N+(t )〉 〈N+(t )〉. (20)

This leads to the annealed variance

〈N2
+(t )〉ac =

∫ 0

−∞
dx0ρL(x0)

∫ ∞

0
dxp(x, t |x0, 0). (21a)

On the other hand, we obtain the quenched variance by aver-
aging Eq. (19b) over the initial conditions

〈N2
+(t )〉qc =

∫ 0

−∞
dx0ρL(x0)

∫ ∞

0
dxp(x, t |x0, 0)

−
∫ 0

−∞
dx0ρL(x0)

∫ ∞

0
dxp(x, t |x0, 0)

×
∫ ∞

0
dx′ p(x′, t |x0, 0). (21b)

The two averaging procedures above apply to the same physi-
cal system where all initial positions are independent, yielding
two different statistics. However, the quenched average has
the same mathematical expression as that for the annealed
average, carried out on a system where the initial density
fluctuations are suppressed [47,48], in particular if the initial
density is periodic or hyperuniform [49]. We discuss this point
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in Appendix and use it to simplify the simulation procedure in
Sec. IV.

III. LATE-TIME ANALYSIS
OF THE FOKKER-PLANCK EQUATION

Looking at the expressions in Eqs. (15a), (21a), (15b), and
(21b), we see that they depend on the solution p(x, t |x0, 0) of
the FPE, Eq. (1), at late times. However, they only depend on
terms of the form (which we define as for later convenience)

f (x0, t )

PB(x0)
=

∫ ∞

−∞
dx p(x, t |x0, 0)�(x), (22)

where PB(x) is the equilibrium Boltzmann factor,

PB(x) = Z−1e−βφ(x), (23a)

with the partition function

Z =
∫ �

0
dxe−βφ(x). (23b)

It is easy to show that f (x, t )/PB(x) solves the adjoint FPE (or,
the so-called Kolmogorov backward equation), ∂ ( f /PB)/∂t =
Ĥ†( f /PB), where Ĥ† is the adjoint operator of Ĥ , and Ĥ as
written in Eq. (1) [50]. We then see that f (x, t ) obeys the same
FPE (the Kolmogorov forward equation) as Eq. (1),

∂ f (x, t )

∂t
= Ĥ f (x, t ), (24a)

with the initial condition

f (x, 0) = �(x)PB(x). (24b)

We now take the Laplace transform of Eq. (24a), which
yields the equation for f̃ (x, s) = ∫ ∞

0 dt exp(−st ) f (x, t ),

Ĥ f̃ (x, s) = s f̃ (x, s) − f (x, 0). (25)

The late-time behavior of f (x, t ) can be extracted from the
behavior of f̃ (x, s) at small s. To proceed, we follow the ideas
of the mathematical theory of homogenization [42]. The dif-
fusive motion is governed by some macrovariable, y = s1/2x,
while the precise location within a cell is described by a
microvariable, still denoted by x, and restricted to a single
cell, 0 < x < �. Since we take the late-time (small-s) limit,
we expect there to be a scale separation between y and x.
Note that the potential φ(x) and diffusivity D(x) still depend
only on the microvariable x, and both are periodic in it with
period �.

To formulate the above mathematically, we write the fol-
lowing expansion:

f̃ (x, s) = 1

s

∞∑
n=0

s
n
2 Fn(x,

√
sx), (26)

where {Fn(x, y)} are periodic in x with period �. Upon the
introduction of these two spatial variables, which are treated
independently, the spatial derivatives in Eq. (25) are modified
to (∂/∂x) → (∂/∂x) + s1/2 · (∂/∂y). We now insert the ex-
pansion of Eq. (26) in Eq. (25), and equate terms of the same
order. To obtain an effective late-time diffusion equation of
the form of Eq. (3), it turns out that we need the three lowest
orders.

Upon equating the leading-order O(s−1) terms, we find

∂

∂x

[
D(x)

(
β

dφ(x)

dx
F0(x, y) + ∂F0(x, y)

∂x

)]
= 0. (27)

We see that we may assume separation of variables, and get a
solution of the form

F0(x, y) = PB(x)K0(y), (28)

where K0(y) is a function of y which we will be able to
compute later, and PB(x) is then the Boltzmann factor. Clearly
F0(x, y) is periodic in x with period length �. (Note that the
initial distribution in the SFD process, P0(x), need not be
the equilibrium Boltzmann factor, PB, or even have the same
periodicity �0 �= �. In fact, for the quenched case, we will use
a Dirac comb for P0(x) in Sec. IV, as explained in Appendix.)

At the next order, O(s−1/2), we find

∂

∂x

[
D(x)

(
β

dφ(x)

dx
F1(x, y) + ∂F1(x, y)

∂x

)]

+ ∂

∂y

[
D(x)

(
β

dφ(x)

dx
F0(x, y) + ∂F0(x, y)

∂x

)]

+ ∂

∂x

[
D(x)

∂F0(x, y)

∂y

]
= 0. (29)

Now, using Eq. (28), and again making the separation of
variables Ansatz,

F1(x, y) = P1(x)
dK0(y)

dy
, (30)

we find the equation for P1(x),

d

dx

[
D(x)

(
β

dφ(x)

dx
P1(x) + dP1(x)

dx
+ PB(x)

)]
= 0. (31)

The last O(1) terms give

∂

∂x

[
D(x)

(
β

dφ(x)

dx
F2(x, y) + ∂F2(x, y)

∂x

)]

+ ∂

∂y

[
D(x)

(
β

dφ(x)

dx
F1(x, y) + ∂F1(x, y)

∂x

)]

+ ∂

∂x

[
D(x)

∂F1(x, y)

∂y

]

+ D(x)
∂2F0(x, y)

∂y2
= F0(x, y) − �(y)P0(x). (32)

Here, we replace �(x) → �(y) since y is the macrovariable.
Inserting the Ansätze of Eqs. (28) and (30), and utilizing the
periodicity of the solutions in x to integrate Eq. (32) between
0 and � (thus canceling complete differentials), we find the
equation for K0(y),

Deff
∂2K0(y)

∂y2
= K0(y) − �(y). (33)

Equation (33) is of the same form as Eq. (3) (written in
Laplace space), where we identified the effective diffusion
constant

Deff =
∫ �

0
dxD(x)

[
β

dφ(x)

dx
P1(x) + dP1(x)

∂x
+ PB(x)

]
. (34)
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The solution to Eq. (33) is, using the required smoothness
conditions,

K0(y) =
{

1 − 1
2 exp(−y/

√
Deff ), y > 0,

1
2 exp(y/

√
Deff ). y < 0.

(35)

Prior to proceeding, we first find the explicit formula of
Deff (which can only be explicitly computed in one dimension
[42].) Integrating Eq. (31), we find that

D(x)

(
β

dφ(x)

dx
P1(x) + dP1(x)

dx
+ PB(x)

)
= C, (36)

where C is a constant. Comparing it with Eq. (34), we identify
Deff = �C. Solving for P1(x) and using its periodicity gives

C = �

Z
[ ∫ �

0 dxeβφ(x)/D(x)
] . (37)

This then yields the Lifson-Jackson formula for the effective
diffusion constant Deff of a Brownian particle, Eq. (4).

Using these late-time solutions, we first compute the an-
nealed variance. Note that we may rewrite Eq. (21a) more
compactly in terms of f as

〈N2
+(t )〉ac = ρ�0

∫ ∞

−∞
dx0�(−x0)P0(x0)

f (x0, t )

PB(x0)
. (38)

Upon combining the y < 0 case of Eq. (35), Eq. (28), and
Eq. (26), we find, to leading order in small s (corresponding
to late times),

f̃ (x, s) � 1

2s
PB(x) exp

(√
s

Deff
x

)
, (39)

for x < 0, and see that it satisfies the initial conditions
Eq. (24b). Thus, Eq. (38) becomes,

〈Ñ2
+(s)〉ac = ρ�0

2s

∫ 0

−∞
dx0P0(x0) exp

(√
s

Deff
x0

)
. (40)

Here we need to use the fact that P0(x) is periodic, so we can
express it as a Fourier series,

P0(x) = 1

�0

⎡
⎣1 +

∑
n �=0

exp

(
2π inx

�0

)∫ �

0
dx′P0(x′)

× exp

(
−2π inx′

�0

)⎤
⎦. (41)

Note that the terms coming from the nonzero Fourier modes
kn = 2πn/�0 integrate as∫ 0

−∞
dx0 exp

(√
s

Deff
x0 + iknx0

)
= 1

ikn + √
s/Deff

, (42a)

while for n = 0 we find∫ 0

−∞
dx0 exp

(√
s

Deff
x0

)
=

√
Deff

s
. (42b)

Therefore, at late times, the dominant term in Eq. (40) is the
one corresponding to n = 0. Inverting the Laplace transform,
we find

〈N2
+(t )〉ac = ρ

√
Defft

π
. (43)

Using Eq. (15a), we obtain Eq. (8a) for the annealed version
of SFD.

To compute the quenched variance, we write Eq. (21b) as

〈N2
+(t )〉qc = 〈N2

+(t )〉ac − λ(t ), (44a)

where, in terms of f ,

λ(t ) = ρ�0

∫ ∞

−∞
dx0�(−x0)P0(x0)

f 2(x0, t )

P2
B(x0)

. (44b)

Since λ(t ) is not linear in f , it is not convenient to work in
terms of its Laplace transform. Upon inserting Eq. (35) in
Eq. (28), an inverse Laplace transform of Eq. (26) gives for
x < 0, at late times,

f (x, t ) � 1

2
PB(x)erfc

(
− x

2
√

Defft

)
. (45)

We then obtain

λ(t ) = ρ�0

4

∫ 0

−∞
dx0P0(x0)erfc2

(
− x0

2
√

Defft

)
, (46)

For large t , following the arguments of Eqs. (41) and (42), we
may only keep the nonoscillatory component of P0(x0), which
is 1/�0. Therefore, we obtain

λ(t ) = ρ

(
1 − 1√

2

)√
Defft

π
. (47)

We thus find that

〈N2
+(t )〉qc = ρ

√
Defft

2π
. (48)

Using Eq. (15b), we obtain Eq. (8b) for the quenched version
of SFD, as well.

The above constitutes a proof that both the annealed and
quenched MSDs of a tracer particle in SFD can be derived
by considering purely Brownian particles but with an ef-
fective diffusion constant Deff , given by the Lifson-Jackson
formula. It takes fully into account the effects of periodically
varying potential and diffusivity at the level of large-time
asymptotics. We find that both MSDs grow asymptotically
as O[(Defft )1/2/ρ]. By keeping the next-order terms in the
present Sec. III, one can show that the corrections to the
MSD, associated with the late-time approximation, are of
order O[�/ρ]. A so-called weak convergence theorem was
proven mathematically for general two-scale homogenization
schemes [42–44], rigorously justifying the replacement of
the true f (x, t ) with the leading-order term in its asymptotic
expansion. Note, however, that the homogenization-related
late-time corrections are smaller than the corrections associ-
ated with the application of the CLT [Eq. (10)], which are of
order O[(Defft )1/4/ρ3/2].

IV. NUMERICAL SIMULATION

In order to verify our analytical findings, we perform
Langevin dynamics simulations in the overdamped limit. The
Itô stochastic differential equation corresponding to Eq. (1) is

054125-5



BENJAMIN SORKIN AND DAVID S. DEAN PHYSICAL REVIEW E 108, 054125 (2023)

[50,51]

dX (t ) =
(

dD(x)

dx

∣∣∣∣
X (t )

− βD(X (t ))
dφ

dx

∣∣∣∣
X (t )

)
dt

+
√

2D(X (t ))dB(t ). (49)

When this is simulated we take B(t ) to be a discretized Brow-
nian motion, with the discrete form of Itô convention where its
increments are Gaussian with 〈dB(kdt )dB(ldt )〉 = δkldt and
zero mean.

Below, we will consider the case of periodic potential,
βφ(x) = E [1 − cos(2πx/�)], with constant diffusivity D =
D0. Equation (4) yields Deff (E ) = D0/I2

0 (E ), where I0(z) is
the zeroth modified Bessel function of the first kind. In ad-
dition to the parameters E , recall that the particle density ρ

(number of particles per period length �) is another control
parameter in SFD problems. Thus, using Eqs. (8a) and (8b),
we predict

〈Y 2(t ; E , ρ)〉ac = 2

ρI0(E )

√
D0t

π
, (50a)

〈Y 2(t ; E , ρ)〉qc =
√

2

ρI0(E )

√
D0t

π
. (50b)

This case was studied numerically also in Refs. [39–41].
The simulations were carried out as follows. We choose the

unitless quantities � = 1, D0 = 1/2, and β = 1 and vary the
parameters ρ and E . In all simulations, we spread M = 104�ρ

particles within the box according to an initial distribution
we explain below. In each time step, we sweep the system
M times. In each sweep, we pick a random particle, and
move it according to Eq. (49) with periodic boundary condi-
tions in a box of size 104�. We perform a total of 106 time
steps of duration dt = 10−3�2/(2D0). Each time a particle
passes one of its neighbors, we relabel the relevant parti-
cles such that the leftmost particle will be the one with the
smallest numeral index (up to periodic boundary conditions).
For example, if the mth particle skipped its neighbor from
the right, then Ym(t + dt ) = min[Ym(t ) + dX (t ),Ym+1(t )] and
Ym+1(t + dt ) = max[Ym(t ) + dX (t ),Ym+1(t )].

We consider two initial conditions. (i) Uniform distri-
bution, where we first pick M positions Xm,a(0) ∼ U(0, L),
which are then stored in increasing order within {Ym,a(0)},
i.e., Ym,a(0) < Ym+1,a(0). The subscript a stands for the
fact that it would yield the annealed variance. (ii) Crys-
talline configuration, being just a Dirac comb at positions
Ym,q(0) = L · (m − 1)/M. The subscript q reminds that com-
puting the annealed variance with these initial condition
coincides with the quenched average for uncorrelated initial
conditions [47,48], see below and Appendix.

For each initial condition and set of parameters ρ and E ,
we repeat the above simulation S = 103 times, labeled by s ∈
{1, . . . , S}. We estimate the average displacement of the mth
particle (the tracer) under relabeling at each time-step from
the average

〈�Ym,α (t )〉 = 1

S

S∑
s=1

[
Y (s)

m,α (t ) − Y (s)
m,α (0)

]
. (51)

where Y (s)
m,α (t ) is its position at time t for the sth simulation of

either the uniform (annealed, α = a) or crystalline (quenched,
α = q) initial distribution. Its second moment is estimated
similarly from

〈
�Y 2

m,α (t )
〉 = 1

S

S∑
s=1

[
Y (s)

m,α (t ) − Y (s)
m,α (0)

]2
. (52)

The estimator for the tracer’s annealed average is then given
by 〈

�Y 2
m,α (t )

〉
ac = 〈

�Y 2
m,α (t )

〉 − 〈�Ym,α (t )〉2. (53)

Thus we averaged over realizations for the tracer and, since we
chose a different random seed for every run, also over initial
conditions for the uniform (annealed) initial condition. Here
lies the convenience in estimating the quenched variance from
the annealed averaging with crystalline initial conditions; oth-
erwise, we would have needed to run many noise realizations
for the same randomly chosen initial configuration, in addition
to picking the initial configurations.

Now, due to the periodic boundary conditions, the system
is completely invariant under rotation, and thus any of the M
particles could have been chosen as the tracer. Therefore, so
to increase data reliability, we take an ensemble average, and
find

〈�Y 2(t )〉ac = 1

M

M∑
m=1

〈
�Y 2

m,a(t )
〉
ac, (54a)

〈�Y 2(t )〉qc = 1

M

M∑
m=1

〈
�Y 2

m,q(t )
〉
ac. (54b)

Note that performing the sum over particles already with the
sum over realizations would have given unnecessary (arguably
correlated, as they come from different particles for the same
realization) cross terms. We now compare the numerical re-
sults with our analytical predictions, Eq. (50).

In Fig. 1 we plot the annealed and quenched variances
for density ρ = 2.0. Figure 1(a) is a log-log plot, showing
in detail the various regimes in typical SFD in a periodic
potential, as obtained from the simulations with potential
strength E = 2.0. At first, indeed the particles diffuse nor-
mally (with their bare diffusion coefficient, D0 = 1/2), as they
have not encountered their neighbors and typically they have
not sampled the potential barriers. Afterwards, we have two
simultaneous effects. The more apparent one is the (almost)
plateau, which has to do with the particles attempting to
overcome the potential barrier, which they succeed doing only
with a finite Arrhenius rate (not shown; see Ref. [41]). Beyond
this time, the particles reach their homogenized regime with
Deff . The second effect is the collisions with neighboring
particles, which causes a crossover from normal diffusion
to anomalous subdiffusion with exponent 1/2. Since ρ and
E are of the same order (in fact, equal) in Fig. 1(a), these
two effects are not decoupled and occur together in between
t ∈ [0.1, 10]. Asymptotically, with the above two taking ef-
fect, the exponent-1/2 subdiffusion occurs with a Deff equal
to the bare diffusion coefficient. Indeed, this is what is seen
in Fig. 1(b), where all variances grow as t1/2. Here, the
points shown are the measured variances from the simulations
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(a) (b)

FIG. 1. Numerical simulation, Periodic potential. Tracer’s annealed and quenched variances (mean-squared displacement, MSD) versus
time, for density ρ = 2. (a) A log-log plot for E = 2.0, obtained from the simulations. It shows a normal-diffusive regime for short times (no
collisions yet and almost-free diffusion around the potential’s minima), a brief plateau in between (slow down due to the potential barriers),
and exponent-1/2 subdiffusion at late times (after homogenization and sufficient interparticle collisions). (b) MSD plots for potential strengths
E as indicated. Points are the variances obtained from simulations, while the immediately-adjacent lines are the corresponding theoretical
predictions, Eqs. (50).

[Eqs. (54)] for different potential strengths E as indicated,
while the lines depict the theoretical predictions [Eqs. (50)].

In Fig. 2 we plot the anomalous late-time diffusion co-
efficient, Feff = 〈�Y 2(t )〉/t1/2, which we extracted from a
least-squares linear fit in the log-log plots of the variances
for points at times t ∈ [500, 1000]. We see a good agreement
of the simulation with theory overall. The numerical values
of Feff exhibit relative deviations O(1%) from the analytical
ones, commonly being an underestimation of the latter. In-
deed the errors are most significant in the low-density region
(since less collisions occur, and thus the approach to the
subdiffusive behavior is delayed) and high-energy barriers
(as it takes longer to overcome the potential barriers, and
hence the homogenization regime is reached later). This is
supported by the fact that the errors get bigger for all points
when we include MSD values from earlier times (namely,
t ∈ [100, 1000]; not shown).

FIG. 2. Numerical simulation, Periodic potential. Tracer’s an-
nealed and quenched anomalous late-time diffusion constant versus
potential strengths E , for different densities ρ, as indicated. Points
are the values obtained from simulations using a least-squares
linear fit to the variances’ log-log plots [as in Fig. 1(a)], while
the immediately-adjacent lines are the corresponding theoretical
predictions.

To test our prediction further, we also consider the case of
periodic diffusivity, given by D(x) = D0 exp[a cos(2πx/�)],
in the absence of potential. The effective Lifson-Jackson dif-
fusivity of Eq. (4) is given by Deff (a) = D0/I0(a), and so our
predictions for the MSDs read

〈Y 2(t ; a, ρ)〉ac = 2

ρ

√
D0t

I0(a)π
, (55a)

〈Y 2(t ; a, ρ)〉qc =
√

2

ρ

√
D0t

I0(a)π
. (55b)

The simulation procedure and the calculation of the MSD
are identical to before. (We rely on fewer repetitions of the
simulations, S = 200.) However, due to the exponentiation
of the diffusivity variability a, the diffusivity is very high
at x = k� (k ∈ Z) for big as, and so, for a = 3.0 we had to
reduce the time step duration to �t = 10−4�2/(2D0). Other-
wise, the MSDs are overestimated (as seen, to some extent, for
a = 2.0). With this correction, Fig. 3 shows that the MSDs
extracted from the simulation agree well with the theory; so
to improve them further, one could consider lower �ts, as
well as longer-running simulations. A least-squares linear fit
in the log-log plot of the MSDs yields the late-time anomalous
diffusion constants for this case, which are shown along with
the theoretical prediction in Fig. 4.

V. CONCLUSIONS

We have revisited the question of whether one can use the
effective diffusion constant for a single particle in a medium of
periodically varying potential and diffusivity [39] to describe
the late-time dispersion of single-file diffusing particles in
such media. In agreement with previous simulations [39,40]
and the ones of Sec. IV, we prove that one can indeed replace
the bare diffusivity with the effective diffusion constant. This
implies that one may use a coarse-grained description to un-
derstand SFD in inhomogeneous systems. Although it would
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FIG. 3. Numerical simulation, Periodic diffusivity. Tracer’s an-
nealed and quenched variances (mean-squared displacement, MSD)
versus time, for density ρ = 2, and diffusivity variabilities a as indi-
cated. Points are the variances obtained from simulations, while the
immediately adjacent lines are the corresponding theoretical predic-
tions, Eqs. (55). For a = 3.0, a shorter time step duration was used.

have been very surprising were it not so (by sheer intuition),
the demonstration is nontrivial.

In our scheme, we have adapted the ideas behind the math-
ematical theory of homogenization [42–44], couching them
in terms of a late-time asymptotic expansion (more familiar
to physicists), which may be of use in other systems. In
the context of SFD, it would be useful to rigorously jus-
tify a similar utilization of the system-appropriate Deff in
cases such as particles with pairwise additive hydrodynamic
correlations and direct interactions [13] or in the presence
of random diffusivity or external potential [4]. The method
we propose rigorously justifies the coarse-graining proce-
dure evoked to derive the macroscopic fluctuation theory
[36–38], whereby short-ranged interactions are incorporated

FIG. 4. Numerical simulation, Periodic diffusivity. Tracer’s an-
nealed and quenched anomalous late-time diffusion constant versus
diffusivity variability a, for different densities ρ, as indicated. Points
are the values obtained from simulations using a least-squares linear
fit to the variances’ log-log plots, while the immediately adjacent
lines are the corresponding theoretical predictions. For a = 3.0, a
shorter timestep duration was used.

into similar effective diffusion constants and mobilities in
a stochastic-hydrodynamic description of interacting particle
systems.

ACKNOWLEDGMENTS

We thank Haim Diamant for extensive and enlightening
discussions. B.S. acknowledges support from the Israel Sci-
ence Foundation (Grant No. 986/18). D.S.D. would like to
thank the Mortimer and Raymond Sackler Institute of Ad-
vance Studies in Tel Aviv for their support of his visit to
Tel Aviv University where this work was initiated and also
acknowledges financial support from the European Union
through the European Research Council under EMet- Brown
(ERC-CoG-101039103) grant.

APPENDIX: MIMICKING QUENCHED VARIANCE FROM A PERIODIC INITIAL DISTRIBUTION

In this Appendix, we give an argument why choosing periodic crystalline initial conditions and computing the resulting
annealed variance yields the quenched one. This point is discussed in Refs. [47,48]. Denote the random initial particle positions
that are to the left of the origin as {Xm(0)}, and define the initial density field as ρL(x0) = ∑M

m=1 δ(x0 − Xm(0)), which is random
as well. First, we rewrite Eq. (19a) as

〈N2
+(t )〉 =

M∑
m=1

〈�[Xm(t )]〉 +
M∑

m=1

M∑
n=1

〈�[Xm(t )]〉〈�(Xn(t ))〉 −
M∑

m=1

〈�[Xm(t )]〉〈�[Xm(t )]〉. (A1)

Then, we express Eqs. (17) and (A1) in terms of ρL(x0) as

〈N+(t )〉 =
∫ ∞

0
dx

∫ 0

−L
dx0 p(x, t |x0, 0)ρL(x0). (A2a)

〈N2
+(t )〉 =

∫ ∞

0
dx

∫ 0

−L
dx0 p(x, t |x0, 0)ρL(x0) +

∫ ∞

0
dx

∫ ∞

0
dx′

∫ 0

−L
dx0

∫ 0

−L
dx′

0 p(x, t |x0, 0)p(x′, t |x′
0, 0)ρL(x0)ρL(x′

0)

−
∫ ∞

0
dx

∫ ∞

0
dx′

∫ 0

−L
dx0 p(x, t |x0, 0)p(x′, t |x0, 0)ρL(x0), (A2b)
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where we kept the (half-)box size L finite for the moment. Thus, upon taking the average over initial conditions, the general
expression for the annealed average in terms of ρL(x0) is

〈N2
+(t )〉ac =

∫ ∞

0
dx

∫ 0

−L
dx0 p(x, t |x0, 0)ρL(x0) +

∫ ∞

0
dx

∫ ∞

0
dx′

∫ 0

−L
dx0

∫ 0

−L
dx′

0 p(x, t |x0, 0)p(x′, t |x′
0, 0)

× [ρL(x0) ρL(x′
0) − ρL(x0)δ(x0 − x′

0) − ρL(x0) ρL(x′
0)]. (A3)

In the case where the particles are initially independent, only the first term in Eq. (A3) contributes, and we recover the annealed
result for independent particles, Eq. (21a).

We have shown in the arguments leading to Eq. (42b) that quantities of the form∫ 0

−∞
dx0 p(x, t |x0, 0)g(x0), (A4a)

can be evaluated at late times as ∫ 0

−∞
dx0 p(x, t |x0, 0)〈g〉1p, (A4b)

if g is a periodic function and 〈g〉1p indicates the spatial average of g over one period.
In this Appendix, we consider a system where the initial positions of the particles are placed on a periodic lattice with ran-

domness given only by global small (a multiple of �0) translations. The density is thus random but periodic (i.e., hyperuniform).
For Eq. (A3) it implies (in the limit L → ∞) that∫ ∞

0
dx

∫ 0

−L
dx0 p(x, t |x0, 0)ρL(x0) →

∫ ∞

0
dx

∫ 0

−∞
dx0 p(x, t |x0, 0)〈ρL〉1p (A5a)

and ∫ ∞

0
dx

∫ ∞

0
dx′

∫ 0

−L
dx0

∫ 0

−L
dx′

0 p(x, t |x0, 0)p(x′, t |x′
0, 0)ρL(x0) ρL(x′

0) →
∫ ∞

0
dx

∫ ∞

0
dx′

∫ 0

−∞
dx0

∫ 0

−∞
dx′

0 p(x, t |x0, 0)p(x′, t |x′
0, 0)〈ρL〉2

1p. (A5b)

This can be seen by carrying out the integrals over x0 and x′
0 prior to the average over initial conditions. The disorder in the

above, which can be due to a random lattice translation, is thus irrelevant at late times (as should clearly be the case on physical
grounds). This means that the first and third terms in Eq. (A3) cancel, yielding

〈N2
+(t )〉ac =

∫ ∞

0
dx

∫ 0

−∞
dx0 p(x, t |x0, 0)ρL(x0) −

∫ ∞

0
dx

∫ ∞

0
dx′

∫ 0

−∞
dx0 p(x, t |x0, 0)p(x′, t |x0, 0)ρL(x0), (A6)

which corresponds to the quenched variance for uncorrelated particles, as given by Eq. (21b).
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