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Higher-order tensor renormalization group study of the J1-J2 Ising model on a square lattice
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Phase transitions of the J1-J2 Ising model on a square lattice are studied using the higher-order tensor
renormalization group (HOTRG) method. This system involves a competition between the ferromagnetic
interaction J1 and antiferromagnetic interaction J2, and in previous studies, weak first-order and second-order
transitions were observed near the ratio g = J2/|J1| = 1/2. It has also been suggested that the universality
class of the second-order phase transition connected to the first-order transition line for g > 1/2 belongs to
the Ashkin-Teller class, which is characterized by a continuously varying critical exponent with g, as predicted
by field-theoretical and other studies. Our results, based on the HOTRG calculations for significantly larger
sizes, indicate that the region of the first-order transition is marginally narrower than that in previous studies.
Furthermore, it is suggested that the region where the critical exponent changes does not necessarily coincide
with the Ashkin-Teller region.
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I. INTRODUCTION

Frustrated magnetic systems have been studied for a long
time since the concept of frustration in magnetic systems
was proposed [1,2] (see for example Ref. [3] and references
therein). One of the simplest models is the J1-J2 Ising model
on a two-dimensional square lattice with ferromagnetic in-
teractions between nearest neighbors and antiferromagnetic
interactions between next-nearest neighbors. Although the
model is highly simple, it remains unclear in many respects
and has been studied extensively until recently [4–8], includ-
ing dynaical properties [9].

The model involves a parameter g, which is the ratio
of the amplitudes of antiferromagnetic and ferromagnetic
interactions, which determines the characteristics of phase
transitions. In this model, g = 1/2 is a special point where
the ground state transforms from a fully ferromagnetic state to
a stripe-ordered state. As the temperature is lower, the phase
transition occurs to the ferromagnetic phase for g < 1/2 and
to the phase with a stripe order for g > 1/2. Many studies
have asserted that the phase transition for g < 1/2 belongs
to the Ising universality class, although it is not a complete
conclusion [8].

The phase transition for g > 1/2 has also been studied by
many methods including the field-theoretical studies [10], the
variational mean-field theory [5,11], and numerical methods
such as the Monte Carlo method [4–6,12,13], Monte Carlo
renormalization-group method [14], and transfer matrix meth-
ods [5,8,15]. In the early numerical studies [11–15], it was
suggested that the critical exponents of the second-order phase
transition for g > 1/2 vary as a function of g. Such an in-
teresting critical phenomenon was exactly confirmed in the
Ashkin-Teller and eight-vertex models, and the framework
of the conformal field theory clarified that the class of the
central charge c = 1 includes them [10]. Furthermore, the
continuum limit of the J1-J2 Ising model is shown to map
to the Ashkin-Teller field (AT) theory in the limit where |J1|

is small, i.e., g � 1 [16]. These field-theoretical insights and
numerical studies provided an important theoretical basis for
understanding the critical nature of the J1-J2 Ising model.
However, some issues have not necessarily been settled in the
vicinity of g = 1/2, and a remaining issue being discussed
is whether this model shows a first-order or second-order
transition in the vicinity of g = 1/2. The first-order transition
in this system, if it exists, has been indicated to be highly
weak. Thus it is in general difficult to determine whether
it is a first-order or second-order transition. Therefore, a
few previous studies have made different assertions on the
existence or nonexistence of the region of the first-order
transition and on the width of the region of the first-order
transition.

Because systems exhibiting a weak first-order transition
have a finite but significantly large correlation length at
the transition temperature, it is necessary to investigate sys-
tems with sizes larger than the correlation length to clarify
the characteristics of phase transition by numerical simula-
tions. Tensor renormalization group (TRG) methods [17] have
attracted attention recently. These are potential numerical
methods that can be computed to sizes significantly larger
than those achieved by existing methods. In this method,
the system is represented by a tensor network (TN), and a
renormalization calculation is performed to approximate its
contraction. Under a certain assumption, one can compute the
free energy of the system with a computational complexity
with the logarithm of the system size.

In this study, we use the higher-order tensor renormaliza-
tion group (HOTRG) [18] method, which is a variant of the
TRG. The method has the advantage of calculating higher-
order derivatives of the free energy. The application to the
two- to six-state Potts model has demonstrated that it clearly
distinguishes between first- and second-order phase transi-
tions [19]. Utilizing these advantages, we perform statistical
mechanics calculations for the J1-J2 Ising model of large sizes
to obtain the details of its phase diagram.
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Our results of the HOTRG calculations indicate that the
first-order transition exists in a finite region of the parameter
g. However, the region is narrower than concluded in the
previous MCMC study [4]. We also verify that the universality
class of the second-order transition connected to the first-order
transition line is consistent with the AT weak universality as
indicated in the previous study, in the sense that the criti-
cal exponents depend explicitly on the parameter g. It also
confirms that the universality class is a weak universality
class [20] where the critical exponents vary with their ratio
kept constant. In contrast, our results also indicate that the
critical exponent ν of the correlation length can adopt smaller
values beyond the lower bound of the range varying in the AT
universality class. This implies that the full correspondence
between the J1-J2 Ising model and the AT model cannot be
naively accepted.

This paper is organized as follows. First, the model investi-
gated in this study is explained in Sec. II. Next, the numerical
method used, HOTRG, is described in Sec. III. The results
obtained by modifying the model parameters are explained in
Sec. IV. Section V presents the discussions and a summary
of this work. The Appendix presents certain discussions on
numerical validations.

II. MODEL

The J1-J2 Ising model has a ferromagnetic interaction
between the nearest-neighbor spins and an antiferromag-
netic interaction between the next-nearest-neighbor spins. The
Hamiltonian is expressed by

H = J1

∑
〈i, j〉

σiσ j + J2

∑
〈〈i, j〉〉

σiσ j, (1)

where
∑

〈i, j〉 and
∑

〈〈i, j〉〉 represent the sums over the nearest-
neighbor and next-neighbor sites, respectively. Meanwhile, J1

and J2 are the ferromagnetic and antiferromagnetic exchange
interaction energies. These satisfy J1 < 0 and J2 > 0. In the
following, J1 is taken as the unit of energy. The phase tran-
sition of this model is discussed with different values of the
parameter g ≡ − J2

J1
, which adopts a positive value.

The order structure of this model is a ferromagnetic state
with uniform magnetization (similarly to the conventional
Ising model) for a sufficiently small g and a stripe state for a
sufficiently large g. The energy per spin of the ferromagnetic
state in the ground state, Eferro, and that of the stripe state,
Estripe, are given respectively by

Eferro = −2 + 2g,

Estripe = −2g. (2)

These formulas imply that the ferromagnetic and stripe states
are stable for g < 0.5 and g > 0.5, respectively, at least at zero
temperature. There is no issue regarding the order structure of
low-temperature phases. However, the order of phase transi-
tions and their universality classes have been discussed in the
literature [6,7]. Figure 1 displays the phase diagram of this
model as indicated by the previous studies.

When the positive parameter g varies, the characteristic
of the phase transition at both endpoints is known exactly.
That is, g = 0 is the conventional Ising model, and g → ∞
corresponds to two mutually independent antiferromagnetic

FIG. 1. A schematic phase diagram in the plane of temperature
T and coupling g of J1-J2 Ising model in two dimensions.

Ising models, both of which also belong to the universality
class of the two-dimensional Ising model. For 0 < g < ∞,
exact analytical calculations are difficult, and the arguments
have been based on mean-field calculations and numerical
calculations. For example, the cluster mean-field analysis in-
dicates the existence of a region of the first-order transition
around g = 1/2 for both g < 1/2 and g > 1/2 [5].

Numerical studies indicate the following. First, as men-
tioned above, the ferromagnetic phase transition occurs for
g < 1/2. Although many previous studies indicated that this
phase transition belongs to the Ising universality class, the
cluster mean-field analysis [5] indicates the existence of a
first-order transition around g = 1/2. The transfer matrix cal-
culation [8] also shows a signature of a first-order transition
in the region of g � 0.48. That is, the issue of the order of
phase transition for g < 1/2 is not addressed completely. Just
at g = 1/2, finite-size scaling of the peak temperature of the
specific heat by MCMC indicates a phase transition at zero
temperature [21]. Many studies [5,6,8] have concluded that
no phase transition would occur at a finite temperature.

However, the characteristic of phase transition for g > 1/2
is contentious. The previous MCMC studies [4–6] contended
that a certain critical value g∗ evaluated as g∗ = 0.67(1) exists.
It is a boundary of a first-order transition for 1/2 < g < g∗
and a second-order transition for g > g∗. They also indicated
that this model belongs to the universality class of the AT
model [22] for g � g∗. The J1-J2 Ising model equals two
independent antiferromagnetic Ising models at J1 = 0 and
belongs to the AT universality class, which coincides with
the Ising universality class only there, as well as J2 = 0. In
the previous field-theoretical study [16], it was shown that
this model belongs to the AT universality class even under
perturbations around J1 = 0. On the other hand, no theoretical
evidence has yet been presented that this model belongs to the
AT universality class even in a nonperturbative regime with
larger values of J1.

One of the characteristics of the AT universality class is its
weak universality [20], where the critical exponents such as ν

vary depending on the coupling constant g. However, the ratio
of these exponents is constant as

2 − α

ν
= 2,

β

ν
= 1

8
,

γ

ν
= 7

4
. (3)
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In the AT universality class, the critical exponent ν varies with
a lower bound of ν = 2/3, which corresponds to the four-state
Potts universality class. In the J1-J2 Ising model, ν = 1 for
g → ∞. Therefore, the AT universality scenario asserts that ν

varies in the range of 2/3 < ν < 1 for g∗ < g < ∞.
In contrast, other studies raise the question of the exis-

tence of a region of the first-order transition. For example,
the previous study using the iTEBD method [7] observed
a second-order transition even at g > 0.54 because there is
no jump in the internal energy and other quantities at the
transition temperature. The study also obtained a value of the
central charge at g = 0.54 close to that of the universality
class of the tricritical Ising model. This implies that the region
of the first-order transition, if any, is narrower than expected
from the MCMC results. This also indicates that it may be
a second-order transition in all the regions with g > 1/2.
The iTEBD method calculates the thermodynamic limit under
the approximation. Consequently, it is difficult to follow the
influence of the approximation. Therefore, we study the phase
transitions and critical phenomena of this model by large-
scale HOTRG calculations. In particular, we also observe the
finite-size behavior in the renormalization process to analyze
it by finite-size scaling.

III. METHODS

In this section, we describe the tensor network method
including its construction method, the HOTRG method as
an approximate contraction method, and the impurity tensor
method [19,23] as a method for calculating certain physical
quantities. The method for analyzing the physical observables
obtained by finite-size scaling analysis (FSS) is also described
here.

A. Tensor network

There are several feasible settings for the TN representing
the partition function of the J1-J2 Ising model. For example,
the previous study [7] used a TN (hereafter referred to as type-
I TN) with alternating tensors I and T 1 defined as

Iσaσbσcσd = δσa,σbδσb,σcδσc,σd , (4)

T 1
σaσbσcσd

= e−βEσaσbσcσd , (5)

with

Eσaσbσcσd = − (σaσb + σbσc + σcσd + σdσa)/2

+ g(σaσc + σbσd ), (6)

where δi j is the Kronecker delta. This corresponds to the
partition function of a system for diagonally cutting a square
lattice as shown in Fig. 2. In this case, the dimension of each
index of the initial tensor is 2.

Another representation is to consider a TN (which is re-
ferred to as type-II TN) with a tensor T 2 defined by

T 2
σabσbcσcdσda

=e−βEσaσbσcσd , (7)

where σ i j = (σi, σ j ). This type-II TN is constructed on the
face-centered lattice of a square lattice, which can also be used
to represent the partition function of the system on the square
lattice. The dimension of each index of the initial tensor is 4.

FIG. 2. An 8 × 8 TN system with periodically aligned 4 × 4 TN
systems surrounded by dotted lines. The thin (black) and thick (red)
crosses represent tensors corresponding to I and T 1, respectively.
The circles on the I tensors represent spins. The spins on the dot-
ted line represent boundary spins, which impose periodic boundary
conditions on the system in the sense that these are shared by
several TNs.

Figure 3 shows diagrammatic representations of the two TNs
mentioned above. The filled circles and dashed lines in the
diagram represent the spins and lattices of the original spin
system.

The contraction of these TNs over the entire square lattice
provides the partition function of the system. As explained
in detail in Appendix A 1, the accuracy of calculations of
physical quantities depends significantly on the contraction
of these TNs. In the following, we mainly discuss the results
obtained using the type-I TN defined by Eqs. (4) and (5),
because this TN is more accurate. The system size L is the
length of one side of the square lattice on which TNs are
defined. In the case of type-I TN, the number of spins of the
original spin system is N = L2/2.

FIG. 3. Diagrammatic representations of TNs, (left) type-I for I
and T 1 given by Eqs. (4) and (5) and (right) type-II for T 2 given by
Eq. (7).
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FIG. 4. Diagrammatic representation of a step of HOTRG
renormalization.

B. HOTRG

Here we describe HOTRG [18], the TN contraction method
used in this study. In HOTRG, two adjacent tensors are com-
bined to form a tensor with an increased dimension. This
is then renormalized by dimension reduction using singular
value decomposition (SVD).

First, for two tensors T aligned along the y axis, as shown
in the left view of Fig. 4, a contraction of one of the indices
yields a fourth-order tensor T given by

Tae,b,c f ,g =
R∑
d

Tabcd Tedf g, (8)

where R is the dimension of an index of the tensor T . This
operation increases the dimension of the x-axis legs ae and c f
of T to R2. The upper bound of the bond dimension is main-
tained constant at D to reduce the computational complexity.
This is achieved by acting on the projectors P1 and P2 as in

T ′
α,b,β,g =

∑
a,e,c, f

Tae,b,c f ,gP1
ae,αP2

β,c f . (9)

Equation (8) and Eq. (9) together provide the transformation
from T to T ′, or the renormalization transformation, and are
represented graphically as shown in Fig. 4.

Here the projectors P1 and P2 are determined under the
condition that rank (P1P2) � D by

P1, P2 = arg max
P1,P2

||MlMr − MlP1P2Mr ||2, (10)

where

Ml
bc f g,ae = Tae,b,c f ,g, (11)

Mr
c f ,gaeb = Tae,b,c f ,g. (12)

Equation (10) is equivalent to a low-rank approximation of the
matrix M and is given by an SVD of Ml , Mr . See, for example,
Refs. [24,25] for the derivation and other details.

Similarly to the renormalization in the y direction, the
renormalization in the x direction is defined, and the renormal-
ization procedures in two directions are performed alternately
(see Fig. 5). The partition function Z of the system of linear
size L = 2n under periodic boundary conditions are expressed
as

Z = tTr T (n) ≡
∑
i, j

T (n)
i ji j , (13)

where tTr T (n) is the trace of the tensor T (n) obtained by
performing the renormalization n times alternately in the x
and y directions. Since the computational complexity of a
single renormalization is proportional to O(D7) of the tensor
contraction calculation, the overall computational complexity
scales as O(n × D7) = O(log L × D7).

C. Impurity tensor

The partition function Z is calculated by the HOTRG
method described above. In this subsection, we explain the
impurity tensor method [19,23]. It is a method for calculating
moments of the order parameter and the internal energy that
are derivatives of the free energy. The order parameters for
g < 1/2 and g > 1/2, the uniform magnetization M and stripe
magnetization m, are defined as

M ≡ 1

N

∑
x,y

σx,y,

mv ≡ 1

N

∑
x,y

(−1)xσx,y,

mh ≡ 1

N

∑
x,y

(−1)yσx,y,

m ≡ mv + mh, (14)

respectively. Here σx,y represents a spin at the coordinate
(x, y) in a square lattice.

In this method, a tensor specific to the physical quantities
to be calculated is defined by multiplying each component of
the local tensor by its local physical quantity. Such a tensor
is called an impurity tensor. We first introduce local stripe
magnetizations mh and mv along the x and y directions, re-
spectively, as

mh(x, y) = (−1)y

4
(σx,y − σx,y+1 − σx−1,y+1 + σx−1,y), (15)

mv (x, y) = (−1)x

4
(σx,y + σx,y+1 − σx−1,y+1 − σx−1,y), (16)

FIG. 5. Diagrammatic representation of tensor network transitions by HOTRG renormalization using projectors.
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where the four spins σx,y, σx,y+1, σx−1,y+1, and σx−1,y in the
tensor correspond to the four spins σa, σb, σc, and σd , respec-
tively, in Fig. 3. In addition to the local energy in Eq. (6), the
local order parameter for the stripe phase is defined by

m(x, y) = mh(x, y) + mv (x, y). (17)

The averages of these local physical quantities m(x, y),
mh(x, y), and mv (x, y) yield the macroscopic physical quan-
tities m, mh, and mv . The impurity tensors of m and E ,
corresponding to the tensor in Eq. (7), are given by(

Sm
k (x, y)

)
abcd = m(x, y)ke−βEabcd , (18)(

SE
k

)
abcd = Ek

abcd e−βEabcd , (19)

respectively. The procedure defined by Eq. (8) and (9) renor-
malizes two tensors T aligned in the y direction into one tensor
T ′, which is formally denoted by

T ′ ← T T . (20)

The impurity tensors defined in Eq. (18) and (19) are renor-
malized similarly as in Eq. (8) and (9). The renormalization
procedure is expressed in a recursive manner using the formal
expressions as in Eq. (20) as follows:

S′
1 ← 1

21
(ST + T S),

S′
2 ← 1

22
(S2T + 2SS + T S2),

S′
3 ← 1

23
(S3T + 3S2S + 3SS2 + T S3),

...

S′
k ← 1

2k

k∑
i=0

(
k

i

)
Sk−iSi, (21)

where S0 ≡ T, S1 ≡ S and (k
i ) is a binomial coefficient.

Using the renormalized impurity tensor Sk calculated the
higher-order moments of the physical quantity per spin for a
system of size L = 2n are evaluated by

〈Ek〉 = tTr SE
k

(n)

tTr T (n)
. (22)

where SE
k

(n) is formed by renormalizing SE
k for n times in the

x and y directions according to Eq. (21). The kth power of the
order parameter is also expressed with the impurity tensor as

〈mk〉 = tTr Sm
k

(n)

tTr T (n)
. (23)

The specific heat C and Binder parameter R4 are defined from
these higher-order moments by

C = N (〈E2〉 − 〈E〉2),

R4 = 〈m4〉
〈m2〉2

, (24)

respectively. When the transition is of second order, the spe-
cific heat diverges algebraically, and the value of R4 increases
from 1 to 3 at the transition temperature Tc. In contrast, for a

first-order transition, both C and R4 are expected to diverge of
the δ-function type.

D. Finite-size scaling

We employ finite-size scaling for the results obtained by
HOTRG to study critical phenomena. Assuming a second-
order transition, an FSS form of a critical physical quantity
X is given by [26]

X (T, L) = LφX fX [(T − Tc)L1/ν], (25)

where φX is a scaling dimension and fX is the universal
scaling function for X . Because the Binder parameter R4 is
a dimensionless quantity, its scaling dimension φR4 = 0, and
its FSS is effective for evaluating the exponent ν. The temper-
ature derivative of R4 at Tc, which is evaluated by numerical
differentiation in this study, is also effective. Its scaling form
is given by

dR4

dT

∣∣∣∣
T =Tc

∝ L1/ν . (26)

The scaling of this quantity for the first-order transition is ex-
pected to be ν = 1/d [27] with d being the spatial dimension.

Similarly, the scaling dimension of the squared order
parameters 〈M2〉 and 〈m2〉 is φM2 = −2β/ν. Moreover, its
scaling form at Tc is given by

〈m2〉|T =Tc ∝ L−2β/ν, (27)

where 2β/ν = d − 2 + η from the scaling relation. In the
thermodynamic limit, the inverse of the logarithmic derivative
of 〈M2〉 conforms to(

∂

∂T
ln〈M2〉

)−1

=
{ T −Tc

2β
(T < Tc),

− T −Tc
γ

(T > Tc).
(28)

This relationship holds for 〈m2〉. The slope of the temperature
dependence of this quantity above and below the transition
temperature represents the critical exponents and is effective
for their estimation.

Furthermore, the scaling dimension of the specific heat is
given by φC = α/ν. In the analysis of the specific heat of
finite-size systems, the divergent exponent of the peak value
of the specific heat is generally evaluated as

Cmax(L) � Lα/ν, (29)

where Cmax is the peak value of the specific heat of size L as a
function of temperature. The correlation length exponent ν is
evaluated from the scaling form of the peak temperature Tmax

with L given by

Tmax(L) − Tmax(∞) ∝ L−1/ν, (30)

where Tmax(∞) is the transition temperature defined in the
thermodynamic limit.

IV. NUMERICAL RESULTS

In this section, we present the numerical results obtained
by our HOTRG calculations for the J1-J2 Ising model with the
parameter g based on the type-I TN explained in the previous
section.
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FIG. 6. Finite-size scaling plot of the Binder parameter R4 at g =
0.49 with D = 32. This scaling plot is obtained by βc = 2.65277(2)
and ν = 1.03(5).

A. Ising universality class for g < 1/2

First, we show the HOTRG results for g < 1/2, where a
ferromagnetic phase with uniform magnetization is expected
to occur. The FSS plot of the Binder parameter at g = 0.49
obtained by the Bayesian scaling analysis [28] is shown in
Fig. 6. It yields βc = 2.65227(2) and ν = 1.03(5). This is
consistent with the Ising universality class.

Figure 7 presents the FSS of the temperature derivative of
R4 given by Eq. (26). It verifies that the size region that follows
a scaling with ν = 1.0 becomes wider with an increase in D.
In the context of TN, the value of D determines an upper
bound on the correlation length that can be simulated and is
considered to correspond to a certain length scale [29]. The
result observed here is in good agreement with this picture.
For 32 < L < 65536, where (dR4/dT )|T =Tc with D = 32 ap-
pears to follow the power of L well, the result of fitting to
the power-law yields ν = 1.004(5). This again indicates that
it belongs to the Ising universality.

FIG. 7. Size dependence of the temperature derivative of the
Binder parameter, dR4

dT |T =Tc at Tc and g = 0.49 with certain values of
D. The dashed line represents a straight line with the slope expected
from the Ising universality.

FIG. 8. Temperature dependence of the inverse of the loga-
rithmic derivative of 〈M2〉 of the J1-J2 Ising model at g = 0.49.
The (blue) circles, (green) squares, and (red) triangles represent
the results for L = 32 768, L = 2048, and L = 512, respectively.
The dotted and dashed lines represent scaling with β = 1/8 and
γ = 7/4, respectively. The transition temperature is estimated to be
Tc = 0.3770.

We also verify that the critical exponents β and γ are
consistent with the Ising universality using Eq. (28). Fig-
ure 8 shows the temperature dependence of ( ∂

∂T ln〈M2〉)−1 for
L = 512, 2048, and 32 768 at g = 0.49 and D = 32. The two
dotted lines above and below the transition temperature are
straight lines representing the values β = 1/8 and γ = 7/4,
respectively, of the critical exponents of the Ising universality.
The result for L = 32 768 agrees well with the two dotted
lines. This supports the assertion that the model at g = 0.49
belongs to the Ising universality. This figure demonstrates that
even at the size of L = 512, which is typically accessible in
MCMC with confirming equilibration, and that of L = 2048,
one of the largest in previous studies, it is difficult to get
close enough to the transition temperature, indicating that
this scaling is not fully validated. This also demonstrates the
advantage of the HOTRG method for large-size calculations.

Because the transition temperature is lower, it is difficult to
calculate g > 0.49 owing to the numerical accuracy. However,
in this study, the phase transition at g = 0.49 is verified to
belong to the Ising universality class. This indicates that most
of the phase transitions in the region g < 1/2 are covered by
the same universality class.

B. Gauge-invariant quantity

To determine the number of internal degrees of freedom of
the tensor that is renormalized n times, TRG studies generally
measured the gauge-invariant quantity X [30] defined by

X (n) ≡
[∑

r,u T (n)
ruru

]2∑
r,u,l,d T (n)

ruluT (n)
ldrd

. (31)

This quantity takes 1 in a disordered phase such as the para-
magnetic phase, and the value of the number of states in
the ordered phase. It is used as a method to detect phase
transitions with the aid of the almost discontinuous jump at
the transition temperature for large system sizes [31].
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FIG. 9. Inverse-temperature dependence of X for the J1-J2 Ising
model at g = 1.0 and with D = 32. The inset presents an enlarged
view of the region enclosed by the dotted line in the main figure.

In the J1-J2 model, the quantity X is expected to vary from
1 to 2 for g < 1/2 and from 1 to 4 for g > 1/2 at the transition
temperature with a decrease in temperature. Although such
behavior is verified for g < 1/2, not shown here, it does not
follow the naive expectation for g > 1/2. As shown in Fig. 9,
X adopts the value 4 for small sizes. However, for sizes
L larger than approximately 1000, a plateau is observed at
X = 2 immediately below the transition temperature before
the expected value 4 is attained at a low temperature. This may
be interpreted as another intermediate phase between the high-
temperature paramagnetic phase and low-temperature stripe
phase. However, the temperature at which X varies from 2 to
4 depends significantly on the size L. This indicates that the
plateau at X = 2 is owing to a numerical artifact caused by
the amplification of approximation errors in the renormaliza-
tion process by iterations rather than a thermodynamic phase
transition from the intermediate phase to the low-temperature
phase. A similar artifact-like behavior is observed in certain
physical quantities shown below. It is considered to be a result
of the effect of a large number of renormalizations. It should
be noted that to estimate the critical exponents, one should use
the system sizes that do not generate such artifact effects.

C. 1/2 < g < g∗: First-order transition

Next, we discuss the system at g = 0.55. A first-order
transition is asserted to occur here in the previous MCMC
studies [4,5] and a second-order transition in the previous
iTEBD study [7]. Figure 10 presents the internal energy 〈E〉
for different inverse temperatures obtained by our HOTRG
calculations with certain values of D. It is observed that 〈E〉
is nearly convergent at D � 32 except near the transition tem-
perature. Near this temperature, the internal energy for D =
28 is continuous as a function of the inverse temperature. This
indicates a second-order transition. Meanwhile, the results for
D � 32 display a sharp jump at the transition temperature at
βc � 1.2963. This supports a first-order transition.

The size dependence of the peak height of the specific
heat is shown in Fig. 11. For a relatively small D, i.e.,
D = 28, the peak value of specific heat saturates at a certain
size presumably caused by the finite D effect. However, for

FIG. 10. Inverse-temperature dependence of the internal en-
ergy 〈E〉 of the system at g = 0.55 with certain values of D and
L = 32 768. The inset shows an enlarged view near the transition
temperature.

a large D, it continues to grow following the L2 scaling.
This is characteristic of the first-order transition. Thus, our
HOTRG results at g = 0.55 for the energy and specific heat
indicate a first-order phase transition for a large D. This is
the more accurate calculation, although it appears to be a
second-order phase transition for a smaller D. This conclusion
is in contrast to that in the previous study using the iTEBD
method [7] at g = 0.55, where it was argued that the energy
varies continuously under the approximation of finite bond
dimension. Although the bond dimension D determines the
numerical accuracy of both the tensor-network-based iTEBD
and HOTRG method in common, the relationship between
the two methods is nontrivial and they cannot be directly
compared. Nevertheless, our results indicate that the effects
of the bond dimensions on the expected values of physical
quantities should also be carefully examined in the previous
study as well.

As seen above, as D is increased, 〈E〉 and C exhibit a
crossover once from second-order transitional to first-order
transitional behavior with increasing D. However, it is not as

FIG. 11. System-size L dependence of the peak value of the
specific heat Cmax at g = 0.55 with D = 28, 32, and 36. The dotted
line represents a power law as L2.
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(a)

(b)

FIG. 12. Inverse-temperature β dependence of the Binder param-
eter R4 at g = 0.55 for (a) D = 40 and (b) D = 36.

simple as that for the Binder parameter. Figure 12(a) shows
the inverse-temperature dependence of the Binder parameter
at D = 40. It exhibits a sharp peak near the transition tem-
perature, indicating the first-order transition. However, such
a behavior disappears and appears with an increase in D
and therefore is unstable with respect to D. For example,
a different behavior is observed for D = 36, as shown in
Fig. 12(b). The peak of the Binder parameter still remains for
sizes that can be calculated with MCMC [4]. However, such
first-order transition-like behavior disappears as the system
size increases. Eventually, the Binder parameter decreases
monotonically with β.

We also calculate the temperature derivative of the Binder
parameter at the transition temperature for g = 0.55, which
is expected to follow the power law of L as in Eq. (26). Its
exponent depends on the order of the transition. As shown in
Fig. 13, it is observed that the L dependence of (dR4/dT )|T =Tc

at g = 0.55 also depends on D, corresponding to the D depen-
dence of the Binder parameter R4. For example, for D = 32
and 40, where R4 shows the first-order transition-like be-
havior, (dR4/dT )|T =Tc follows ν = 1/d with d being spatial
dimensions up to sufficiently large sizes. This is consistent
with the first-order transition. Meanwhile, for D = 24, 28, and
36 where R4 shows the second-order transition-like behavior,
its derivative follows the power law with a nontrivial critical
exponent, although the behavior deviates from the power law
in the order of decreasing D. The critical exponent is obtained
as ν = 0.57(1) by linear regression from the data following
the power law. The finite D effect causes a deviation from this
power law and follows ν � 1 for a sufficiently large L. This
behavior can be considered as an example of the Ising-like
behavior observed after repeated renormalization as described
in Sec. IV B.

The above results verify that at g = 0.55, certain physical
quantities such as 〈E〉, C, and R4 exhibit indications of a

FIG. 13. System-size dependence of (dR4/dT )|T =Tc at g = 0.55
with certain values of D. The straight lines represent power laws with
the exponent ν = 1.0 for Ising universality, ν = 0.57 for a nontrivial
case, and ν = 1/2 for a first-order transition in two dimensions.

first-order transition for certain values of D. These quantities
may also show a second-order transition-like behavior when
D is changed. For example, 〈E〉 and C behave similarly to a
second-order transition only when D is small and to a first-
order transition when D is large. Although the behavior of R4

varies rather sensitively to D, such behaviors are considered
to be a result of only the approximation of a finite D. Consid-
ering the good numerical accuracy of 〈E〉 and C, it is likely
indicated that this model for g = 0.55 shows the first-order
transition for D → ∞.

D. Edge of the first-order transition: Critical-end point g∗

One of the issues to be resolved in this model is to de-
termine the value of the boundary g∗ between the first-order
and second-order transitions for a varying g. Here we inves-
tigate in detail the energy jump at the transition temperature.
Figure 14 shows the inverse-temperature dependence of the
energy at g = 0.575 and 0.58 for different values of D. For
a small D, i.e., D = 28, 32, or 36, the energy exhibits first-
order transition-like behaviors for both g = 0.575 and g =
0.58. Meanwhile, for D = 40, it remains discontinuous at
g = 0.575 and becomes continuous at g = 0.58. Such a D
dependence, which transforms from discontinuous to contin-
uous with an increase in D, is a behavior that is the converse
of the transformations from continuous to discontinuous ob-
served at g = 0.55. Although we cannot completely exclude
the possibility that a further increase in D would again show
a discontinuous jump at g = 0.58, the result for D = 40 indi-
cates that 0.575 < g∗ < 0.58. This value of g∗ is considerably
smaller than that estimated by the previous work with MCMC.

In general, the higher the order of the derivative of the
free energy, the lower the accuracy of the approximation in
the calculations of impurity tensors. Hence, 〈E〉 is considered
to be more accurate than 〈m2〉. Therefore, based on the be-
havior of 〈E〉 at D = 40, the order of the phase transition
at g = 0.575 is considered the first-order transition, and we
conclude g∗ = 0.58 at this time. However, the evaluated value
g∗ of this boundary still depends on the value of D that we can
calculate. It also appears to behave differently depending on
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(a)

(b)

FIG. 14. Inverse-temperature dependence of the internal energy
for certain values of D at g = 0.575 (a) and g = 0.58 (b). The system
size is L = 32 768. The insets are enlarged views around the transi-
tion temperature.

the physical observables. Therefore, the value g∗ = 0.58 can
still contain uncertainty that needs to be investigated further.

E. g � g∗: Universality class

Here we discuss the universality class of the second-order
phase transition for g � g∗. At g = 0.58, where the second-
order transition behavior in 〈E〉 is observed from the result for
D = 40 in the previous subsection, R4 also shows a second-
order transition behavior and the FSS of the temperature
derivative of R4 at Tc in Eq. (26) with D � 32 yields ν =
0.57(1) as shown in Fig. 15. The evaluation of ν is based on
regression using the results up to L � 1024 because a numer-
ical problem caused by a large number of renormalizations
appears to exist, similarly to Fig. 13. From the same FSS
analysis of R4 with different g, the exponent was evaluated
as ν = 0.67(2) for g = 0.8 and ν = 0.73(2) for g = 1.0. As
indicated in previous studies, the value of ν depends signif-
icantly on g and increases gradually to approach 1 with an
increase in g. This is consistent with the fact that ν = 1 for
the Ising universality class at g = ∞. However, the evaluated
value of ν differs from the results obtained by MCMC [6] and
transfer-matrix calculations [5].

The critical exponent ν can also be evaluated from the
scaling relationship for the peak temperature of the specific
heat given by Eq. (30). Figure 16 shows the results of the FSS
for g = 0.58, 0.67, and 0.8. Here the exponents evaluated are
ν = 0.638(1), 0.67(2), and 0.763(5), respectively. The scaling
for each g displays a marginal deviation from the power law

FIG. 15. System-size L dependence of (dR4/dT )|T =Tc at g =
0.58 with D = 32 and 40. The dotted line represents the power
law with an exponent ν = 1.0 for the Ising universality class, and
the dashed line represents a nontrivial power law with an exponent
ν = 0.57.

for large system sizes. This may be owing to the effect of the
HOTRG approximation. Our evaluation of ν at g = 0.67 and
0.8 is in agreement with the previous MCMC studies [4–6].
In particular, the evaluation at g = 0.67, which is claimed to
belong to the four-state Potts universality class in the MCMC
studies, is consistent with ν = 2/3 in the four-state Potts
model. In contrast, for g = 0.58, which is g∗ in our estimation,
the value of ν evaluated is significantly smaller than the lower
limit of the AT model, ν = 2/3. This is inconsistent with the
previous MCMC studies [4–6].

To study the critical properties at g = 0.58, the value of
another critical exponent η is evaluated using the FSS of
Eq. (27). Figure 17 shows the system-size dependence of 〈m2〉
at g = 0.58 with D = 40. Here η = 0.25 is estimated from the
power-law behavior at large sizes. In the previous study [7],
the system at g∗ is considered to belong to the universality

FIG. 16. System-size L dependence of the peak temperature Tmax

of the specific heat at g = 0.58, 0.67, and 0.8 with D = 40 in this
HOTRG calculation. The dotted lines represent the power law L1/ν

with ν = 0.638(1), 0.67(2), and 0.763(6), respectively. In addition,
the critical temperatures Tc are estimated to be 0.8976, 1.1998, and
1.5677, respectively.
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FIG. 17. System-size L dependence of the squared magnetiza-
tion 〈m2〉 at T = Tc and for g = 0.58 with D = 40. The dotted and
dashed lines represent algebraic functions with exponents η = 0.15
and 0.25, respectively. The critical temperature is estimated to be
βc = 1.113959.

class of the tricritical Ising model. However, it is difficult
to conclude from the behavior of our results of 〈m2〉 that
η = 0.15 which is expected for the tricritical Ising class.

In our analysis, the difference in the evaluation of the
critical exponent between the Binder parameter and specific
heat can be explained by the effect of the HOTRG approxima-
tion. Figure 18 shows the specific heat and Binder parameters
for the type-I TN at g = 0.55 and N = 64 obtained by the
exact numerical contraction and the HOTRG calculation with
D = 32. These results show that the specific heat is a better
approximation than the Binder parameter at least for system
sizes that can be calculated exactly. Therefore, the value of

FIG. 18. Inverse-temperature dependence of the Binder parame-
ter (left axis) and specific heat (right axis) of the J1-J2 Ising model
at g = 0.55 with N = 64. For the Binder parameter, the circles
and crosses represent exact numerical calculations and the HOTRG
calculations with D = 32, respectively. For the specific heat, the
triangles and squares represent the exact and HOTRG calculations,
respectively. The transition temperature of this system is determined
to be βc = 1.2963 from the asymptotic behavior of the Binder
parameter.

FIG. 19. Inverse of the logarithmic derivative of the squared
stripe magnetization as a function of T − Tc for the J1-J2 Ising model
for D = 40, L = 32 768 at g = 0.58 (triangles), 0.67 (squares), and
0.8 (circles). The dashed and dotted lines represent straight lines
expected near the critical temperature whose slopes are given by
the critical exponents β and γ , depending on g. The values of these
exponents are determined under an assumption of weak universality
by using the values ν = 0.638, 0.67, and 0.763 obtained from the
analysis of the specific heat for g = 0.58, 0.67, and g = 0.8, respec-
tively. The critical temperatures Tc for g = 0.58, 0.67, and 0.8 are
estimated to be 0.8977, 1.1997, and 1.5678, respectively.

ν estimated from the specific heat is considered to be more
reasonable than that estimated from the Binder parameter.

As described above, we have shown the results in which
the critical exponent ν depends explicitly on g > g∗. We next
discuss the weak universality class based on the FSS with
Eq. (28). As discussed in Sec. IV A with Fig. 8 for g < 1/2,
the behavior of the logarithmic derivative of 〈M2〉 is a straight
line with the slope of the value of critical exponents near the
transition temperature. Figure 19 represents the temperature
dependence of the logarithmic derivative of 〈m2〉 at g = 0.58,
0.67, and 0.8 where the second-order transition occurs. It is
evident from the figure that the slope of the straight lines
depends on g. This indicates that the critical exponents depend
explicitly on g, similarly to ν discussed above. Furthermore,
the dotted and dashed lines in the figure represent straight
lines with the slope of the values of β and γ , respectively.
These exponents are estimated from the assumption of the
weak universality of Eq. (3) and the value of ν obtained from
the peak temperature of specific heat above. Although the
results for T > Tc (particularly at g = 0.58) are moderately
scattered, the plots and the dotted lines almost agree with
each other. This indicates that the weak universality holds for
g � g∗, including g = 0.58. Here the value of ν is estimated
to be ν < 2/3.

V. DISCUSSIONS AND SUMMARY

First, we compare our results with those obtained by previ-
ous studies. The previous study by the iTEBD method [7], a
tensor network method, using the type-I TN described in this
work observed that, for g = 0.55, 〈E〉 and 〈m2〉 vary continu-
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ously without jumps at the transition temperature, concluding
that the transition is a second-order transition. In our HOTRG
calculations using the type-I TN, we also observed that 〈E〉
varies continuously when the bond dimension D is small (see
Fig. 10). However, it is verified that 〈E〉 varies discontinuously
when D is large. Our results imply the first-order transition in
the limit of D → ∞. This indicates the need to reexamine the
conclusion of the previous study using the iTEBD method for
the effect of a finite D.

Meanwhile, as shown in Fig. 14(b), 〈E〉 at g = 0.58 be-
haves like the first-order transition for a small D. However,
it changes to behave like the second-order transition as D
increases. Similarly, when D is increased at g = 0.55, R4 is
found to exhibit alternating first- and second-order transition-
like behavior. Thus, the behavior of the physical quantities
at a finite D is rather complicated. Even when a first-order
transition-like result is obtained for a relatively large D = 40,
the possibility of an eventual second-order transition at D →
∞ cannot be precluded completely.

The effect of a finite D in HOTRG is an issue to be con-
sidered. Meanwhile, the capability to compute larger sizes
compared with MCMC is an advantage. Our HOTRG cal-
culations indicate that the boundary between the first-order
and second-order transitions is g∗ � 0.58. This is smaller than
g∗ = 0.67(1) in the previous study by MCMC [4]. In particu-
lar, our results for g > 0.62 show the second-order transition
behavior independent of the value of D. This strongly indi-
cates that the region of the first-order transition, if it exists, is
narrower than that estimated by the MCMC study. In contrast,
we also consider that a finite region of the first-order transition
exists. For example, we verify that at g = 0.55, the thermody-
namic relationship that should hold at the phase boundary of
the first-order transition is satisfied. The details are provided
in Appendix A 2.

With regard to the estimation of g∗, our results differ from
the previous results on the issue of universality class as well.
The previous MCMC study [5,6] asserted that the critical
property for g > g∗ belongs to the AT universality classes
and that the universality class of the four-state Potts model,
namely ν = 2/3, holds at the endpoint g = g∗. Our results
show that the weak universality holds as anticipated from
the AT universality class. Furthermore, the critical exponents
vary continuously with g while maintaining the ratio of ex-
ponents. This is consistent with the previous study. However,
corresponding to the extension of the region of g for the
second-order transition that we evaluated, it is indicated that
the value of ν may be significantly smaller than that of the
four-state Potts model. This is inconsistent with the AT sce-
nario where the entire domain of g > g∗ of the J1-J2 Ising
model is mapped to the AT universality class. This result
indicates that the critical behavior of this model is closer
to the eight-vertex model [32] that varies ν > 1/2 under a
similar weak universality class than to the AT model that
adopts ν > 2/3, although the microscopic correspondence is
ambiguous.

Next, we discuss the numerical accuracy of the renormal-
ization process in the HOTRG calculations observed in this
study. It is shown in practice that certain physical quantities
of interest are affected by the approximation in the HOTRG
calculations as the number of renormalization steps (i.e., the

FIG. 20. Inverse-temperature dependence of X of type-II TN for
the J1-J2 Ising model at g = 1.0 and with D = 32 by the TRG
method.

system size) increases. In the size dependence of ( dR4
dT )|T =Tc

for g = 0.58 shown in Fig. 15, although it follows a power law
with the exponent ν � 0.57 up to approximately L � 1024,
a crossover behavior to another power law with ν = 1 is ob-
served for L � 1024. This crossover behavior is also observed
for g = 0.55, as shown in Fig. 13. In addition, Fig. 11 shows
the crossover observed in the specific heat, where a strong
divergence trend is observed for the relatively small D = 28 at
a small L, whereas the divergence trend weakens dramatically
as L increases. This crossover in size dependence disappears
as D increases. Therefore, this can be considered to be caused
by the approximations of HOTRG owing to the small D.
These size dependencies may then be interpreted as a pseu-
doappearance of the Ising universality at large sizes because
these are explained by the exponent ν = 1 and α = 0. This
interpretation is also compatible with the fact that as shown in
Fig. 9, a plateau of X = 2 is observed for a sufficiently large
L immediately below the transition temperature. That is, the
degree of freedom in the ordered phase appears to be two,
similarly to the Ising model. To prevent the influence of the
pseudobehavior in the estimation of the critical exponents, we
use the sizes in our FSS analysis up to the appearance of the
power law of the Ising universality at large sizes in Sec. IV C
and Sec. IV E.

If the above argument is correct, then it can be deter-
mined that in the renormalization procedure of HOTRG, the
fourfold symmetry expected from the low-temperature phase
for g > 1/2 is missing in the twofold symmetry owing to
the approximation. A possible reason is that the HOTRG
renormalization procedure breaks the x-y symmetry of the
square lattice. Because the TRG method [17] tilts the lattice
by π/4 unlike HOTRG, the renormalization procedure does
not explicitly depend on the x and y directions. Thereby, the
symmetry in the x-y direction may be preserved.

We calculated X using the TRG method with two tensor
networks: Type-I and type-II. As shown in Fig. 20, a direct
transition from X = 1 to 4 with almost no through the inter-
mediate state of X = 2 only in the case of the TRG method
combined with the type-II TN. In general, under conditions
fixed to the same D, the numerical accuracy of physical quan-
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FIG. 21. Phase diagram of the J1-J2 Ising model in the plane of
temperature T and coupling constant g. The circles represent the tran-
sition temperature at which X in HOTRG with D = 32 jumps from
1 to 2 for each g, and the crosses represent the transition temperature
obtained by the Binder parameter R4 for sufficiently large sizes.

tities is better for HOTRG than for TRG [18] and for the type-I
TN than for the type-II TN (as discussed in Appendix A 1).
However, it should be noted that the higher accuracy of
physical quantities does not necessarily imply that of X .
One should also consider the symmetry of the tensors used,
etc., while studying the properties of a renormalized tensor
such as X .

Although the symmetry missing in the HOTRG method oc-
curs in the low-temperature phase, the quantity X still displays
important properties of the renormalized tensor. Furthermore,
the phase diagram can be obtained from the boundary at which
X = 1 is unstable. As has been indicated, X is a quantity
evaluated from a renormalized tensor by the method of the
general tensor renormalization groups. Measuring this quan-
tity has the advantage that it can be calculated as a by-product
without the need to calculate physical quantities using the
impurity tensor method. Certain systems have already used
this X to evaluate transition temperatures [31,33]. Here the
phase boundary obtained as the temperature at which the value
of X jumps from 1 to 2 in HOTRG is shown in Fig. 21,
in conjunction with the transition temperature obtained by
the Binder parameter. It is observed that the transition tem-
peratures evaluated by the two methods coincide with each
other.

To summarize, we studied the critical phenomena of the
J1-J2 Ising model by varying the parameter g using HOTRG.
Our results for g < 1/2 indicate that the critical properties
of the second-order phase transition are explained by the
universality class of the two-dimensional Ising model. This
is in agreement with previous studies. For g > 1/2, although
the influence of a finite D should be paid due attention, var-
ious numerical results such as the jump in internal energy
at Tc, L2 divergence of specific heat, and a sharp peak of
the Binder parameter strongly indicate the existence of the
first-order transition region near g = 1/2. We estimated the
upper boundary of the region to be g∗ � 0.58. This value is
smaller than the previous MCMC result, g∗ = 0.67(1) [4].
This results in a narrower region of first-order transition, if

any, than concluded in the previous study. It should also be
noted that our conclusions are not due to any stochastic factor
of TRG. In TRG, since SVD is the main computational time-
consuming part, the use of randomized SVD [34] may reduce
the computational time, where small stochastic fluctuations
[35] may be included. However, in the HOTRG calculation,
the SVD calculation is not the main use part, and we calculate
all singular values. Therefore, stochastic calculations are not
included in this study.

For the universality class of the second-order phase tran-
sition for g > g∗, our results support the assertion that the
weak universality holds for any g. This is consistent with
the previous MCMC study [5,6] but incompatible with the
result [7] supporting the tricritical Ising universality class with
γ /ν = 37/20. Meanwhile, our results do not fully support
the AT scenario. To be specific, the value of ν we obtained
at g = 0.58 with the second-order phase transition is signif-
icantly smaller than 2/3. This indicates that the universality
class of the eight-vertex model [32,36–38] with the same weak
universality may be valid rather than the AT universality class.

The eight-vertex model can adopt a value of ν larger than
1/2. Therefore, it may be reasonable to adopt values smaller
than our evaluated value of ν = 0.638 at g = g∗. Thus, it is
still feasible to exhibit a second-order phase transition to a
region closer to g = 1/2 than g∗ = 0.58 obtained in this study.
Considering this, a more accurate determination of the loca-
tion of the critical endpoint g∗ would be undertaken in future
work in conjunction with an improvement of the accuracy of
the tensor renormalization group methods.

Finally, we discuss the tensor renormalization group meth-
ods from a methodological perspective. Although the system
displays a fourfold symmetry for g > 1/2 in the J1-J2 Ising
model, the HOTRG calculations show that this fourfold sym-
metry is missing at a certain stage of the renormalization
for certain physical quantities. Presumably, this is the reason
the critical behavior of certain quantities is Ising-like, which
reflects the twofold symmetry after the symmetry is missing.
It is also verified that such fourfold symmetry may be pre-
served by a TRG method rather than HOTRG. The capability
to calculate using TRG-like methods such as bond-weighted
TRG [39] to preserve the symmetry of the system up to larger
system sizes exhibits a high potential.

Note added. Subsequent to the submission of this paper,
we became aware of a relevant paper [40] proposing an al-
ternative estimator for the Binder parameter that addresses
the nonmonotonic behavior often observed in frustrated spin
systems as a function of temperature. This work also explored
the J1-J2 Ising model discussed in this paper, as one of some
applications, using Monte Carlo simulations for system sizes
up to L = 256. Their results suggested a second-order phase
transition at g = 0.55, with the critical exponent ν below 2/3.
Although this is not consistent with our conclusion at g =
0.55, the method, sizes, and analysis techniques examined are
different and complementary, and further study is needed.
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APPENDIX: NUMERICAL VALIDITY EVALUATION

1. Tensor network construction methods
and numerical accuracy

In general, there are several TN representations for a sys-
tem. In Sec. III, we introduce two specific representations for
the J1-J2 Ising model (see Fig. 3): The type-I TN defined by
Eqs. (4) and (5) and the type-II TN defined by Eq. (7). For
the system with N = 64, we perform the HOTRG calculations
with D = 32 fixed for each of the two representations, in addi-
tion to the exact calculations in each representation. Figure 22
presents the numerical results of the squared order parameters
as a function of the inverse temperature at g = 0.55. Note that
the boundary conditions are different for the type-I and type-II
TNs, and as a result, the expected values of physical quantities
are different from each other, even when calculated exactly.
The results of the HOTRG calculations are in agreement with
the exact calculations at all temperatures in the type-I TN.
However, in the results with the type-II TN, large discrepan-
cies are found between the exact calculation and the HOTRG
calculations, particularly at low temperatures. This indicates
that the type-I TN of Eq. (7) is significantly more accurate.

We discuss this result from the perspective of the dis-
tribution of singular values at the approximations in the
renormalization steps. Figure 23 shows the distribution of
singular values at the third renormalization step where the
approximation procedure first appears in the HOTRG with
D = 32. The vertical dotted line represents the index of the
singular value with D = 32, and the renormalization step dis-
cards the singular values on the right side of the line while
retaining those on the left side. Therefore, the accuracy of the
approximation improves with the smaller area on the right side
relative to that on the left side of the dotted line. Thus, it is
evident from the figure that the type-I TN is more accurate
than the type-II TN.

FIG. 23. Index dependence of the singular value for the type-I
TN (solid) and the type-II TN (dashed) at the third renormalization
step in HOTRG with D = 32 of the system for g = 0.55 at β = 1.3
which is lower than the transition temperature. The vertical line
indicates an index of 32.

The reason for this slow convergence of the distribution
of the singular values of the type-II TN is that the singular
values are degenerate. This may be because in the type-II TN
setup, all the spin states are included in the two tensor indices,
which results in a redundant representation. Therefore, it is
recommended that such redundant TN settings be avoided in
general.

2. Clausius-Clapeyron relation under a uniform magnetic field

When a system exhibits a first-order phase transition, a
consequence of equilibrium thermodynamics is that its coex-
istence curve satisfies the Clausius-Clapeyron relation [41].
In numerical calculations, this relation should be satisfied if

FIG. 24. Phase diagram of the J1-J2 Ising model at g = 0.55 in
the plane of temperature T and uniform magnetic field H . The cir-
cles indicate the transition temperatures at which the magnetization
jumps (estimated by HOTRG). The lines represent the slope of the
phase boundary evaluated from the right-hand side of the Clausius-
Clapeyron relation [Eq. (A1)]. The cross at H = 0 represents the
first-order transition temperature of the stripe order parameter 〈m2〉.
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a first-order transition actually occurs. We investigated this
relation as additional supporting evidence for the first-order
transition. Consider the phase diagram of a general magnetic
system in the plane of a uniform magnetic field H and
temperature T , and let the coexistence curve be Hc(T ). The
stripe order realized at a low temperature in the J1-J2 Ising
model for g > 1/2 discussed in this study is orthogonal to the
uniform field. Therefore, the stripe phase is likely to be stable
under the field. In this case, the Clausius-Clapeyron relation is
given by

dHc

dT
= 1

Tc

(
UA − UB

MB − MA
− Hc

)
, (A1)

where for the coexistent phases A and B, the internal energy
UA and UB, and the uniform magnetization MA and MB are
defined respectively as

UA = lim
H→Hc−0

U,

UB = lim
H→Hc+0

U,

MA = lim
H→Hc−0

M,

MB = lim
H→Hc+0

M. (A2)

Figure 24 shows the phase diagram of the J1-J2 Ising model
under the uniform magnetic field at g = 0.55. The transition
field Hc of the first-order transition and the physical quan-
tities in each phase, UA, UB, MA, and MB were estimated
by the HOTRG calculation with D = 32 while varying the
magnetic field with a fixed temperature. The slope of the phase
boundary [calculated from the right-hand side of Eq. (A1)]
is drawn as lines on the points of each transition field. This
is consistent with the phase boundary profile. Furthermore,
the transition temperature value in the Hc → 0 limit in the
phase diagram approximately corresponds to the first-order
transition temperature where the stripe magnetization jumps
at H = 0. The slope of the phase boundary appears infinite in
the limit. This is consistent with the fact that at H = 0 the in-
ternal energy has a finite jump and the uniform magnetization
is continuous at the transition temperature. Thus, it is verified
that the thermodynamic relation in the case of the first-order
phase transition is satisfied.
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