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Line tension of sessile droplets: Thermodynamic considerations
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We deduce a thermodynamically consistent diffuse interface model to study the line tension phenomenon of
sessile droplets. By extending the standard Cahn-Hilliard model via modifying the free energy functional due to
the spatial reflection asymmetry at the substrate, we provide an alternative interpretation for the wall energy. In
particular, we find the connection of the line tension effect with the droplet-matrix-substrate triple interactions.
This finding reveals that the apparent contact angle deviating from Young’s law is contributed by the wall energy
reduction as well as the line energy minimization. Besides, the intrinsic negative line tension resulting from the
curvature effect is observed in our simulations and shows good accordance with recent experiments [Tan et al.
Phys. Rev. Lett. 130, 064003 (2023)]. Moreover, our model sheds light upon the understanding of the wetting
edge formation which results from the vying effect of wall energy and line tension.
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I. INTRODUCTION

The line tension effect describes the apparent contact angle
θ of a sessile droplet influenced by the energy contribution at
the triple junction which is a 2D geometrical line, where the
droplet meets the surrounding fluid on a solid substrate, see
Fig. 1(a) [1–3]. Gibbs first heeded the thermodynamics of the
line tension in his theory of capillarity [4]. Later on, Tolman
derived the surface tension σLV of the droplet depending on the
droplet cap radius R as [5]

σLV (R) = σ ∞
LV

(
1 − 2 δT

R

)
, (1)

where σ ∞
LV is the surface tension for a planar interface and the

Tolman length δT decides the magnitude of the line tension. In
this way, the modified Young’s law reads

cos θ = cos θY − γT

σ ∞
LV r∗ + O

(
1

r ∗2

)
. (2)

Here, r∗ = R sin θ is the base radius of the contact line. The
line tension γT is engendered by curvature-dependent sur-
face tension, so that the apparent contact angle θ approaches
Young’s contact angle θY as r∗ → ∞. A similar formulation
is also obtained by Widom [6], resulting from the minimiza-
tion of the surface and line energies. The inverse relationship
between cos θ and r∗ indicates that the line tension effect has
a magnificent impact not only on the submicro scale droplets,
such as surface nucleation [7] and droplet spreading [8], but
also on the stability of nanobubbles/particles [9,10]. Other
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applications, such as lipid membrane manufacture [11] and
the cell manipulation [12] also demand a better understanding
on the line tension. Especially, the magnitude and the sign of
the line tension are still a knotty issue. The positive line ten-
sion [13,14] is reported ranging from several pJ/m to μJ/m.
However, a negative line tension with an absolute value much
greater than 1.0 nJ/m is very seldom measured in experiment
[15].

In this work, we provide a detailed elucidation of the
line tension effect utilizing a thermodynamically consistent
diffuse interface model in Sec. II. This model extends the
Cahn-Hilliard theory adopted in Ref. [16] by formulating a
comprehensive wall free energy functional, containing a local
wall energy term and a nonlocal line energy term within the
wetting layer. We will explore the positive line tension in
Sec. III A, while also observing instances of weak negative
line tension. Notably, leveraging our model, we delineate
the presence of a negative line tension from the mathe-
matical and thermodynamical standpoint. Furthermore, the
underlying mechanism governing the wetting edge formation
through the influence of line tension is thoroughly analyzed
in Sec. III B. Distinct from the conventional sharp interface
approach, we assert that the wetting phenomenon with the
line tension is not solely predicated upon the properties of the
droplet-matrix binary system. Instead, we posit that it con-
stitutes a multifaceted problem. By considering the intricate
triple interaction involving the droplet, matrix, and substrate
through the wall energy functional, we demonstrate that the
establishment of Young’s contact angles with the line tension
effect emerges as a delicate interplay between the competing
mechanisms of wall energy reduction and line energy mini-
mization, rather than being solely attributed to line tension.
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FIG. 1. (a) A sessile droplet on a flat solid substrate with Young’s
contact angle θY . The vectors R, n, r direct the normal direction of
the droplet cap of the substrate and of the contact line, respectively.
(b) The bird’s eye view of the dark blue line tension vectors T tangent
to the mid-blue contact line.

II. MODEL DESCRIPTION

In this section, we present the diffuse-interface line tension
model. We consider a droplet on a solid substrate S. The
local volume concentration of the liquid phase is denoted by
c which is space x and time t dependent in the domain �.
In the standard Cahn-Hilliard approach, the free energy of a
nonuniform system reads

F (c,∇c) =
∫

�

[ f (c) + L · ∇c + κ (∇c)2 + . . . ]d�,

where f(c) describes the bulk free energy density and κ is the
gradient energy coefficient. For isotropic systems, the odd or-
der term of ∇c is canceled (L = 0) due to its invariance to the
reflection symmetry operation (x to −x) [17]. However, for
the sessile droplet contacting the solid substrate, this reflection
symmetry breaks on the substrate. Particularly, the system
becomes dependent on the reflection operation n to −n in the
normal direction of the substrate surface (see Fig. 1). Hence,
we add two ∇c-related terms in the free energy functional of
the domain � as

F =
∫

�

[ f (c)+κ (∇c)2+κ1∇c· n+2 κ ∗∇2c ∇c·n]d�. (3)

The fluid bulk free energy density f (c) takes the regular
solution formulation as [18]

f (c) = RgT

vm

[c ln c + (1 − c) ln(1 − c) + χ c (1 − c)], (4)

in which Rg, T , and vm stand for the gas constant, temper-
ature, and molar volume, respectively. The intermolecular
interaction between droplet and matrix is scaled by the Flory
parameter χ .

The physical meaning of the gradient energy coefficients
κ1 and κ ∗ is elucidated as follows. By assuming κ1 to be
the derivative of wall energy density g(c) to the compo-
sition c, namely κ1 = dg/dc, we rewrite the new terms in
Eq. (3) as κ1∇c · n + 2 κ ∗∇2c ∇c · n = ∇g · n + 2 κ ∗∇2c ∇c ·
n. For a flat solid substrate, the mean curvature is zero which
leads to ∇ · n = 0. In fact, the following deduction is also
valid for substrates with any geometrical shape, as proven
in Appendix B. With this relationship, the κ1 and κ ∗ related
terms are further simplified as κ1∇c · n + 2 κ ∗∇2c ∇c · n =
∇ · [gn + κ ∗(∇c)2 n]. By applying the divergence theorem
and using the no-flux boundary condition, the volume integra-
tion is transformed into the surface integral. After the standard

calculus, we obtain the following wall energy formulation∫
�

∇ · [gn + κ ∗(∇c)2 n] d� =
∫

S

[g(c) + κ ∗(∇c)2] dS. (5)

Noteworthily, the wall energy formulation of Eq. (5) differs
from previous works [16,19] for studying the wetting effect.
Therefore, the free energy functional F of the whole system
reads

F =
∫

�

[ f (c) + κ (∇c)2]d� +
∫

S

[g(c) + κ ∗(∇c)2] dS. (6)

At equilibrium, the droplet-matrix interface tension [16] is
expressed as

σLV =
∫ c0

c1

2
√

κ 	 f dc, (7)

in which the excessive energy density 	 f is defined as f (c) −
f (c1 ) − (∂ f /∂c − 2κ∇2c) (c − c1 ). The limits of integration
c0 and c1 stand for the equilibrium compositions of matrix
and droplet, respectively. In this work, the surface tension
parameter κ is fixed as two which is nondimensionalized by
10−11N. The Flory parameter χ = 3.78 is selected in Eq. (4)
to model immiscible fluids having two local minima. Substi-
tuting χ = 3.78 into f of Eq. (4), we ensure the interfacial
tension Eq. (7) to be 1.0.

Adopting the Cahn-Hilliard type of phase-field model
[19,20], the governing equations for the wetting phenomenon
with the line tension effect are written as (see the derivation in
Appendix A)

∂c

∂t
== ∇ ·

[
M∇

(
∂ f

∂c
− 2κ∇2c

)]
in�, (8)

∂c

∂t
= τ

(
2κ∇c · n − g′ + 2κ ∗∇2

s c
)

on S, (9)

where the surface Laplacian is defined as ∇2
s c := ∇2c −

∇(∇c · n) · n. The mobility M = (vm/RgT )D0c (1 − c) fol-
lows the Onsager’s reciprocal relation [21,22] with the inter-
diffusivity D0 = 1 normalized by the characteristic diffusivity
10−9 m2/s. The phenomenological parameter τ determines the
deviation of the system from the equilibrium state [19] and is
set as 0.01 (equivalent to 108 s/kg) in this work.

The wall energy density g takes the double well potential
(a quartic function as [23])

g(c) = s
(c − c0 )2(c − c1 )2

4
−α

(c3

3
− c2

2
+ c0c1c

)
+C, (10)

where s is the scaling factor for the droplet-matrix-substrate
triple interaction and C is a constant. Since the surface equi-
librium compositions solved by Eq. (9) are identical to the
bulk composition obtained by Eq. (8), the term g′(c) ought to
be zero at two equilibrium compositions; see Fig. 5(b) and
Ref. [24]. Taking the parabolic function for g′(c) = α(c −
c0)(c − c1) and applying the constraint g(c1 ) − g(c0 ) = σLS −
σSV , we have α = 6 cos θY /(c1 − c0 )3. Integrating the wetting
boundary condition with the derived factor α leads to

σLS − σSV = g(c1 ) − g(c0 ) = σLV cos θY .

Here, σLS denotes the droplet-substrate interfacial tension,
and σSV depicts the matrix-substrate interfacial tension. More
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validation and theoretical analyses of this approach can be
found in Ref. [16].

Next, to recover the modified Young’s law at equilibrium,
the equilibrium condition Eq. (9) by setting ∂c/∂t = 0 is
integrated from the equilibrium composition c1 to c0 in the
polar coordinate as∫ c0

c1

(
2κ∇c · n − g′ + 2κ ∗∇2

s c
)

dc

=
∫ ∞

0

2κ (∂Rc)2cos θ dR −
∫ c0

c1

[
g′−2κ ∗

(∂rc

r
+∂rrc

)]
dc

= σLV cos θ + σSV − σLS + γ

r∗ = 0. (11)

By using the calculus of integration by parts, the integral of
the Laplacian term vanishes,∫ c1

c0

2 κ ∗∂rrc dc ≡ 0, (12)

and makes no contribution to the line tension of the sharp
contact line, but this Laplacian term cannot be neglected and
highlights the crucial difference between the sharp and diffuse
interface models of the line tension, as will be demonstrated
in next section. Most importantly, we obtain the first-order ap-
proximation of the line energy density in the diffuse interface
model

γ =
∫ ∞

0

2κ ∗(∂rc)2dr. (13)

Finally, substituting the Tolmann equation Eq. (1) into
Eq. (11), we derive the modified Young’s equation with the
line tension effect as

cos θ = cos θY − γ + γT

σ ∞
LV r∗ + O

(
1

r ∗2

)
. (14)

III. RESULTS AND DISCUSSION

A. Line tension and its sign

In the following parts, the characteristic length scale x∗ =
10−9m, the characteristic surface tension γ ∗ = 10−2N/m, and
the characteristic time t ∗ = 10−9s are chosen to normalize all
other physical parameters.

In this section, we first discuss the positive line tension of
the sessile droplet on a flat substrate. The prefactor s = 0 in
the wall energy density Eq. (10) is adopted. The effect of s
on the immiscible gap between droplet and matrix molecules
on the substrate is discussed later in Sec. III B. With increas-
ing κ ∗ from 0 to 500, the apparent contact angle θ enlarges
and deviates from θY , as guided by the red dashed line in
Fig. 2(a). Moreover, the linear relationship of cos θ with
1/r∗ shows good consistency with Eq. (14), as illustrated in
Fig. 2(b).

In previous research, the negative line tension is an un-
settled problem. Its existence is either proven by static
equilibrium [5] with the sharp interface approach, or simu-
lated with the molecular dynamics [14,25]. Here, we interpret
the negative line tension based on thermodynamics and scru-
tinize its feasibility with the diffuse interface model which is
more realistic for the submicro sessile droplet than the sharp
interface approach. In literature [26,27], considerably larger

FIG. 2. The positive line tension effect for Young’s contact angle
θY = π/3. (a) The droplet silhouette with an initial droplet cap radius
R0 = 40 by different line tension parameters κ∗. (b) The cosine value
of apparent contact angle θ with the contact line radius r∗. The
dashed color lines are fitted with the modified Young’s law, Eq. (14).

negative line tensions with several nJ/m or even μJ/m are
reported and analyzed by setting the negative value of γ in the
modified Young’s law. However, from a mathematical point
of view, a negative γ larger than several nJ/m is unfeasible
in our diffuse interface model. Expressed in the cylindrical
coordinate, the wetting boundary condition yields

τ∂t c = 2κ∇c · n − g′ + 2κ ∗∂rc/r + ∂rrc). (15)

By large negative line tension varying from −1.0nJ/m to
−1.0μJ/m, κ ∗ should be in the range of −102 ∼ −105. Dif-
fering from the sharp interface model, Eq. (15) contains
an additional Laplacian 2κ ∗∂rrc which can easily lead to an
ill-posed wetting boundary condition, and tiny composition
fluctuation can give rise to instability at the triple junction. It
is noteworthy that our model still captures the intrinsic nega-
tive line tension behavior. By setting line tension parameter
κ ∗ = 0, see Fig. 3, the positive tendencies of cos θ ∼ 1/r∗

with different θY bear a resemblance to the characteristic of
the negative line tension. Fitted with Eq. (14), the intrinsic
line tension γi = −0.5σLV is in the same magnitude as re-
ported in [28]. For water drops at room temperature with
σLV = 0.072 N/m, the minimal intrinsic line tension lays in
γi = −36 pN which is in good conformity with Ref. [29].

To understand the intrinsic negative line tension, it is
instructive to deliberate upon the distinction between the
wetting boundary condition, Eq. (9), and the Cahn-Hilliard
equation, Eq. (8). Notably, by setting κ∗ = 0, the wetting
boundary condition exclusively accounts for the composi-
tional gradient in the normal direction of the substrate ∇c · n,
thereby disregarding the curvature effect on the substrate layer
that is perpendicular to n. In contrast, the material above the
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FIG. 3. The intrinsic negative line tension effect for different
θY by setting κ∗ = 0. (a) θY = π/6; (b) θY = π/4; (c) θY = π/3;
(d) θY = π/2.

substrate adheres to Eq. (8) and encompasses the curvature
effect through the Laplacian term −2κ∇2c. Thus, within
the substrate layer, the droplet-matrix interfacial tension γ

corresponds to that of a planar interface, unaffected by curva-
ture effects. While beyond the substrate layer, the interfacial
tension exhibits dependence on curvature. This distinction
suggests a discrete treatment of the substrate layer and the
material above it, akin to the concept of the Gibbs dividing
surface [4,5]. Despite the equilibrium condition within the
entire domain, where all molecules possess an identical zero
chemical potential, the chemical potential at the substrate is
treated disregarding the curvature effect, deviating from that
within the bulk. In this way, we suggest that the measured
negative line tension is actually emanated from the curvature
dependent chemical potential, which is in line with the Gibbs’
adsorption. A deeper understanding on the negative line ten-
sion and Tolman length necessitates further investigation in
our forthcoming research endeavors.

B. Wetting edge

Another salient feature encapsulated within our diffuse
interface model pertains to the wetting edge observed at the
triple junction of the droplet-matrix-substrate interface. This
phenomenon has been substantiated through experimental
studies [31,32]. Figure 4(a), adapted from Ref. [30], illustrates
the alkane-air interface, where the measured profile (black
dots) reveals a deviation from the idealized spherical shape
(red line) at the triple junction. As highlighted by the dashed
rectangles in Fig. 4(b), the increasing line tension effect,
characterized by the parameter κ ∗, accentuates the presence
of a similar wetting edge in our simulations. To elucidate

FIG. 4. (a) Atomic force microscopy profile of the alkane droplet (dots) deviating from the spherical fit (red line) at the triple junction. The
wetting edge is highlighted in the dashed square, reproduced with permission from Ref. [30], copyright © 2003, American Physical Society.
(b) The expanding wetting edge (highlighted in dashed squares) on the substrate with increasing the line tension parameters κ∗. The scale bar
denotes ten and the color bar scales the droplet composition. (c) Droplet concentration c along the radial direction on the substrate S. (d) The
schematic diffused line tension vector on S with a bird’s eye view.
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FIG. 5. The effect of wall energy on the line tension effect. (a) The wall energy g(c) with the varying parameter s in Eq. (10). (b) The plot
of dg/dc with varying s. (c) The shrinkage of the wetting edge (see dashed squares) with increasing s at κ∗ = 100. (d) Composition profile
along the radial direction on S. (e) Enhancing line tension effect with s. cos θ versus 1/r∗ for different s at κ∗ = 100. The dashed color lines
are fitted with Eq. (14).

the mechanism governing its formation, we examine the
equilibrium composition of the droplet at the boundary layer
spanning over the contact line, as portrayed in Fig. 4(c). This
analysis reveals that an increase in line tension results in a
flattening of the droplet-matrix interface on the substrate, thus
implying that the altered concentration distribution across the
contact line is highly associated with the manifestation of the
wetting edge.

To comprehend the fundamental mechanism driving the
concentration flattening on the substrate, a thorough examina-
tion of the mathematical formulation representing line tension
in the diffuse interface model is imperative. In our approach,
the line tension sprawls over a vector field that encompasses
the entire wetting layer, as sketched in Fig. 4(d). This sce-
nario is in remarkable contrast to the sharp interface model,
wherein the line tension exclusively influences the sharp con-
tact line. In this context, the diffused line tension effect arises
from the sum of two distinct components within the integral,
specifically denoted as

∫ c1

c0
2 κ ∗(∂rc)2/r dc and

∫ c1

c0
2 κ ∗∂rrc dc.

The first term, reliant on gradient ∂rc, serves to establish
the equivalence between the sharp and diffuse interface for-
mulations of line tension. The second integral, involving the
Laplacian term ∂rrc, becomes zero [see Eq. (12)], a feature
absent in the sharp interface model. However, it is crucial to
emphasize the significance of the Laplacian term ∂rrc in the
differential form of Eq. (15). This term cannot be disregarded;
rather, it assumes a diffusionlike formulation that facilitates
the smoothing of compositional distribution across the con-
tact line, as vividly depicted in Fig. 4(c). Consequently, to
establish a local equilibrium state across the entirety of the
substrate, the concentration profile c within the wetting layer
is flattened by the Laplacian term ∂rrc scaled by κ∗, thereby
giving rise to the manifestation of the wetting edge at the triple
junction. Notably, this mechanistic facet remains unaccounted
for in the sharp interface model.

Furthermore, from the thermodynamic point of view, we
explain the wetting edge as the result of line energy minimiza-
tion. The most common consensus is that the droplet reducing
its contact line length 2πr∗ is the only mechanism to decrease
the line energy. So at equilibrium, an apparent contact angle
larger than Young’s angle θY is reached. Here, we suggest the
second mechanism for line energy minimization. Since the
droplet-matrix interface on the substrate layer flattens with
stronger line tension, a smaller ∂rc declines the line tension
γ = ∫ ∞

0
2κ ∗(∂rc)2dr accordingly. Physically, the lowering ∂rc

also indicates that the line tension energy minimization en-
hances the mixing of droplet and matrix molecules at the triple
junction.

In this way, we infer that the droplet-matrix interaction
on the substrate plays a vital role. For the system with weak
repulsive interactions, the droplet and matrix molecules can
mix easily with each other, which reduces ∂rc to weaken the
line tension and widen the wetting edge. Whereas the stronger
repulsive force limits their mixture, boosts ∂rc, and intensifies
the line tension effect. In lieu of expanding the wetting edge,
the line energy reduction shortens the contact line length and
steepens the apparent contact angle θ . Then, we examine
our deduction by changing the scaling parameter s in the
wall energy density Eq. (10) to modify the droplet-matrix-
substrate triple interaction strength. This approach is distinct
from previous wall energy formulations [19] where only the
droplet-substrate and matrix-substrate double interactions are
considered. As depicted in Fig. 5(a), the parameter s can
significantly change the miscibility of droplets with the matrix
on the substrate. When s > 0, the double-well wall energy
density g(c) defines the huge immiscible gap, while s < 0,
g(c) becomes an inverted double-well potential which facil-
itates their mixing. Clearly noticeable in Figs. 5(b) and 5(c)
at κ ∗ = 100, with an increase in s, the energy barrier between
droplet and matrix molecules stacks up, leading to a thinner
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wetting edge and stronger line tension effect. Consequently,
the steeper relationship of cos θ with 1/r∗ in Fig. 5(d) shows a
positive correlation with s. This indicates the two competing
mechanisms promoting line energy minimization: (i) contact
line length reduction increases apparent contact angle θ ; (ii)
line tension drop extends the wetting edge. Therefore, highly
contrasted to the sharp interface approach, the line tension in
our diffuse interface model is not solely decided by the line
tension parameter κ ∗ itself, but also relies on the wall energy
of the system. In other words, line tension is a triple-body
problem dominated by droplet-matrix-substrate interactions.

IV. CONCLUSION

In conclusion, we present a diffuse interface model for
the line tension of a sessile droplet. The free energy of the
line tension is deduced in the diffuse interface method, which
is compatible with previous sharp-interface models. In par-
ticular, we observe the intrinsic negative line tension in our
diffuse interface approach which conforms with previous ex-
periments. The line tension more negative than 1.0 nJ/m is
not thermodynamically consistent due to the instability in-
duced by the crucial Laplacian term in our model, which is
overlooked in sharp interface models. In addition, a physical
mechanism is found for the wetting edge formation at the
droplet-matrix contact region which emerges from the com-
peting line energy and wall energy minimization. We expect
that our model will help to understand the behaviors of the
nanobubbles and cells.
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APPENDIX A: ENERGY LAW

Considering the scenario where hydrodynamics is over-
whelmed by the diffusion process and the velocity on the
substrate S is zero, the time derivative of the free energy
functional of mixture F is deduced as

∂F
∂t

=
∫

�

∂

∂t
[ f (c)+κ (∇c)2]d� +

∫
S

∂

∂t
[g(c) + κ ∗(∇c)2]dS,

in which the energy dissipation in the bulk region reads∫
�

∂

∂t
[ f (c) + κ (∇c)2]d�

=
∫

�

[
∂ f

∂c

∂c

∂t
+ 2κ∇c · ∂ (∇c)

∂t

]
d�,

=
∫

�

[
∂ f

∂c

∂c

∂t
+ ∇ ·

(
2κ∇c

∂c

∂t

)
− 2κ∇2c

∂c

∂t

]
d�,

=
∫

�

(∂ f

∂c
− 2κ∇2c

)∂c

∂t
d� −

∫
S

2κ∇c · n
∂c

∂t
dS. (A1)

Besides, the wall energy decreases with time as

∫
S

∂

∂t
[g(c) + κ ∗(∇c)2]dS =

∫
S

[
g′ ∂c

∂t
+ 2κ ∗∇c · ∂ (∇c)

∂t

]
dS,

=
∫

S

(
g′ − 2κ ∗∇2

s c
)∂c

∂t
dS. (A2)

Combining Eqs. (A1) and (A2), we have

∂F
∂t

=
∫

�

μ
∂c

∂t
d� +

∫
s

μS

∂c

∂t
dS, (A3)

in which the chemical potentials in bulk and substrate are
defined as

μ = ∂ f

∂c
− 2κ∇2c, μS = −2κ∇c · n + g′ − 2κ ∗∇2

s c.

Here, the normal vector of domain � is represented by
n̂ which is actually equivalent to −n on the substrate S.
Meanwhile, the chemical potential in � is defined as μ =
∂c f − 2κ∇2c and the substrate chemical potential reads μs =
−2κ∇c · n + g′ − 2κ ∗∇2

s c. Substituting the evolution equa-
tions Eqs. (8) and (9) into Eq. (A1), altogether with the no-flux
boundary condition ∇μ · n = 0, the free energy function dis-
sipates as

dF
dt

=
∫

�

μ∇ · (M∇μ) d� +
∫

S

μs(−τμs) dS,

= −
∫

�

M(∇μ)2d� −
∫

S

τμ2
s dS � 0.

At equilibrium, we have ∇μ = 0 inside the domain �, denot-
ing the solution of the standard Cahn-Hilliard equation. On
the substrate, μs = 0 is the steady solution of the Allen-Cahn
type wetting boundary equation Eq. (9).

APPENDIX B: SPHERICAL SUBSTRATE

For the spherical substrate, the substrate-related newly
added energy terms are expressed in polar coordinate
(er, eθ , eφ ), and Eq. (5) can be written as

∫
�

(κ1∇̂c ·er + 2 κ ∗∇̂2c ∇̂c · er ) d�

=
∫

�

∇̂ · [ ger + κ ∗(∇̂c)2 er] d�,

=
∫

S

[ g(c) + κ ∗(∇̂c)2] dS,

where the gradient in polar coordinate is defined as
∇̂ := (∂r, ∂θ , ∂φ ) and the Laplacian is expressed as ∇̂2 :=
∂r (r2∂r )/r2 + ∂θ (sin θ∂θ )/(r2 sin θ ) + ∂φφ/(r2 sin2 θ ).
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