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Bound on annealing performance from stochastic thermodynamics,
with application to simulated annealing
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Annealing is the process of gradually lowering the temperature of a system to guide it towards its lowest
energy states. In an accompanying paper [Y. Luo et al., Phys. Rev. E 108, L052105 (2023)], we derived a general
bound on annealing performance by connecting annealing with stochastic thermodynamics tools, including a
speed limit on state transformation from entropy production. We here describe the derivation of the general
bound in detail. In addition, we analyze the case of simulated annealing with Glauber dynamics in depth. We
show how to bound the two case-specific quantities appearing in the bound, namely the activity, a measure of
the number of microstate jumps, and the change in relative entropy between the state and the instantaneous
thermal state, which is due to temperature variation. We exemplify the arguments by numerical simulations on

the Sherrington-Kirkpatrick (SK) model of spin glasses.
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I. INTRODUCTION

Simulated annealing (SA) is a heuristic optimization
algorithm to approximate the global minimum of a function in
a large search space [1-4]. The algorithm models the physical
annealing process in metallurgy [5]: by treating the function
to be optimized as the energy landscape of a system, the
lowest energy state corresponding to the global minimum
can be evolved via a gradually cooling process. SA has been
massively used in a wide variety of real applications [6—8] and
has stimulated novel development in hardware [9,10].

The ideal SA finds the global optimum of any function
from a quasistatic cooling process, requiring infinite annealing
time [11]. However, in a realistic setting, the cooling schedule
is performed in a finite time. As a result, real SA algorithms
do not guarantee the global optimum but only find it proba-
bilistically. Significant efforts have been made to investigate
the convergence of real SA algorithms [12—14], to analyze the
effect of finite-length cooling schedules [15-18], and to gauge
the performance of SA in specific problems [19,20]. In an
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accompanying paper [21], we derived an analytical bound on
the performance of annealing by using recent methods from
finite-time stochastic thermodynamics [22-29]. The resulting
bound holds for all cooling schedules.

In this paper, we provide the full details of the results in
Ref. [21] and show explicitly how the theorems and methods
in finite-time stochastic thermodynamics can be adapted to
quantify the SA performance. We derive a method for bound-
ing the activity in SA, a measure of the number of microstate
jumps. We also show how to bound the change in rela-
tive entropy between the state and the instantaneous thermal
state which is due to temperature variation. Our arguments
involve two conjectures which we describe and justify, and
which we hope may spark further research.

The paper is organized as follows. In Sec. II, we introduce
key concepts in stochastic thermodynamics that we shall use.
In Sec. III, we prove the bound proposed in Ref. [21] which
characterizes the performance of any (physical or simulated)
annealing process. In Sec. IV, we apply this bound to SA
and discuss in detail the assessment of SA performance from
accessible parameters. Finally, in Sec. V, we conclude our
results.

II. STOCHASTIC THERMODYNAMICS

We start by briefly introducing the stochastic thermody-
namical framework of annealing processes, using standard
terminology of, e.g., Refs. [23,26,27].

©2023 American Physical Society
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There is a system of interest. The system has N energy
levels denoted as {Ei}f\’: - The statistical state of the system
is defined as a vector p(t) = [p1(¢), ..., pn(t)], where p;(t)
is the probability of the system on the energy level E; at time
t. The average energy of the system is

N
Ep = ZplEl (1)
i=1

In annealing, the system of interest is in contact with a
heat bath whose temperature 7 can be controlled to vary
in time. If the system is not in thermal equilibrium, it
will then thermalize, that is, the state of the system will
evolve towards the thermal Gibbs’ state y = [y, ..., ¥v],
with y; = exp(—BE;)/Z, where Z = ), exp(—BE;) is the par-
tition function and 8 = 1/T is the inverse temperature (The
Boltzmann constant kg is taken to be 1.) In annealing, the
thermal state y () is time dependent due to the varying tem-
perature T ().

The dynamics of a thermalization process are described by
a master equation [26,30,31]:

pi(t) = Z Lyj@)p;j) —Tj@)pie), )
J(#D)
where I';; () is the generator satisfying ), I';;(r) = 0, Vi and
[j(t) > 0, Vi # j. In addition, we suppose that the detailed
balance condition is satisfied in the process, i.e.,

Lij(@)y;@) = Tji@)yi@), Vi, J, 3)

which is commonly assumed in stochastic thermodynamics
(See, e.g., Refs. [22,23,27].)

As the system evolves, there are changes in its energy and
entropy. It is common to break the change in (average) energy
E, into two parts:

dE, = d(Z piE,-> = ZEidpi + ZpidEi
=dQ +dW, “4)

where Q is called the heat added to the system and W is
called the work done to the system. In annealing, the energy
spectrum is unchanged and dE, = dQ. The thermodynamic
entropy of the system (again for kg = 1),

Sp:=—>_pilnp;, (5)

also changes due to the evolution of p. Note that we shall
make no distinctions between the thermodynamic entropy
and Shannon entropy since the two quantities are the same
within our setting. For the thermal state y transitioning to
a new thermal state at an infinitesimally different tempera-
ture, as in quasistatic annealing, one can show BdQ = dS,.
If the state is not a thermal state, one has dS, > BdQ.
The quantity

(1) = S,(t) — B1)O() (6)

is thus non-negative in the case where the system is not
in thermal equilibrium. ¥ is commonly termed the entropy
production rate. The entropy production when two systems

1 and 2 (like the system and the bath) interact is by defi-
nition dS; + dS,, in line with early ideas of entropy being
akin to a fluid existing in and flowing between different
systems and possibly being created [32]. Here the bath is
in a thermal state, such that dS; + dS, = dS; + B(t)dQ, =
dSy — B()dQ, justifying the name entropy production rate
for X (see, e.g., Ref. [27] for more).

To characterize the performance of an annealing protocol
run in finite time t, we consider the 1-norm distance [22-24]
to the final thermal state y (7):

L= |pi(t) = i(r)l. )

The probability of not having a globally optimal state at time
T when T'(t) = 0, p(nonoptimal) is bounded by L.. To show
this, notice that the 1-norm distance is twice the total variation
distance [31] such that

%LT = max |p(events) — y (events)|
events

> |p(nonoptimal) — y (nonoptimal)|

= p(nonoptimal), (8)

where in the last line we used the fact that y (nonoptimal) = 0
at zero temperature. L, thus can be considered as the perfor-
mance error of the annealing. In the next section, an upper
bound of L, in terms of Ly for a general annealing process
will be given.

III. GENERAL BOUND ON ANNEALING IN FINITE TIME

We then consider such an annealing process, where a
system initially in thermal equilibrium with a heat bath
and the bath temperature is continuously decreased from
T, =T() to Ty = T(t) within a finite time 7. In the ac-
companying paper [21], we derived a general limit on
the annealing performance error represented by L.. Here,
we provide the details of the derivation in the following three
subsections.

A. Splitting the relative entropy

A critical challenge in evaluating the effectiveness of an
annealing process is to measure the deviation of the system
state, p(t), from the reference thermal state y (7). While
the 1-norm distance, L., is a suitable metric for this pur-
pose, its direct calculation can be difficult. However, relative
entropy, a comparison tool widely adopted in information
theory to compare two probability distributions [33], proves
to be a good alternative to start with, due to its deep
connection to nonequilibrium thermodynamics. The relative
entropy between probability distributions p(z) and y(¢) is
defined as

pi(t)

S = () In ——. 9
(pO1ly (1)) Z”“)“m) )

Its close relationship with free energy is apparent via the
expression

F(t) = Fq(1) = T@)S(p®)lly (), (10)
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where the nonequilibrium free energy F(t):=E,(t) —
T(t)S,(¢) and the equilibrium free energy Feq(?) := E, (¢) —
T()S,(t) with E, (¢) and S, (¢) being the energy and entropy
of the thermal state y (¢), respectively.

Taking the time derivative of S(p||y ), one gets

d 9 9
—S =p—S ;) —S
7 (plly) pap (plly)+y8y (plly)

.0 .9
= P@S(PIIJ/) + ,3@5(17“)/)

=-%+17, an

We immediately see that a new rate, 7= ,B%S (plly), com-
pared to a fixed temperature scenario, appears at the end of
Eq. (11). Z is an annealing-related quantity, arising from the
temperature variation. A direct calculation shows that

. 3 ; .
T=j3 SGlly) =~ Zy,-% = (E,~E)B.  (12)

where the expression
vi = B(E, — Ey: (13)

is used in the last equality.

We now comment on the physical meaning of these terms
from Eq. (11). From Eq. (6), the entropy production rate,
>, is nonzero when the system thermalizes towards a fixed
thermal state. We imagine that, in ideal annealing processes,
the change of the thermal states can be regarded as the switch-
ing of the system to heat baths at different temperatures.
The disconnection and reconnection of the system with baths
should not alter the system state instantaneously, resulting
in no entropy production during the change of the reference
thermal state. However, the variation of the reference state
does affect the value of the relative entropy. This contribution
is represented by Z.

We proceed to split the relative entropy. Integrating both
sides of Eq. (11) from O to t gives us

S(p@)lly () = S(pO)ly(0) = =2(r) + Z(x), (14)
where X(7) = [ 2 dt and

I(t):/o (E, — E,)Bdt. (15)

Since the system is assumed to be in equilibrium initially,
which is the most common case in annealing, we have
S(p(0)|]y(0)) = 0 and therefore obtain,

S(p(O)lly(r)) = —Z(7) + Z(7). (16)
Using Pinsker’s inequality [34], Lg < 28(p(o)l|ly(t)), we ar-

rive at an upper bound on L2,

L2 <2[-2(1) + Z(x)]. (17)

B. Bounding entropy production during the annealing

In this subsection, we, inspired by Ref. [22], derive a lower
bound for the entropy production X(t) in the varying tem-
perature case. For the clarity of equations, we omit the time
dependence of p;(t) and I';;(z).

First, we rewrite E(t) as

() =—Y_ pillnpi + BO)E]

! Lijp;
=3 Z(Fijl’j = Tip)In rpl
i#] J
(Tijpj — Tjipi)? (18)
Tijp; +Tjipi

i#j

where we have used Eq. (2), the relation S(1)E; = —Iny; —
InZ in the second line, and the inequality (x — y)In(x/y) >
2(x — y)?/(x 4+ y) in the third line, as suggested by Ref. [22].

Meanwhile, using the Cauchy-Schwarz inequality, we have

> il =Y _ITijp; — Tjipil
i

i#]

(Tijpj — Tjipi)*

Tiip;+Tipi
Lijpj + Tjipi Z v

i#] i#]

<AV2EMA@), (19)

where we have defined the activity

A) =) Ty)p;(), (20)
i jED

which is the expected jumping rate among different states at
time . We denote the expected number of jumps during the
time interval [0, 7] as

{Njumps ) =/ A0)dt = (A7, 2n
0

where (A), := % for A(t)dt. [See also the discussion around
Eq. (34) for further explanation of why we call this the ex-
pected number of jumps.]

Then, the 1-norm distance between p(0) and p(t) satisfies

3 1piO) — pi(o)l < Z/O i)

< / dt/23(1)A(t)
0
< V2E(T)(A).T. (22)

Equivalently, we obtain

(X, 1pi0) — pi(o)l)’

(0 > VE:

(23)
That lower bound on X(7) is termed the speed limit from
entropy production on the transformation from the initial state
p(0) to the final p(7).

As a concrete example, consider a quasistatic process,
which has zero entropy production [¥(7) = 0]. Then the
speed limit implies that for a finite activity (.4)., a transition
between two distinct statistical states requires T — 0.

054119-3



LUO, ZHEN, LIU, EBLER, AND DAHLSTEN

PHYSICAL REVIEW E 108, 054119 (2023)

Since ), |pi(0) — p;(7)| is a distance, by triangular in-
equality we have

> 1pi0) = pi(7)]

> | D 1pi0) — v = D Ipi(r) — i)

= |Lo — L. 24)

Substituting Eq. (24) into Eq. (23), we finally obtain a lower
bound of the entropy production for a general annealing
process.

(Lo — L)
Y(t) > ———. 25
(t) =2 AT (25)
C. General bound
Combining Egs. (17) and (25), we have
Ly—L;)?
2o Lo~ Lo, 27(1). 26)

T (At

Equation (26) can be regarded as a unary quadratic inequality
for L.. Solving this inequality for L, gives us

Lo+ (At [-13 +2Z(@)(A)eT + 1)]
L < (A, T+ 1 ’

This is the general bound of an annealing process as obtained
in Ref. [21]. It is worth noticing that Eq. (27) is applicable for
any system energy landscape and any cooling schedule as long
as the thermalization dynamics respect the detailed balance
condition in Eq. (3). Since the terms inside the square root in
Eq. (27) are non-negative given Eq. (26), (A), and Z(t) obey
a tradeoff relation:

27

L5
2((Ayt+ 1)

This can be understood as a “speed limit” related to Z(7),
which can only be small if the expected number of jumps
(Njumps) = (A). 7 is large, given that L, is fixed.

In the quasistatic limit associated with the protocol dura-
tion T — 00, the tightness of our bound [Eq. (27)] for the
error L, is guaranteed. This can be seen by investigating how
our bound on SA performance scales with 7. Let the rate of
varying temperature 7' decrease with 7. In this case, Z(t) will
diminish as t increases. This can be seen from bounding the
expression of Z(t) in Eq. (15):

I(r) 2 (28)

I(r):/ (E, — E,)Bdt < max (B, — E,)AB,  (29)
0 tel0,T

with AB = fr — fi being the maximal range of the inverse
temperature. As 7 increases, the thermal state of the system
changes slower, leading to a smaller max,¢[o,r)(E, — E,, ) that
measures the departure from the equilibrium energy. We can
define the downward scaling of Z(t) for large t in terms of
the big O notation for an asymptotic upper bound: Z(7) =
O(r™*), where 0 < o < 1 is some scalar. An upper bound
on « is in fact imposed by the tradeoff relation [Eq. (28)]
[assuming (A), is finite (bounded)]. Substituting that upper

bound of Z(7) into Eq. (27), the upper bound on L., we ob-
tain L, = O(r~%/2). This scaling implies the tightness of the
bound for quasistatic protocols: when T — oo, the protocol
approaches being quasistatic and both L, and its bound vanish.

We now further analyze how to evaluate Eq. (27) when
using it to bound the performance of simulated annealing
(SA), in particular, how to evaluate (A), and Z(t) with-
out calculating the evolution of the statistical state of the
system, p(t).

IV. APPLICATION TO SIMULATED ANNEALING

In this section we apply the bound on annealing perfor-
mance, Eq. (27), to the case of simulated annealing (SA).

SA is an optimization algorithm inspired by real annealing
processes. The algorithm treats the cost function as the energy
of a system and uses a control parameter called “tempera-
ture” to anneal it. The physical principle is that a system at
thermal equilibrium has a higher probability of staying in its
ground state at lower temperatures. The algorithm seeks to
find the minimal cost by gradually lowering the temperature
and moving closer to the final thermal equilibrium. Therefore,
the success of the optimization depends on how far the system
is from this equilibrium state.

In SA, the annealing time 7 used in the previous section is
replaced by the discrete time steps k. L, = ), |pi(k) — yi(k)|
becomes the error from the target state. As we will show, a
discrete-time analog of Eq. (27) provides an upper bound to
the error when the SA is run in « steps.

To illustrate how to evaluate (AP), and Z(«), the discrete
version of (A), and Z(t), without referring to the interme-
diate statistical state of the system, we first briefly set up the
framework of the simulated annealing in Sec. IV A and bound
(AP), and Z(x) in Sec. IVB and Sec. IV C, respectively.
A performance bound of simulated annealing is derived in
Sec. IVD. In Sec. IVE we show how Z(x) can be calcu-
lated analytically for a one-dimensional (1D) Ising chain.
A numerical verification of the tightness of the bound on a
Sherrington-Kirkpatrick (SK) model, a fully connected spin
glass with Gaussian couplings [1,35], is given in Sec. IVF.
Finally, in Sec. IV G, we provide further analytical and nu-
merical discussion on the relaxation behavior of SA by using
SK models.

A. Simulated annealing algorithm

In SA, the system state is updated iteratively until it ap-
proximately reaches equilibrium. The evolution of the state
can be viewed as a discrete-time Markov chain [31]. Sup-
pose that temperature decreases from 7; to Tt in « steps, i.e.,
="T,T1T,....,T, ..., T, = T;. At step k, let the probability
of the system staying in state i be p;(k). For each iteration step
k, the state changes are described by

pilk+1) =Y Pk + Dp;(k), (30)
J
where P;j(k + 1) = Prob{X (k + 1) = i|X (k) = j} is the tran-

sition matrix with X (k) denoting the system state at step k,
satisfying ) ", P;j(k) = 1, Vj and P;;(k) > 0, Vi, j.
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In typical SA algorithms, P;;(k) has the following form:

\_/\/’l(j)|Aij(k)7 i EN(_/),
0 otherwise,

where [N ()| is the size of N (j), the neighbourhood of the
state j in which all states can be reached in one step from j,
and the acceptance rate A;;(k) is the probability of accepting
such a transition from j to i.

In line with SA simulating a thermalisation process, the
detailed balance condition [Eq. (3)] is imposed. Here, we
more specifically adopt the acceptance rate from the Glauber
dynamics which is widely used in SA and spin glass studies
[31,36-38],

1 vi(k)

Ajj(k) = = ’ (32)
1 +exp[B(k)AE;;]  yilk) + (k)

where the energy difference AE;; = E; — E;.

B. Bounding the iteration-averaged activity (.A"), for SA

We now proceed to bound the activity that appears in
Eq. (27) for SA with Glauber dynamics. We first define the
discrete-time activity .AP. We then derive an expression for
AP under Glauber dynamics SA. We proceed to conjecture
an upper bound on AP based on analytical and numerical
evidence.

Since the time evolution in SA [Eq. (30)] is discrete, a
discrete version of the activity is needed. We shall use a
superscript D to denote discrete, and write the discrete-time
activity as AP. In the Appendix, we show that any discrete-
time Markov chain in Eq. (30) can always be simulated by
a continuous-time master equation in Eq. (2). It is, therefore,
natural to define the discrete-time activity as

2w =3%

)

Pij(k 4+ Dpj(k), (33)

which leads to the iteration-averaged activity (AP), :=
% ZZ;& AP (k). (AP), equals the (A), of the corresponding
continuous-time Markov chain (see the Appendix) and can
be interpreted in terms of the expected number of jumps
between micro-states. The right-hand side (RHS) of Eq. (33)
is a sum over the probabilities of jumping from state i to
j # i, so we may write AP = p(jump). The expected number
of jumps over the whole process, by inspection, is (NP ) =

jumps
Y e 0p(]ump) Thus
(Nps) = (AP) k. (34)

jumps

Eq. (34) is the discrete-time analog of Eq. (21). For the
case of continuous time, it is natural to define (Njumps) =
f;o p(jump, t)dt where p(jump, t), which can be termed the
rate of jumping, is the probability density for changing mi-
crostates in the infinitesimal time interval dr.

Substituting the general transition matrix P;;(k) of Eq. (31)
into Eq. (33), we have

APk =>" > w( WOyl Dpio. - G39)
i jeN(G)

For simplicity, we denote |[N'(j)| = n; and ignore the step
dependence of quantities, writing g(k) = g, where ¢ is some
quantity. We use prime ’ to denote the quantity at the next step:
gk+1)=q.

Note that the acceptance rate A;; defined in Eq. (32) has the
property A;; +A’; = 1. We can therefore rewrite Eq. (35) as

Z Z Jpj

i jeN(i) nj

— _Z Z ( +A/ Pz)

i jeN(i) ni
SEPDDIEEED 3D IRV (AR

i jeNG ! i jeN()
=___Z 3@y - A (-’—ﬁ>

i jeNG) "

_ yz l pj)
=5-3 -2, (36)

Therefore, the activity, interpreted as the jumping probability,
deviates from 1/2, the unbiased case, by a number relevant
to the order of occupation probabilities for neighboring states.
More precisely, we can consider the activity at the thermal
state by setting p; = yi’, Vi, which gives us

=X > A

i jeN(i) nj

vi—vi(vi v

i jeN() )/,

The thermal state, at infinite temperature, becomes uniform
(unbiased), such that Al; = 1/2, while at zero temperature

AP = 0, meaning that any possible jumps are frozen. The
analysis of the two extreme cases is intuitive and simple. How-
ever, the value of A])? at the intermediate temperatures highly
depends on the neighbourhood structure of the energy land-
scape, making the determination of .AE quite complicated.
One common way to simplify the problem is by consid-
ering equal-sized neighborhoods, i.e., n; = n, Vi, as in the
Edwards-Anderson model [39] we shall introduce later. Now,

by Eq. (37), we have

N2
=___ZZ(V' J;) 2. (38)

i jeN() Vi

We conclude that, at least for fixed neighborhood size, 0 <
AP < 1/2 during the annealing process, where equality on
both sides holds at zero and infinite temperatures, respectively.
There is significant evidence that AP (k) also has a nontriv-
ial upper bound in SA. In SA, the system, initially in a thermal
state at some nonzero temperature, keeps evolving toward a
cooler thermal state. It is thus reasonable to conjecture that

AP(k) <172, 0<k<«. (39)
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0.50 :

0.45

0.40
2035 — T(k)=—0.00475k+2
5; 030 T(k) = 1/(0.02375k +0.5)

------- T(k)=0.6/In(k +0.35)

0.25

0.20

0.15

FIG. 1. The activity AP (k) in the SA of a 7-spin SK model.
Simulations take 400 steps with temperature changing from 7, = 2
to Tt = 0.1, according to the linear (blue solid line), inversely linear
(orange dashed line) and inversely logarithmic (green dotted line)
cooling schedules, respectively.

Numerical evidence from simulations of a 7-spin SK model
(the formal definition of the SK model will be given in
Sec. IVF), is provided in Fig. 1. One sees Eq. (39) is
respected. Moreover, there is a decreasing trend of AP (k) dur-
ing the annealing, which coincides with previous numerical
results [15] and could be a general feature of SA. As a conse-
quence of the conjecture [Eq. (39)], we have (AP), < 1/2.

A further, intuitive, route to understanding conjecture
[Eq. (39)] makes use of the tendency for lower energy states to
have a higher probability in thermal scenarios. For equal-sized
neighborhoods, the activity AP is given by

11 v —v)pi—pj)
AP = - — — L ) (40)
2 4n zl: jg/:(i) v+ J/;

Adopting the concept of passive states where the lower energy
state has the higher probability of occupation [40-44], we
could assume the passivity in neighborhoods and define the
neighborhood-passivity P; for state i,

¥ v/ —v)pi—pj)

Pi = /+ ’
JENG) Vi TV,
_ P
= ) tanh > (Ej = E) |(pi = pj)- (41)
JEN ()

Note that if the two neighboring states p; and p; respect
passivity, tanh[B'(E; — E;)/2]1(p; — p;) = 0. The passivity in
neighborhoods thus requires P; > 0, Vi. Once this assump-
tion holds during the SA, by Eq. (40) we have AP < 1/2 for
every step k. Consequently, (AP), < 1/2. This assumption
can be justified by noticing that all thermal states are passive.
Thus, as the system initially staying in a thermal state evolves
towards a new thermal state in SA, we expect the passivity
at least in the neighborhoods to be preserved. As is shown
in Fig. 2, P; > 0, Vi, for three different kinds of cooling
schedules, which verifies our passivity assumption and gives
new numerical evidence for the conjecture of AP (k) < 1/2,
and hence (AP), < 1/2.

T(k)= —0.00475k+2 T(k)=1/(0.02375k +0.5) T(k)=0.6/In(k+0.35)

0.8
0.6
0.4
0.2 |
_
/ / —
0.0
0 200 400 0 200 400 © 200 400
k k k

FIG. 2. Verification of the neighborhood-passivity assumption in
a 7-spin SK model. The simulation takes 400 steps with temperature
changing from 7, =2 to T; = 0.1, according to the linear (left),
inversely linear (middle) and inversely logarithmic (right) cooling
schedules, respectively. Each curve represents the neighborhood pas-
sivity of a state in the state space. All curves are above P; = 0.

C. Bounding the relative entropy change
due to temperature variation Z (k)

In this subsection, we will bound the relative entropy
change from temperature variation, Z. In SA, 7 is evaluated
by a discrete sum:

I(k) = Z[Ep(k) —E,(OI[Bk) — pk — D], (42)

k=1

which is shown to be equal to the Z(r) of the underlying
continuous-time process that simulates the discrete-time evo-
lution in the Appendix. Since E, (k) is the energy expectation
of the thermal state y, although it apparently acquires the k
dependence from a cooling schedule T (k), it is intrinsically
a fixed function of temperature for a specific energy land-
scape. In this sense, we regard it as a problem-specific but
dynamics-free quantity. In contrast, the average energy E,(k)
requires information on the instantaneous system state p(k).
To access it, one has to solve the dynamics in Eq. (30), which
is generally difficult and is the main obstacle to analyzing the
performance of SA. In the following, we will try to tackle it
by providing an upper bound to E,(k) in terms of E,, (k). This
is done via the use of a partial swap (PS) model, a simple
thermalization protocol where the system state is swapped to
the thermal state with a probability at each step [28,45,46]. We
shall use the superscript PS to denote quantities in the partial
swap model. By showing that E,(k) < E;S(k) for all k, we
will derive a bound of Z(x) as Z(k) < ZFS (k).

The evolution of the state of the system p®> in a partial
swap model is given by

p;PS — pf’s + MPS (yi/PS _ pfS)’ (43)

where uPS is the so-called partial swap rate and the time
dependence has been neglected and the prime ' denotes the
next time step. Multiplying E; on both sides and summing over
i gives

EI;PS — E;’S + ILLPS(E;PS _ E]l;’s)’ (44)
and therefore
/PS PS
MPS — u (45)
E}/,PS _ EII:S :
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Similarly, we can define a relaxation rate pu for the actual
process in SA as

o E

= L . (46)
E, —E,

This relaxation rate has been employed in analyzing the min-
imal dissipation and designing the optimal cooling schedule
in SA [47—-49]. Note that, by writing in this form, we require
a positive p. Since in SA, E, > E, > E;, we need the as-
sumption that £, > E]/, Such descending energy expectation
has been witnessed in most uses of SA [15,50,51]. uFS and
quantify the relaxation speeds of PS and the actual processes
in terms of the energy differences, respectively. Intuitively,
w > uPS implies that the corresponding PS process is slower
than the actual one in SA. This can be formulated by the
following proposition.

Proposition 1. Consider that two identical systems ini-
tially in the same thermal state are annealed according to the
same cooling schedule. Their relaxation dynamics are given
by Eq. (30) and Eq. (43), respectively. If u > uPS during the
annealing, £, < E ,[;S holds all the time.

Proof. Since the two processes correspond to the same
energy landscape and cooling schedule, we have E;PS =E).

Let > uPS, namely,
E —E
— >
E, —E,

/PS __ 1PS
E, E,

_ EPS
E, —E,

(47)

As a partial swap rate, u*> < 1. The insufficient thermaliza-
tion leads to E I/,PS > E, and therefore, uPS is a monotonically

increasing function of E}S. If E}S > E

p’

/PS PS /PS

E;” —E, E;> —E, 48)

S = k)
E, —E} E, —E,
and thus, by Eq. (47),

E,—E, EfS—E, “9)
E, —E, E, —E,

InSAE,>2E, > EJ’/ The above inequality gives us EI’)PS >
E [’) With the initial condition E[I;S (0) = E,(0), by induction,
we proved that u > u*® leads to E;° > E,, all the time. W

Knowing that 1 > uPS does give us an upper bound on
E,, we further note that one can evaluate E;s iteratively in
Eq. (44) by using E, only. Replacing E,(k) with E;;S(k) in
Eq. (42), we thus find the desired bound Z (k) < TP (k).

Now the question is how to find such a u*> less than
when p is not accessible (since its calculation still requires
E,). Recall that u gauges the speed of the relaxation dy-
namics. The relaxation time 7. (P) = 1/(1 — A,(P)) of the
discrete Markov chain [31], defined by the second largest
eigenvalue of the transition matrix P, A,(P), should be con-
sistent with . Therefore, we conjecture that the order of
relaxation times of the two processes corresponding to u and
wFS is the inverse order of u and ufs, i.e.,

T < Ty = 1> p'S, (50)

With this conjecture, we can compare A>(PS) and A, (P)
of the transition matrices P™® and P to find a condition

on A (P"S). The desired u"S can therefore be derived from
X2 (PS) by the following proposition.

Proposition 2. For a partial swap model given by Eq. (43),
)\.Z(P/PS) -1= MPS.

Proof. Let N be the total number of states. The transition
matrix P’PS for such a PS model can be written explicitly as
follows:

L—p+upyl w0 o
pPS _ ny;  l—ptpyy ooy
1Yy myy o l—udpwy
| )/1: )/1;
—a-w| . |+u]™ T 6D
: YW W

where we have neglected the superscript “PS” of the matrix
elements. Note that the second matrix on the right-hand side
has a rank of 1. By the rank-nullity theorem, for a matrix
T, Rank(T) + Nullity(7T") = dim(7'), where Nullity(7T) =
dim{v|T v = 0}, the nullity of the second matrix is N — 1,
i.e., it has the eigenvalue of 0 with multiplicity of N — 1
and the other eigenvalue is 1 given by its trace. Therefore,
the eigenvalues of P*S are 4;(P?S) = 1and A (PPS) = ... =
)\N(P/PS) =1—= MPS- ]

For the transition matrix P in SA [Eq. (31)], the second
largest eigenvalue A, (P) can be bounded as [52]

W
J2(P) < 1= —=1(0), (52)
max
where Wi, = min; jepr) Pijyj and ymax = max; y;. Here, Q is
the Laplacian matrix associated with the state space [52],

NG| ifi = j,
0i;=1-1 if j € N(i), (53)
0 otherwise,

and A,(Q) is the second smallest eigenvalue of Q. By Eq. (31),

1 Vi 1 min
e )> Yoin (54

Wmin = Min ,
" i,.ieMi)(lN(j)l Yi+ v Nmax 2

where M. = max; [N (i) and ypmi, = min; y;. Substituting
the above into Eq. (52), we have

Q)
ZNmax

Since we want PS to be a slower process than SA, i.e.,
Tl (P) < Tpe1 (PPS) followed by L2(P) < Az (PPS), we can sim-

, 22 (Q) ,
ply set Aa(P™S)=1—uf =1 - 70" exp(—p'Abma),
which gives us "

M(P) <1

exp(_ﬂAEmax)~ (55)

A2(Q)
szaX
where we have recovered the k£ dependence for further uses.

By the conjecture [Eq. (47)], such a u?S (k) guarantees w(k) >
uPS(k). Hence, it leads to Z(x) < ZPS(x) as we discussed.

wS (k) =

exp[—B(k + 1) AEma], (56)
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For a concrete example of the uf S(k) of Eq. (56), consider
an n-spin Edwards-Anderson (EA) model [39], a generaliza-
tion of the SK model with the Hamiltonian

Hea = Y gusisi, (57)
(k.1)

where each spin s; € {—1,+1} and (k,[) denotes the set
of pairs of spins s; and s; having nonvanishing couplings
gr- Here, we do not consider the self-energy terms, i.e.
gk = 0, Vk. The system state i is a vector representing the
spin configuration 5 = {sgi), ..., s}, The neighbors of i are
configurations with only one spin orienting oppositely with
respect to i. In other words, every neighborhood has the same
size, i.e., Nyax = n. Given that the total number of states
is 2", the state space is an n-dimensional hypercube, whose
A2(Q) = 2 [52]. In this case, Eq. (56) becomes

1 (k) = £ expl—B(k + 1) AEmax]. (58)

We will use this uPS(k) to bound our numerical results in
Sec. IVF.

D. Performance bound for simulated annealing

We now derive the performance bound for the simulated
annealing we considered in this section.

We define the entropy production in the discrete-time
Markov chain, denoted by X(«), as the entropy production
in the corresponding continuous-time Markov chain. The de-
tailed justification is given in the Appendix, with the key
results listed below. The discrete-time analog of the speed
limit in Eq. (25) is given by

Lo — L,
S(c) > (2(:./41)),(/3 (59)
Accordingly, Eq. (26) becomes
72
12 < —% + 2T (), (60)

Substituting the conjectured bounds (AP), < 1/2and Z(x) <
TIPS (k) with the partial swap rate u"S (k) in Eq. (56), we have

2Ly — L)?
K

L? < + 2775 (k). (61)

Solving this inequality for L,., we have the performance bound
of SA,

2o+ \/2K[—Lg + TIPS () (k +2)]
L, < . (62)
K+2
|

d lnle

B Jncosh(BJ) sinh(BJ)[cosh(BJ)* "% + sinh(8J)" 2]

Compared with the discrete-time analogy of the bound
Eq. (27) (see the Appendix),

Lo + [ (AP) ek (—L3 + 2Z()(AP) ek + 1))
(AP), i 41 ’

Eq. (62) replaces the relative entropy term Z with Z%S asso-
ciated with a partial swap model. Evaluating Z" (k) does not
require solving the evolution of p(k) [Eq. (30)] but only the
information on E,, (k), which can be obtained by knowing the
energy spectrum of the system.

For specific models, the energy spectrum or the probability
distribution of energy levels may be known, from which one
can construct the partition function Z and find E, by E, =
—dlnZ/aB.

For systems with a priori unknown energy levels, one can
sample the energy landscape to estimate the spectrum. The
computational resources required in evaluating the bound on
the error of the solution are also then in fact much lower than
the resources required for evaluating the error L, via simu-
lated annealing. To find L, the distance between the statistical
state p(k) and the equilibrium statistical state y («), directly
through simulated annealing, many trajectories are indeed re-
quired, in order to obtain p(k) at the kth step. A key advantage
of Eq. (62) is that it replaces the need to evaluate that distance
with the need to know the energy spectrum. Given a state
space of size N, one can find the energy landscape by the order
of N calls of the energy function. In contrast, for a faithful
estimation of p(k) via simulated annealing, the number of
trajectories Ny,j > N and each Monte Carlo time step for all
trajectories needs Ny,; calls of the energy function. Therefore,
quantifying the computational cost by the number of calls of
the energy function, evaluating our Eq. (62) is computation-
ally much cheaper than performing simulated annealing to
evaluate the error.

In the following, we exemplify the calculation of the bound
for 1D Ising chains with known energy spectrum in Sec. IVE,
and study the tightness of the bound by numerical simulation
on SK models in Sec. IV F.

L < (63)

E. Example of a 1D Ising chain

In order to show how this bound can be analytically
calculated, we consider the simulated annealing on a 1D n-
spin Ising chain, which is a simplified EA model, with the
Hamiltonian given by [53]

Hpp = —JZSiSi-H, (64)

i=1

where s; € {—1, 41}, J is the coupling constant and the pe-
riodic boundary condition is applied, i.e., 5,8,+1 = s,51. For
even n, the partition function Z;p at the inverse temperature 8
can be calculated as [53]

Zip = 2"[cosh(BJ)" + sinh(BJ)"]. (65)

The equilibrium energy E, p is therefore

(66)

E,ip=— =

ap

cosh(BJ)"* + sinh(BJ)"
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BOUND ON ANNEALING PERFORMANCE FROM ...

PHYSICAL REVIEW E 108, 054119 (2023)

Using the partial swap model [Eq. (44)], one can cal-
culate EpSp(k) = EpSp(B(k)) iteratively from E, 1p(k) =
E, ip(B(k)) and find I{)IS)(K) by Eq. (42). On the other
hand, given the energy landscape, the initial distance Ly =
> 171(0) — y;(x)| is known. The bound Eq. (62) can thus be
evaluated for this model.

Apart from evaluating Eq. (62) exactly, we can also deduce
the scaling of L, for large k. We consider the normal cooling
schedules where the rate of varying temperature decreases
with k. Therefore, when « gets large, dk = 1 and dE;SlD(k) =
E,l;),le(k +1)— EIESID(k) are relatively small. Equation (44)
can be written as a differential equation:

EXSp(k) = =iy (O[EFSp (k) — Ey ip(K)]. (67)

where x(k) = dx/dk. This equation can be solved with the
initial condition E;SlD(O) =E, ip(0) by (see Supplemental

J

Material of Ref. [21])
k k ’ ’ .
EPSp(k) = E, ip(k) — /0 ¢ LB E L (s)ds. (68)

Accordingly, for large «, If’g («) calculated by Eq. (42) can be
written as an integral in a form similar to Eq. (15),

IS(c) = /0 [EPSo (k) — Ey (0] B (k)dk

K k . o .
S / f e~ KBS () B(kyds dk, (69)
0 0

where the second line is from the substitution of Eq. (68). We
note that

E, =Y Eyi=Y E(E, —Eyip=—0ELB (0

where the second equality used y; = (E, — E,-)y,-,B [Eq. (13)],
and o(E)JZ, = —) E/(E, — E;)y; is the energy variance for

the thermal state y. Iﬂg (k) can therefore be written as

K k k
I () = / f eXp|:— f u{’]%@’)ds}am(E)i (5)B(s)Bk)ds dk, (71)
0o Jo K
where
,  0%InZp  4J%n[cosh(BJ)*" sinh(BJ)* — cosh(BJ)? sinh(BJ)*" + (n — 1)(cosh(BJ) sinh(BJ))"]
op(E), = 5 = : - . .
B [cosh(BJ)* 4 sinh(BJ)*]? sinh(2BJ)
For large BJ, cosh(8J) ~ sinh(8J) and we have
Pa(n—1) _
2 ~ AT 487
olD(E)y = oh (2,3])2 ~4Jn(n — 1)e . (73)
Consequently, by Eq. (71),
K k k
TP (k) ~ 47%n(n — 1) / / exp[— / lexp[—2/3(s/)nnds}e“““‘”ﬁ(s)ﬁ(k)dsdk. (74)
0 Jo s n

where, as we suggested in Eq. (58), M{’]S)(k) is chosen as /Lll)ls)(k) >~ exp[—28(k)nJ]/n with AE,x = 2nJ. Equation (74) hence
provides a systematic way to calculate ZF5(t) for any annealing schedule B(k).
For example, Consider the cooling schedule B(k) = B;i + (Bf — Bi)k/k, and use the lowest partial swap rate g =

exp[—2B¢nJ]/n < ,ulfls)(k), Vk, for simplicity. We then have

i) S

(75)

Choosing J = 1/n to fix the energy range AE,,x = 2, we find
Ifg (k) ~ O(nk~"). Substituting it into the bound Eq. (62),
the scaling of the error L, is given as L, ~ O(n'/?k~1/?). This
result shows how the annealing performance for the 1D Ising
chain is influenced by the system and protocol parameters, for
this specific cooling schedule, which to our knowledge has not
been derived before.

F. Numerical results for SK models

To verify the tightness of our bound in Eq. (62), we adopt
an n-spin SK model to conduct SA. The Hamiltonian of an

47%n(n — De P (B; — ) [1 — e Bi=P)
—4J (B — i) + fuk

N —1+ e““‘]
4J (B — Bi) Lk '

[
n-spin SK model is defined as [1,35]

1 n n
Hsx = 5 DY gusisi, (76)

k=1 I=1

where s, € {—1, +1} and {giw/}},_, is a collection of inde-
pendent and identically distributed standard Gaussian random
variables. The normalization factor 1/13/2 is chosen to ensure
that the maximum energy has the order of magnitude of 1 [35].
The merit of this choice is that one can use the famous result
of the SK model that lim,,_, oo E(Hsk max) & 0.76, where E(-)
denotes the Gaussian expectation [54,55]. The partial swap
rate in Eq. (58) is also applicable to the SK model. We thus
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P N Lo
1 — L

0.25 i‘ —-+— Bound in Eq. (63)
i\ ---- Bound in Eq. (62)

0 100 200 300
K

FIG. 3. Bounds on the performance of SA in solving a 7-spin SK
model. 7; = 1.8 is decreased inverse linearly to 7; = 0.8 in « steps.
Left: The performance error L, and our bounds in Egs. (63) and in
(62), as well as the performance error of the initial state Ly. Right:
The accumulated relative entropy due to temperature change Z(x)
with our upper bound Z%S (k) and our lower bound from the tradeoff
relation between Z (k) and (.AP), (for (AP), < 1/2).

have a nice estimation of AE, in the expression of wPS (k)
in the thermodynamic limit n — o0, i.e.,

lim E(AEpy) = lim 2E (Hsg max) &~ 1.52. (77)
n—o00 n—0oo

This result with Eq. (58) provides a faithful way to find an
appropriate S (k) only in terms of cooling schedules for an
SK model with large n.

In Fig. 3, we present the numerical results of SA conducted
on a 7-spin SK model, in which the temperature is inverse-
linearly decreased from 7; = 1.8 to 7z = 0.8 in « steps. The
left plot validates that both evolution history-dependent or
-independent bounds [Eqgs. (63) and (62)] provide upper limits
for the performance error L, of SA. To reveal the « depen-
dence of the annealing-related quantity, the relative entropy
from temperature descending Z(x ), bounds from both direc-
tions are presented in the right plot, where Z7S (k) is calculated
by the method suggested in Sec. IV C and the lower bound is
given by the tradeoff relation in Eq. (28) with (AP), < 1/2.
Notably, the upper and lower bounds of Z(x) are saturated
for fast (small x) and slow (large k) cooling, respectively,
demonstrating the tightness of the two bounds.

For comparison, a similar simulation is provided in
the accompanying paper [21], which adopts linear cooling
schedules.

G. Relaxation rate u of spin glasses in SA

From the previous discussion, we have seen that the choice
of uPS(k) in Eq. (58) does give us an evolution history-
independent bound for the example of an SK model. However,
as is shown in Fig. 3, there is still a gap between the history-
independent bound in Eq. (62) and the history-dependent
bound in Eq. (63). A natural question to ask is whether
Eq. (58) is an optimal choice of u"S(k) that satisfies (k) >
uPS(k). Can we find the largest uPS(k) allowed? In this sec-
tion, we will pursue this possibility further by looking at the
relaxation rate u(k) defined in Eq. (46) in more detail.

Referring to the time evolution of SA in Eq. (30), we have
(again omitting the arguments k and using " to label quantities

atk + 1 step)

/ 1 / I
vi=pi+- > (@Api— Ap), (78)
JeEN ()
where we have considered the equal-sized neighborhoods,

IN(i)| = n, Vi, and the acceptance rate A;; is given by
Eq. (32). Thus, E,, is given by

E, =) Ew;
i

1
=Ep+ 30> (EAp; — EAp)

i jeN()
1
=Ept+ - D (Ej—EAjp
i jeN()
1 Yipi
=Ept—) ) AEi——, (79)
" jeN ity

where we have defined AE;; = E; — E;. Then

: 1 vi :
Ey—Ey=-3 3 AEj———(pi=v). (80
i jeNG) Vi TV

To relate it with , we want to rewrite the right-hand side of
Eq. (80) in terms of E)/, — E,. The following proposition is
thus considered.

Proposition 3. For an n-spin EA model with the
Hamiltonian defined in Eq. (57), the following holds:

> AEj = —4E;. (81)
JEN (i)

Proof. We rewrite the Hamiltonian in Eq. (57) as

Hga = nglsksl
(k1)

l 8kl SkS1
52 2

k=1 1eC(k)

n
> s (82)
k=1

N =

where C(k) is the set of spins interacting with spin s; and h; =
> 1eC (k) 8KISI is the effective field applied on s;. The factor 1/2
is from double counting. Now consider a spin configuration
(state i) 59 = {sﬁl), ooy sV} withenergy E; = >, sk’)h,({')/Z.
A neighboring state j can be generated by flipping the jth

spinins?, ie., 50 = {sgi), e —s?), ..., 50}, Therefore, the
energy difference AEj; is '
AE; =E; — E
= Lrest,j — Sy)h;l) - (Erest,j + Sy)h;l))
WG]
= 25 PR, (83)
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where Er ; is the energy not involving the interactions with
the spin s;. Summing over all neighbors of 7, we find that

> AE,,_Z —25'h) = (84)

JeN (i)
|
J

i jeN(3)

SCELIEr 3 I

i jeN()

‘We then obtain

E,—E,
==
E —Ep
AE i
et RPPIDIEC (ﬁ’T)g g, 7
i jeN(i)

At high temperatures where B'AE;.x < 1 with AE.x =
max; E; — min; E;, u =~ 2/n. This reflects the fact that, in the
high-temperature limit, the complex structure of the energy
landscape can be neglected and the relaxation rate is only di-
minished by the size of the system. As temperature decreases,
the second term on the right-hand side of Eq. (87) becomes
significant and therefore introduces more complication to the
evaluation of u. We note that according to the cooling sched-
ule, B(k), u(k(B)) = u(B) can be viewed as a function of 8. If
(k) does not depend on the system state p(k), (8) should be
the same for all cooling schedules when f is fixed. However,
Fig. 4 provides a counterexample of a 7-spin SK model show-
ing that (k) is not a sole function of 8 but relies on the history
of B. Hence, finding w(k) without referring to p(k) seems

— T(k)=—-0.0165k+5
T(k)=1/(0.066k +0.2)

1.5 T(k)=0.29/In(k + 0.059)
1.0
05 |
\
0.0 £+ = T+ =1 P
00 25 50 75 100 125 150 17.5 200

FIG. 4. The relaxation rate ;(8) (multiplied with ») in the SA of
a 7-spin SK model. The simulation takes 300 steps with temperature
changing from 7; = 5to 7y = 0.05, according to the linear (blue solid
line), inversely linear (orange dashed line) and inversely logarithmic
(green dotted line) cooling schedules, respectively. The partial swap
rate u"S(B) in Eq. (62) multiplied with 7 is represented by the red
dash-dotted line.

v+ - Z > AEj;

As a result of this proposition, we have

42 > AEj(pi—v)). (85)

i jeN()

E—E

Therefore, Eq. (80) can be written as

— A5 (Pz 1
i jeN(G) (yl + )/ )
 tanh (
[

intractable. Moreover, as is depicted in the red dash-dotted
line in Fig. 4, the 1S in Eq. (58) does bound p irrespective of
cooling schedules and is even saturated for large 8. Therefore,
at least for this specific example, at low temperatures, we
cannot do much better than the 1S in Eq. (58). On the other
hand, Fig. 4 provides numerical evidence for our conjecture
[Eq. (50)].

Finally, we note that the asymptotic behavior of © — 2/n
at high temperatures, 8 — 0, is recognized in Fig. 4 for all
three cooling schedules. To take advantage of this property,
one may use u"S = 2/n for high temperatures and then use
the 1S in Eq. (58) in further annealing to obtain a tighter
bound than Eq. (62).

AE;; ,
' 2’ )(Pi — %) (86)

V. CONCLUSION

In this article, we derived a general bound for quantify-
ing the annealing performance. The bound is derived in the
framework of finite-time stochastic thermodynamics and thus
can be applied to nanoscale systems and particular quantum
systems whose evolution satisfies stochastic master equations.
The bound shows that the 1-norm distance between the final
statistical state of the system and the final thermal state is
restricted by two problem-specific parameters: the averaged
activity (A), and the change of relative entropy due to the
annealing Z (7). The two quantities prove to obey a tradeoff
relation forced by the initial distance L.

We further applied this bound to study the finite-time
performance of simulated annealing. Under a reasonable con-
jecture that the discrete activity AP < 1/2 and purposing a
slower partial swap model to bound Z < Z"S, we obtained
a modified bound which does not require the intermediate
states of the system and only refers to the rule of tempera-
ture descent and the energy landscape. Consequently, the new
bound applies to any Glauber dynamics SA schedules and any
cost function. We employed 1D Ising chains as an example
to illustrate how the bound can be evaluated analytically. To
validate our conjectures, we presented numerical simulations
of 7-spin SK models, demonstrating the performance of our
bounds. Above all, our results show that recent developments
in stochastic thermodynamics can be adapted to characterize
the finite time behavior of SA, and we expect such approaches
can be further developed to understand other Monte Carlo
algorithms.
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APPENDIX: FROM CONTINUOUS-TIME ANNEALING
TO DISCRETE-TIME SA

Here we prove that the discrete-time evolution in SA, i.e.,
Eq. (30) in the main text, can always be simulated by a
continuous-time master equation defined in Eq. (2) in the main
text. For the clarity of notations, below we write probabilities
in the discrete-time with a superscript D and probabilities in
the continuous time with a superscript C. Then, our aim is to
prove that

pPk+1) =Y Ptk + DHpY (k). (A1)
J
can be constructed by
@) =) TyOp5). (A2)
J
such that
Py (k) = pf () (A3)
for times tp =0,#,...,%,...,t, = T with « denoting the

number of iterations in SA.
Integrating Eq. (A2) from time #; to time #;,;, we obtain

173

PS (i) = pS(t) + f ) dr Y Ty(0)p )
J

J

where we have defined
Tit1
Witk D=8+ [ dTy@n O/ 39)
73

foreachk =0, 1, ...,k — 1, where §;; is the Kronecker delta.
To show that there always exists a valid transition rate matrix
making Eq. (A4) reproduce Eq. (A1), we introduce

k—1

i) =Y 8t — )Pk + 1) (A6)
k=0
fori# jand I';(t) = — Zj(ﬁ) ["ji(¢). Here, §(-) is the Dirac
§ function and t,:r > t; is a value close to #;.
As we will show, P;;(k + 1) guarantees that the transition
rate defined in Eq. (A6) induces the required thermal states

and detailed balance relation. Due to the relation of P;;(k + 1)
demanded by SA,

Pk + DyP(k+ 1) = Ptk + Dy (k4 1), (A7)
it can be verified that the state defined as
yCO) =y P+ 1) ifg <t <npn (A8)
satisfies

Ty () =Ty ) (A9)

for all i # j. Thus, y©(¢) always satisfies the detailed balance
condition and is a valid equilibrium state for the process
governed by Eq. (A6). Meanwhile, substituting Eq. (A6) into
Eq. (AS5), we obtain

Witk +1) = Pk + 1), Vi# j,

Wii(k + 1) = P;i(k + 1), Vi. (A10)

where we have used the fact that p§(t,")/p§ ) — 1.

Finally, by taking pP(0) = pS(t), we obtain that the
continuous-time evolution described by Eqs. (A2) and (A6)
is in accordance with the discrete-time evolution described by
Egs. (A1) and (A7) at discrete times 7y, . . ., f,.

Consequently, the time-averaged activity (AC); is
defined as
l T
cy _ C(1,C
=+ [Car S 3 ryonf
i (D)
1 k=1 o c
=;Z/ dry Y TioriO (Al

k=0 *lk i)

k—1
) I I N ERI )

k=0 i j(D)

To obtain an analogy of (AC), for the discrete case in SA,
we suppose that the time interval #;1; — #; is a unit time 1,
such that T = k, and define the iteration-averaged activity

(AP), as
(AP), = (AS),

k—1
% YN 3 Pk + DYk (Al13)

k=0 i j(D)

(A12)

1 k—1
D () (A14)
K k=0
where the discrete activity is defined as
APy = D Pk + Dpfk). (A5

i JjEED
Since the entropy production depends on the path of the sta-
tistical state of the system, it is more sensible to define the
entropy production for the discrete-time evolution according
to the underlying continuous-time evolution, in which the
entropy production rate is well defined as Eq. (18) in the main
text, 1.e.,

‘ 1 T3 p§
C_ _ C 1 Cl 1 L
B¢ =322 [Tup§ =T ]n roe (A19
) i
Therefore, we define
>P)=3xC) = / »C(t)dt. (A17)
0

By the “speed limit” with £¢(7) in Eq. (25) in the main text,
we have

(Lo — L. )? _ Lo — L)
2({A%) T 2(AP)

2Pk) = =) > (A18)
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where we have used t = «, Eq. (A14) and

L= Z P£0) = y£()| = Z PO = yP()|, (A19)
L, = Z |p¢ (r) — (A20)
Le=) |p, () =y ()| = (A21)

i

The last equality L, = L. is from pP (k) = p©(r) by Eq. (A3)
and yP(x) = y©(r) by Eq. (A8). Eq. (A18) is therefore a
“speed limit’ in the discrete-time case.

Accordingly, we can define the accumulated change in
relative entropy ZP (k) by Z(z) in Eq. (15) in the main text,
such that

IP(k) = 7%) (A22)
= /O [Es (1) — EC(0)]B()dt (A23)
-y /0 E[pS@ - yE@]pwar (A24)
= Z Z / DB - yE OB (A25)
Kk—1
=YY E[rf ) — v )]
k=0 i
x [Btes1) — B(to)] (A26)

k—1
=3 N E[pPk+ 1) - yPk+1)]

k=0 i

x ﬂ(k +1)— Bk (A27)
= Z [ED(k+1) —ED(k+1)]
X [ﬁ(k—i- 1) = B, (A28)

where in the fourth line we used the fact that p©(t) = p©(tx41)
and y€(t) = y“(txs1) fort;t < 1 < fi41, while in the fifth line
B(t) = B(k) is in accordance with Eq. (A8).

From Eq. (16) in the main text, we have

SEP)IyP ) = SPE(@)llyC (1)) (A29)
=-32%0) +I%) (A30)
= —3P) 4+ I «). (A31)

Using Pinsker’s inequality, Lf < 25(p°(1)||yP(k)), and the
“speed limit” [Eq. (A18)], we obtain

12<— (Lo — L,)*
(AP
which is an analogy of Eq. (26) in the main text. Solving

the inequality for L, gives us the discrete-time performance
bound:

+27°(x), (A32)

Lo + {AP) ek (— L3 + 2ZP () (AP) ok + 1)

(AD)KK +1 ’
(A33)

L <

analogous to Eq. (27) in the main text.
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