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We analyze fractional Brownian motion and scaled Brownian motion on the two-dimensional sphere S2.
We find that the intrinsic long-time correlations that characterize fractional Brownian motion collude with the
specific dynamics (navigation strategies) carried out on the surface giving rise to rich transport properties. We
focus our study on two classes of navigation strategies: one induced by a specific set of coordinates chosen
for S2 (we have chosen the spherical ones in the present analysis), for which we find that contrary to what
occurs in the absence of such long-time correlations, nonequilibrium stationary distributions are attained. These
results resemble those reported in confined flat spaces in one and two dimensions [Guggenberger et al. New
J. Phys. 21, 022002 (2019); Vojta et al. Phys. Rev. E 102, 032108 (2020)]; however, in the case analyzed
here, there are no boundaries that affect the motion on the sphere. In contrast, when the navigation strategy
chosen corresponds to a frame of reference moving with the particle (a Frenet-Serret reference system), then
the equilibrium distribution on the sphere is recovered in the long-time limit. For both navigation strategies,
the relaxation times toward the stationary distribution depend on the particular value of the Hurst parameter.
We also show that on S2, scaled Brownian motion, distinguished by a time-dependent diffusion coefficient with
a power-scaling, is independent of the navigation strategy finding a good agreement between the analytical
calculations obtained from the solution of a time-dependent diffusion equation on S2, and the numerical results
obtained from our numerical method to generate ensemble of trajectories.
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I. INTRODUCTION

The motion on non-Euclidean surfaces has gained great in-
terest, particularly on the surface of a two-dimensional sphere
S2, where the collusion between the intrinsic dynamics of the
moving objects and the curved surface they are moving on,
leads to singular and interesting effects [1–5]. This growing
interest is also encouraged by the fact that a variety of stochas-
tic processes are equivalent to the diffusion of a tracer on the
surface of a sphere, for instance, the tip of a unit vector that
randomly rotates may describe the dynamics of a classical
spin or the self-propulsion orientation of an active particle that
moves with constant speed. Besides, the diffusive motion on
curved surfaces is ubiquitous in different biological processes
such as the motion of proteins or phospholipids (PIP2 [6,7])
on the cell membrane, which is crucial for cell signaling
[8–12]; cell migration confined to curved surfaces [4,13–15];
or the pattern formation of epithelial tissue [16–18]. Addi-
tionally, the motion of active particles diffusing on the sphere
has been analyzed at the single-particle and collective level
[19–28].

An experimental analysis of the effects on particle dif-
fusion due to the curvature of the underlying surface, has
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been carried out on polystyrene nanoparticles diffusing on the
interface of a silicone-oil droplet immersed in water [29],
while theoretical analysis of different effects—curvature
gradient, external forces, many-body interactions—on the dif-
fusion of particles confined to surfaces have been analyzed
lately [30–33].

Despite of the important advances just mentioned, to our
knowledge, the effects of long-time correlations on the motion
of a particle moving on the surface of a compact manifold has
not been studied, yet being of relevance since such processes
model diverse mechanisms that lead to persistent (and an-
tipersistent as well) motion on curved surfaces. In this article
we address these aspects and fill this gap by analyzing the
effects of long-time correlated diffusion, on the one hand, and
the effects of a time-dependent diffusion coefficient, on the
other hand, of a tracer particle moving on the surface of the
two-dimensional sphere, S2. These two processes may arise
from the complex interactions between the diffusing particle
and the variety of components that lie on the sphere surface,
such as in the cell membrane. A relevant aspect of our study is
the elucidation of the nontrivial concomitant effects caused by
the long-time correlations of the diffusive process of a tracer
particle on a compact manifold, S2 in this case, and distinct
navigation strategies.

The observation of long-time correlated Brownian pro-
cesses, i.e., those for which the autocorrelation function of the
particles position decays slowly with time in the form of a
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power law time-dependence, has been recognized to be ubiq-
uitous in nature. This kind of correlations generally occurs in
Brownian-like motion of particles in crowded environments,
where the complex coupling of the Brownian particle with
the environment leads to long-lasting correlations. This has
been pointed out since the classical work of Alder and Wain-
wright [34,35] and of Widom [36], where it is shown that the
coupling of a hard-core Brownian particle moving in an in-
compressible viscous fluid, leads to a velocity autocorrelation
function that decays asymptotically as t−3/2, instead of the
exponentially fast relaxation, thus pointing out the role of the
environment through hydrodynamic interactions [37]. Follow-
ing this rationale, a modification of the Langevin equation is
carried out to take into consideration the fluid inertia [38] and
recovering the algebraic decay t−3/2 of the velocity correlation
function. Algebraic decay was subsequently observed in the
experiments of Paul and Pusey [39] and Clercx and Schram
[40].

The overdamped motion of a particle moving in complex
crowded environments, can exhibit a variety of behaviors. The
most interesting being perhaps, anomalous diffusion, which is
characterized by the power-law time scaling tα found for the
time dependence of the mean-squared displacement, 〈x2〉 ∼
tα , with α > 0, but α �= 1. It is widely accepted that such
scaling is ubiquitous and originates from the long-time cor-
relations of motion, which in turn, depend on the particular
coupling between the environment and the particle [41]. For
instance, subdiffusion (0 < α < 1) of submicron tracers was
observed experimentally in the motion of proteins embedded
in the membranes of living cells [42–45]; also in the cyto-
plasm of biological cells [46–51]; and in crowded liquids
[52–54].

Different mathematical frameworks (models) have been
ingeniously devised to describe anomalous diffusion [55],
and two of them stand out as they take into consideration
the memory effects that arise, in most of the cases, from a
reduced description focusing on the dynamics of the tracer
particle dynamics from the rest of the elements that influence
its motion. One corresponds to the generalized master equa-
tion [56] (or Continuous-Time Random Walks [57]), which
for power-law time memories leads to the fractional diffusion
equations of Metzler and Klafter and other authors [58,59],
that incorporate the fractional derivative, where the order of
integrals and derivatives are generalized to fractional order
[60–63]. The other model that considers memory effects goes
back to the seminal work of Kubo, and nowadays is referred
as the generalized Langevin equation [64]. This takes into
account the retarded effect of the dissipative force and be-
comes the fractional Langevin equation when the memory is
chosen in the class of memory function with power-law time
dependence [65–67]. This theoretical framework has found
diverse applications, particularly in the analysis of the dif-
fusion of Brownian motion in viscoelastic fluids [68], where
the hydrodynamic interaction, as noticed by Boussinesq (see
Ref. [69] for a historical recount) plays an important role in
the dynamics.

In this work we resort to fractional Brownian motion (fBm)
as a simple model of long-time correlated motion which
was introduced by Mandelbrot and van Ness (and based in
the previous work by Kolmogorov, Hurst, Hunt, Lamperti,

and Yaglom), to model natural time series that exhibits ex-
tremely long interdependence [70]. This stochastic process
has gained interest in different contexts, particularly regard-
ing anomalous diffusion, due to its simple, but nontrivial,
intrinsic characteristics: being Gaussian, self-similar and with
stationary increments [55,71,72]. Although the “fractional”
character in this case is different from the one of fractional
derivatives, a connection with the overdamped limit of a frac-
tional Langevin equation has been conveyed in Ref. [71].

In addition, we also consider the case of scaled Brownian
motion (sBm), which defines a Gaussian process charac-
terized by the time-dependent diffusion coefficient D(t ) =
2HDH t2H−1. In unbounded Euclidean space, sBm is defined
by the solution of the diffusion equation with time-dependent
diffusion coefficient and leads to the power-law scaling of the
mean-squared displacement 〈x2(t )〉 ∼ t2H [73,74], although
no long-time correlated motion is involved. In here we use the
same symbols H and DH as in fBm since they have the same
physical units, however, they have different physical mean-
ing as they characterize two different stochastic processes; in
Ref. [74], it is shown that under confinement, the stochastic
process given by sBm is fundamentally distinct from fBm. We
show in this paper that this is also the case when the motion
occurs freely on S2.

We analyze a statistical ensemble of discretized trajectories
generated by extending the method presented in Ref. [31].
Such an extension takes into account either the long-time
correlations of the motion, or the time-dependence of the dif-
fusion coefficient of a nonstationary diffusion process. Briefly,
an element of the ensemble is generated by recursively updat-
ing the particle position, initiating at r0 on S2 at time t = 0,
such that in a time interval �t , the particle position at the
(n + 1)th step is obtained from the previous one as

rn+1 =
∏

TS2
rn →S2

[rn + αnδrn], (1)

where δrn = δU (�t ) ûn + δV (�t ) v̂n lies on the tangent plane
TrnS

2 centered at rn on the sphere; {ûn, v̂n} is an orthonormal
basis of TrnS

2 (see left panel in Fig. 1); and δU (�t ), δV (�t )
are two statistically independent increments obtained from the
underlying stochastic process considered. The updating rule
(1) considers the factor

αn = r

||δrn|| tan

{ ||δrn||
r

}
, (2)

which rescales δrn such that rn + αnδrn is projected along the
corresponding geodesic γn,n+1 with the correct arc length. The
operator

∏
TS2

r →S2 [x] being x̂r, with r the sphere radius (unit
vectors are defined as x̂ = x/||x||). The tangent plane and the
four referred vectors are displayed in the left panel of Fig. 1,
for three consecutive iterations. The positions rn, orthogonal
to TrnS

2, are depicted in black, the displacements on the plane
δrn are depicted in red, while the basis vectors ûn and v̂n are
depicted in green and blue, respectively.

The long-time correlated motion considered for our analy-
sis is carried out by mapping to the sphere surface [through the
use of Eq. (1)], two statistically independent fBm processes.
In the case when the stochastic motion is characterized by
a time-dependent diffusion coefficient, we use the so-called
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FIG. 1. (Left) Schematic illustration of the numerical method used to generate trajectories of fractional and scaled Brownian motion on
S2. Two consecutive updating steps are shown indicating the transition from the (n − 1)th particle position, rn−1, to the (n + 1)th one rn+1,
passing through rn (depicted as normal vectors to their corresponding tangent planes TrS2) as explained in the text. At each TrS2, the basis
vectors û’s, v̂’s, which define a particular navigation strategy, and the displacements δr’s, which are necessary to implement the updating
rule (1), are shown. (Right) Single-particle trajectories on the sphere are shown. For fBm, trajectories were generated for distinct navigation
strategies: Spherical system {θ̂, φ̂} (first column shows (a.1) for H = 0.1, (a.2) for H = 0.5, and (a.3) for H = 0.9) and Frenet-Serret system
{t̂, n̂} (middle column shows (b.1) for H = 0.1, (b.2) for H = 0.5, and (b.3) for H = 0.9). For sBm (third column), trajectories are insensitive
to the navigation strategy, but they are affected by the specific time dependence of the diffusion coefficient D(t ) = 2HDHt2H−1. The cases
H = 0.1, H = 0.5, and H = 0.9 are shown in (c.1), (c.2), and (c.3), respectively. For H = 0.5, (a.2), (b.2), and (c.2), all the cases give the
same Brownian dynamics.

scaled Brownian motion (sBm) for which the diffusion coeffi-
cient D(t ) scales with time as tβ with −1 < β < 1.

II. FRACTIONAL BROWNIAN MOTION ON S2

To generate long-time correlated trajectories we con-
sider two statistically independent fBm processes, BH

1 (t )
and BH ′

2 (t ), characterized by Hurst exponents 0 < H, H ′ < 1,
respectively. These are Gaussian stochastic processes with
〈BH (t )〉 = 0 and autocorrelation function

〈BH (t )BH (s)〉 = DH (t2H + s2H − |t − s|2H ), (3)

where DH (with units of [length]2 × [time]−2H ) measures
its amplitude. Eq. (3) reduces to the autocorrelation of
the Wiener process 2D1/2min(t, s) when H = 1

2 and gives
〈[BH (t )]2〉 = DH t2H at equal times for all H in (0,1).
The fBm process is also defined as the integral of
fractional Gaussian noise ξH (t ), as BH (t ) = ∫ t

0 ds ξH (s),
ξH (t ) is a stationary stochastic process with autocorrelation
function 〈ξ (t )ξ (0)〉 = 2HDHt2H−1[(2H − 1)t−1 + δ(t )] [75],
from which is recognized a time-dependent diffusion coeffi-
cient D(t ) = 2HDHt2H−1.

We are interested in the case for which H = H ′, however
an extension to the anisotropic case is straightforward. The
increments of the fBms during the time interval �t = t − t ′,
t > t ′, δBH

1 (�t ) ≡ BH
1 (t ) − BH

1 (t ′) and δBH
2 (�t ) ≡ BH

2 (t ) −
BH

2 (t ′) (corresponding to the increments δU (�t ) and δV (�t ),

respectively), are stationary, long-time correlated, and not
independent if H �= 0.5. In the case 0 < H < 1

2 they are
negatively correlated, while they are positively correlated if
1
2 < H < 1 [72]. In this case the increment δrn is given by
δBH

1 (�t ) ûn + δBH
2 (�t ) v̂n, with {ûn, v̂n} an orthonormal vec-

tor basis for TrnS
2.

We found that the long-time correlations of fBm (H �= 1
2 )

collude with the specific implementation of the updating rule
(1) through the choice of the orthonormal basis {ûn, v̂n},
which defines a kind of navigation strategy that drives the
particle motion to give rise to a rich variety of statistical
patterns of motion on the sphere. On the contrary, uncorrelated
motion (as is the standard Brownian motion, H = 1/2) is
insensitive to the choice of such strategies [see (a.2) and (b.2)
for a qualitative comparison in the right panel in Fig. 1].

We consider for our analysis two contrasting physically
motivated navigation strategies, one is observed in many
biological organisms which may have a distinct body axis
(head-tail axis) defining a preferred direction of motion some-
times referred to as heading. In such a case the particle
heading t̂n, together with the normal vector n̂n, form the
orthonormal basis for the updating rule (1) that carry the
long-term correlated motion. Notice that with r̂n (the binormal
vector), these three vectors form the well-known Frenet-
Serret system. Three sample trajectories are shown, (b.1),
(b.2), and (b.3), in the second column of the right panel
of Fig. 1, for highly anticorrelated motion, H = 0.1 (b.1);
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uncorrelated motion, H = 0.5 (b.2); and highly correlated
motion, H = 0.9 (b.3).

The other navigation strategy corresponds to the case
for which the orthonormal basis for the updating rule,
{θ̂n, φ̂n}, forms a kind of “laboratory reference frame,”
which for our analysis is chosen to be the one in-
duced by the spherical coordinates of S2, and consequently
attached to each point of the sphere surface, namely,
θ̂n = (cos θn cos φn, cos θn sin φn,− sin θn), oriented along the
sphere meridians, and φ̂n = (− sin θn sin φn, sin θn cos φn, 0)
orthogonally oriented along the parallels (see left panel in
Fig. 1). As a consequence, the long-time correlated trajecto-
ries describe a distinct pattern as is shown in the right panel of
Fig. 1 for H = 0.1 (a.1) and H = 0.9 (a.3). Self-confinement
is observed for H �= 0.5, each particle excursion is limited
to a sector of the sphere around well-defined time-average
values θ , φ that depend on H . For 0 < H < 0.5, particles
concentrate forming an island around θ = π/2 (equator) with
φ randomly chosen; while for 0.5 < H < 1 distinctively, the
particles concentrate their excursions around the poles, i.e.,
θ = 0, π , wandering between them as is shown in Fig. 1(a.3).
For this navigation strategy, ensemble averages strikingly dif-
fer from time averages giving rise to weak ergodicity breaking
[73], especially for 0 < H < 0.5, for which single trajectories
get trapped diffusing around a randomly chosen sector of
the sphere; thus, the time average using a single long tra-
jectory will differ from the ensemble average which samples
uniformly those sectors; the equivalence between ensemble
averages and time averages is recovered for H = 1/2 [see a
trajectory generated in Fig. 1(a.2)].

III. SCALED BROWNIAN MOTION ON S2

The other pattern of stochastic motion we address
in this paper refers to sBm. The updating rule (1)
in this case considers two independent Gaussian
processes G1(t ) and G2(t ), with statistically independent
increments δG1(�tn) =

√
2DH [tn2H − tn−1

2H ] �W1 and
δG2(�tn) =

√
2DH [tn2H − tn−1

2H ] �W2, for the time
increment �tn = tn − tn−1, n = 1, 2 . . .; �W1, �W2 are
two independent Wiener processes of vanishing mean
and unitary variance, and tn = ∑n

k=1 �tk is the total time
elapsed up to step n. Scaled Brownian motion is highly
nonstationary due to the time-dependence of the diffusion
coefficient, a feature that is implemented by considering δrn =√

2DH�t2H [n2H − (n − 1)2H ][�W1 ûn + �W2 v̂n], where
we have assumed homogeneous time increments �t , and the
pair of orthonormal vectors {ûn, v̂n} is an arbitrary vector basis
for TrnS

2. It is the statistical independence among the incre-
ments what guaranties that the updating rule is independent of
the basis choice, as occurs for uncorrelated standard Brownian
motion (or fBm with H = 0.5). Three sBm trajectories are
shown in the third column of the right panel of Fig. 1 for
H = 0.1 (c.1), H = 0.5 (c.2), and H = 0.9 (c.3), which are
contrasted with those for the two navigation strategies con-
sidered for the fractional Brownian motion case (trajectories
in the first and second columns in the same figure).

The corresponding modification of the Euclidean
Fokker-Planck equation that considers that sBm occurs

on S2 is

∂

∂t
PsBm(θ, φ, t ) = 2HDH

r2
t2H−1

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)

+ 1

sin2 θ

∂2

∂φ2

]
PsBm(θ, φ, t ), (4)

where r = (r sin θ cos φ, r sin θ sin φ, r cos θ ) denotes the
particle’s position in spherical coordinates, r being the radius
of S2. The solution of Eq. (4) is given by

PsBm(θ, φ, t ) =
∞∑

l=0

l∑
m=−l

pm
l Y m

l (θ, φ)e−l (l+1)DH t2H /r2
, (5)

the coefficients pm
l are determined from the initial distribution,

and Y m
l (θ, φ) are the standard spherical harmonics. If the

initial condition corresponds to a localized distribution at the
north pole, then we get

PsBm(θ, φ, t ) =
∞∑

l=0

2l + 1

4π
Pl (cos θ ) e−l (l+1)DH t2H /r2

, (6)

with Pn(cos θ ) the Legendre polynomials. The absence of φ

in Eq. (6) implies the azimuthal symmetry of the process,
which leads to the moments of the polar angle θ , 〈θn〉sBm =∫

d�θnPsBm(θ, φ, t ) given by

〈θn〉sBm =
∞∑

l=0

(2l + 1)gθn (l )e−l (l+1)DH t2H /r2
, (7)

where gθn (l ) = ∫ π

0 dθ θn (sin θ/2) Pl (cos θ ). It is clear from
Eq. (6) that for each H , the marginal stationary distribution
of the polar angle, Peq(θ ) = sin θ/2, is attained in the long-
time regime, indicating the uniform distribution of the particle
positions on S2.

In addition the autocorrelation function of the particle po-
sitions can be computed straightforwardly and is given by

〈r̂(t ) · r̂(0)〉sBm = exp {−2DHt2H/r2}. (8)

Notice that the time dependence of the quantities com-
puted from Eq. (4), namely, 〈θn〉sBm and 〈r̂(t ) · r̂(0)〉sBm,
become H-invariant under the time-scaling transformation
dτH = 2HDH t2H−1 dt . Such transformation makes Eq. (4)
H-invariant leading to dynamical scaling as can be checked
straightforwardly.

IV. FREQUENCY DISTRIBUTION OF THE POLAR ANGLE
θ FOR fBm: ROLE OF THE NAVIGATION STRATEGY

We present a statistical analysis of a set of ensembles of
trajectories generated with the method described in the previ-
ous paragraphs: Two subsets corresponding to fBm, one for
each of the navigation strategies considered; and one subset
corresponding to sBm. In the case of fBm each ensemble
consisted of 5 × 103 trajectories for each of the nine values of
the H considered, namely, H = 0.1, 0.2, . . . , 0.9, for which
we have set DH = 0.1 in arbitrary units. For sBm the ab-
sence of long-time correlations allow to consider ensembles
of 1.2 × 105 trajectories.

Each ensemble of trajectories was generated with fixed
initial position at the sphere’s north pole r0 = (0, 0, 1), this
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FIG. 2. Frequency distributions of the polar angle P(θ, t |θ0, t0) at different times (log t) are shown for fBm in the spherical coordinates
basis {θ̂, φ̂} (a) and fBm in the Frenet-Serret basis {t̂, n̂} (b). Numerals 1, 2, and 3 correspond to the values H = 0.1, H = 0.5, and H =
0.9, respectively. In all cases we have set θ0 = 0 at t0 = 0. For uncorrelated motion, H = 0.5 in (a.2) and (b.2), the stochastic dynamics
is independent of the basis system chosen recovering Brownian motion on S2 (continuous-red lines depict the known analytical solution
[31]). In each graph the equilibrium stationary distribution of the polar angle, Pst(θ ) = sin θ/2 (uniform on the sphere), is displayed on
the background with a red-dashed line. When the basis induced by spherical coordinates is used (a), the distributions reach nonequilibrium
stationary distributions, unimodal with positive excess kurtosis with respect to Pst(θ ) for 0 < H < 0.5 (shown only H = 0.1 which is the most
conspicuous nonequilibrium distribution), and bimodal with modes at the poles for 0.5 < H < 1.

choice allows us to assume an azimuthal symmetry in the
ensemble average and therefore to focus on the frequency
distribution of the polar angle θ only. From each ensemble,
the frequency histograms of the polar angle P(θ, t |θ0, t0), with
θ0 = 0 at t0 = 0, is computed at each time step giving rise to
the time evolution shown in Figs. 2 and 3; in Fig. 2 we show
the case for fractional Brownian motion, for which long-time
correlations make manifest the role of the navigation strategy
through the basis system chosen at each TrS2. In Fig. 3 we
show the corresponding histograms for the case of sBm.

For the Frenet-Serret navigation strategy {t̂, n̂} (second
column of Fig. 2), the system attains the stationary distribution
Peq(θ ) = sin θ/2 for each H , this is shown in the evolution of
the frequency histograms in the plots of the second column
of Fig. 2 for H = 0.1 (b.1), 0.5 (b.2), and 0.9 (b.3), respec-
tively (Peq is depicted by the dashed-red line). Notice that the
relaxation times toward Peq(θ ) depend on H , being shorter
the smaller H is [compare the time scales considered from
(b.1) to (b.3) histograms in the second column of Fig. 2]. In
contrast, for the navigation strategy {θ̂, φ̂}, the system attains a
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FIG. 3. Frequency distributions of the polar angle P(θ, t |θ0, t0 )
at different times (log t) are shown for sBm. Numerals 1, 2, and 3
correspond to the values H = 0.1, H = 0.5, and H = 0.9, respec-
tively. In all cases we have set θ0 = 0 at t0 = 0 and as for fBm,
H = 0.5 in (c.2), Brownian motion on S2 is recovered. A remarkable
agreement between the distributions computed from the trajectories
ensemble and the distributions obtained from the analytical solution
(6) (continuous-red lines) is shown. Pst(θ ) = sin θ/2 is shown in
red-dashed line (indistinguishable from the histograms computed in
the long-time regime).

nonequilibrium stationary state Pness(θ ) [except for the uncor-
related case H = 0.5, for which the attained stationary state
is independent of the navigation strategy and coincides with
Peq(θ ) shown in the histograms of (a.2) of Fig. 2]. For anticor-
related motion (0 < H < 0.5) the frequency histograms settle
into a unimodal distribution, highly peaked around the equator
line (θ = π/2) the smaller the value of H [see histograms
in (a.1) of Fig. 2 for H = 0.1], the distribution transforms
continuously into Peq(θ ) as H → 0.5 (a.2). For correlated
motion (0.5 < H < 1) the stationary distribution settles into
a bimodal distribution with modes at the sphere poles [see
histograms in (a.3) of Fig. 2 for H = 0.9], such stationary dis-
tribution is determined by the specific basis chosen only, and
does not depend on the initial distribution. Thus, the poles can
be interpreted as being repulsive if 0 < H < 0.5, and being
attractive if 0.5 < H < 1. These nonequilibrium stationary
distributions, when H �= 0.5, are attained independently of the
initial distribution.

Analogous effects to the ones observed with the basis
induced by the spherical coordinates have been observed in
confined fBm, specifically as result of the interplay of long-
time correlations and hard-walls boundaries [76–78], where
depleted regions for the probability distribution of the particle
positions are observed near the boundaries for anticorre-
lated motion (0 < H < 0.5), while accreted regions near the
boundaries are observed for 0.5 < H < 1.

Figure 3 shows P(θ, t |θ0, t0) for sBm. Peq is attained for
all H and the cases H = 0.1 (c.1), 0.5 (c.2), and 0.9 (c.3)
are shown. Excellent agreement is observed except for the
short-time regime of H = 0.1 and 0.2, where there is some
discrepancy due to numerical stability.

V. COMPARATIVE ANALYSIS OF THE CASES
CONSIDERED

The qualitatively different behavior among the three cases
considered is apparent from the analysis of the time depen-
dence of three relevant statistical quantities of the distribution
of the polar angle, namely: the mean 〈θ (t )〉, the variance
Var[θ (t )] = 〈θ2(t )〉 − 〈θ (t )〉2, and the position autocorrela-
tion function 〈r̂(t ) · r̂(0)〉, all of them shown in Fig. 4 and
identified with the numerals 1, 2, and 3 correspondingly;
column (a) corresponds to the case of fBm with navigation
strategy {θ̂, φ̂}, column (b) is one for fBm with {t̂, n̂}, and
column (c) is for sBm, which is independent of the nav-
igation strategy. For each case considered we have 〈·〉 ≡∫ π

0 dθ sin θ (·)PxBm(θ, t |0, 0), with xBm either fBm or sBm
as appropriate.

Notorious differences caused by the navigation strategy
in the time evolution of the quantities considered can be
observed for fBm. In the case of the basis {θ̂, φ̂}, H = 0.5 sep-
arates two qualitatively distinct behaviors. For 0 < H < 0.5
the position autocorrelation decays faster than for the case
H = 0.5 the smaller H is [see (a.3) in Fig. 4], as a conse-
quence, the mean approaches the value π/2 ≈ 1.5708, also
faster the smaller H is [see (a.1) in Fig. 4]. For 0.5 < H < 1
the correlations decay slower than for H = 0.5, however, the
time dependence in this case is similar. In each case the
distributions are symmetric around the equator thus 〈θ〉 sat-
urates at π/2. The departure from the uniform distribution
on S2 is evidenced by the time dependence of the variance
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FIG. 4. Mean 〈θ (t )〉, variance Var[θ (t )], and position autocorrelation function 〈r̂(t ) · r̂(0)〉 of the θ coordinate, for fBm with: navigation
strategy given by the spherical coordinates basis {θ̂, φ̂} (a), navigation strategy given by the Frenet-Serret basis {t̂, n̂} (b), and for the scaled
Brownian motion (c). For each case, the values H = 0.1, 0.2, ..., 0.9 are considered. The amplitude of fluctuations for fBm, and the amplitude
of the diffusion constant of sBm, both denoted with DH was set to 0.1 (arbitrary units). Continuous thin red lines in (a.1). (b.1) and (c.1)
indicate the values of 〈θ〉 for the uniform distribution on the sphere Pst(θ ); while they indicate the corresponding value for the variance in (a.2),
(b.2), and (c.3). In all cases, the lines refer to the results obtained from the ensemble of trajectories generated with our numerical method, while
open dots in column (c) refer to the values computed from the analytical solutions (6).

[(a.2) in Fig. 4], which clearly indicates a smaller disper-
sion around the mean for 0 < H < 0.5 (the distributions are
more peaked around the mean with kurtosis κ = 3.0657 for
H = 0.1, κ = 3.0054 for H = 0.2, κ = 2.8975 for H = 0.3,
and κ = 2.6675 for H = 0.4, with respect to the uniform
distribution, H = 0.5, whose kurtosis has the exact value
κ = 2.19375). Larger dispersion is observed for 0.5 < H < 1
due to the bimodality of the distribution of θ (the variance
of the distribution highly peaked at the poles); notice that the
distribution 1

2 [δ(θ ) + δ(θ − π )] has variance π2/4 � 2.4674
which serves as an upper bound for the values presented in
(a.2) of Fig. 4.

When the basis used is {t̂, n̂} the position autocorrelation
decays with a relaxation time that increases monotonically
with 0 < H < 1 as is shown in (b.3) of Fig. 4. Similarly, the
mean (b.1) and variance (b.2) saturate to the values of Peq(θ )
at a pace that depends monotonically on H , the smaller the H
the faster reaches the values corresponding to Peq(θ ).

It is clear from these results that for a basis pinned on
the manifold induced by a set of local coordinates, as for
the spherical coordinates {θ̂, φ̂} analyzed here, anticorrelated
motion (0 < H < 0.5) makes the sphere poles to be seldom
visited (the regions around the poles are diluted in the en-
semble) in contrast, for correlated motion (0.5 < H < 1), the
region around the sphere poles are frequently visited. It is only
for H = 0.5 (noncorrelated motion) from which the uniform
stationary distribution Peq(θ ) is attained, for which each loca-
tion on the sphere should be visited as frequently as any other
independently of the initial distribution. We thus conclude that
long-correlated motion breaks the spherical symmetry of the
stationary state for locally coordinates-induced basis {û, v̂}.
In contrast, fully spherical symmetry of the stationary state
is attained for all values of H for a basis unpinned from the
sphere local coordinates, as shown here for the Frenet-Serret
system that serves as a body-reference system.
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Finally, we contrast the results obtained for sBm [column
(c) in Fig. 4] with those presented for fBm. Since long-time
correlations do not collude with navigation strategy in the
sBm case, Peq(θ ) is attained in the long-time regime for all
0 < H < 1. The position autocorrelations decay faster the
larger H is, which is a consequence of the fact that the Peq(θ )
distribution of the polar angle relaxes faster with H in contrast
with fBm case. The time dependence of the mean [Fig. 4(c.1)],
variance [Fig. 4(c.2)], and position autocorrelation function
[Fig. 4(c.3)] are shown in column (c) of Fig. 4, where cal-
culations from the ensemble (lines) are compared with the
analytical expression given by the stretched exponential in
Eq. (8) (open dots). The discrepancy observed for the smaller
values of H is mainly due to the combined effects of the large
fluctuations induced by the time dependence of the diffusion
coefficient D(t ) in the short-time regime and the size of our
ensemble of trajectories. We want to comment in passing that
due to the H-invariance of sBm under the scaling transforma-
tion τH = DH t2H , the curves presented in Fig. 4 will overlap
on top of each other if plotted as function of τH instead of t .

VI. CONCLUDING REMARKS

We studied fractional Brownian motion as a model of long-
time correlated motion of a particle that randomly swims on
the surface of a sphere. We elucidated the deep connection
of this process with different navigation strategies defined by
a particular basis for the tangent planes to S2 that specifies
the updating rule of the algorithm used to analyze random
motion on the sphere. In the case of uncorrelated motion (for
which fBm with H = 0.5 is a particular case), the dynam-
ics is independent of the navigation strategy coinciding with
standard Brownian motion on the sphere. Furthermore, we
formulated the updating rules in the algorithm used [Eqs. (1)
and (2)] to analyze the diffusion processes characterized by
a time-dependent diffusion coefficient D(t ), and focused in
scaled Brownian motion for which D(t ) = 2HDHt2H−1.

We found that for the navigation strategy induced by the
spherical coordinates, two qualitatively distinct trajectory pat-
terns are observed depending on whether 0 < H < 0.5 or
0.5 < H < 1 which lead to nonequilibrium stationary states.
The equilibrium stationary distribution is recovered for the
navigation strategy induced by the Frenet-Serret system which
unpins the long-time correlated motion from a basis that
depends on the local coordinates. These observations allow
to conclude that long-time correlated motion collude with
the class of navigation strategies that locally depend on the
coordinates chosen, leading to “nonequilibrium steady states”
breaking down equilibrium dynamics, this last one is restored
for the class of coordinates-independent navigation strategies
(Brownian motion and sBm).

The similarity of the effects reported here for the
coordinates-dependent navigation strategy in fBm (the sphere
poles are seldom visited for 0 < H < 0.5 while frequently
visited for 0.5 < H < 1), with those occurring in confined
fBm in Euclidean space (depletion of the position distribution
around reflecting walls for 0 < H < 0.5 and accumulation
for 0.5 < H < 1) reported in Ref. [78] are remarkable and
compels us to conjecture that such similarity finds its origin
in the coordinates-dependent navigation strategy chosen. It is

plausible that if the body-reference system is employed in the
dynamics in Euclidean space, instead of a fixed local space
basis, it will restore a dynamics that leads to the uniform
distribution in the long-time regime. Research in this direc-
tion has been started and the corresponding results will be
published elsewhere.

To conclude we can classify the navigation strategies into
two main classes: those that are pinned to the manifold by a
particular choice of coordinates basis for each tangent plane
TrnS and those that are fixed at the body-reference system.
Both situations are plausible to occur in real systems. For
instance, the lateral movement of organic molecules on the
cell membrane are subject to a variety of effects induced by
the surface (many lipids distributed on the membrane serve as
obstacles) on which the molecules move (this would lead to a
navigation strategy pinned to the manifold). This is the case
for the lateral movement of signaling phosphatidylinositol
lipids (PIP2, PIP3, PIP [12,79,80]) on the cell membrane. Dif-
fusion of these molecules is affected by the interaction with
the cell-membrane lipids and other of its components [6,81–
84], thus any mobility correlations arise from the distribution
of obstacles in the cell-membrane surface, and therefore can
be modeled by use of a reference frame fixed in the cell
membrane. These same effects make water molecules to sub-
diffuse on the cell membrane [85]. With the recent advances
designing cell-membrane-coated particles [86], the diffusion
of proteins on such surfaces can be modified either by the
shape of the coated particle or by the properties of the coating
membrane. In the same trend and with the aim to overcome the
obstacles faced by traditional synthetic micromotors, active
(or self-propelling) micromotors have been cell-membrane
functionalized to enhance mobility due to motility-induced
persistence [87–89], and these are able to navigate tissue,
subject to an “internal” navigation scheme (navigation strat-
egy that depends on the body-reference) that arises from
the self-propulsion mechanisms. The effects of fBm on the
self-propulsion dynamics of active particles moving in two-
dimensional space have been analyzed in Ref. [90].

Finally, single-tracking methods have provided evidence
that motion in crowded environments, particularly molecular
motion in the cell membrane (transmembrane motion), is not
as simple as Brownian motion [7,41,91]. This has led to the
formulation of a variety of diffusion models to capture the
anomalous diffusion behavior of these elements. Those based
on fractional Brownian motion have shed light on the un-
derstanding of anomalous diffusion in numerous biophysical
systems [92–96].

In this paper we have highlighted the nontrivial effects of
the interplay between the reference frame, that describes the
motion of particles moving on the surface of the sphere, and
the long correlations of the motion. The analysis presented
has potential applications to biophysical systems, particularly
in the analysis of the diffusion of molecules in biological
membranes, where the motion, besides being stochastic, is in
many cases long-time correlated.
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[26] A. c. v. Gnidovec and S. Čopar, Phys. Rev. B 102, 075416
(2020).

[27] C.-P. Hsu, A. Sciortino, Y. A. de la Trobe, and A. R. Bausch,
Nat. Commun. 13, 2579 (2022).

[28] L. Piro, B. Mahault, and R. Golestanian, New J. Phys. 24,
093037 (2022).

[29] Y. Zhong, L. Zhao, P. M. Tyrlik, and G. Wang, J. Phys. Chem.
C 121, 8023 (2017).

[30] O. A. Ramírez-Garza, J. M. Méndez-Alcaraz, and P. González-
Mozuelos, Phys. Chem. Chem. Phys. 23, 8661 (2021).

[31] A. Valdés-Gómez and F. J. Sevilla, J. Stat. Mech.: Theory Exp.
(2021) 083210.

[32] A. Montañez-Rodríguez, C. Quintana, and P. González-
Mozuelos, Physica A 574, 126012 (2021).

[33] A. Ledesma-Durán, J. Munguía-Valadez, J. A. Moreno-Razo,
S. I. Hernández, and I. Santamaría-Holek, Front. Phys. 9,
634792 (2021).

[34] B. J. Alder and T. E. Wainwright, Phys. Rev. Lett. 18, 988
(1967).

[35] B. J. Alder and T. E. Wainwright, Phys. Rev. A 1, 18 (1970).
[36] A. Widom, Phys. Rev. A 3, 1394 (1971).
[37] Y. Pomeau and P. Résibois, Phys. Rep. 19, 63 (1975).
[38] E. J. Hinch, J. Fluid Mech. 72, 499 (1975).
[39] G. L. Paul and P. N. Pusey, J. Phys. A: Math. Gen. 14, 3301

(1981).
[40] H. J. H. Clercx and P. P. J. M. Schram, Phys. Rev. A 46, 1942

(1992).
[41] F. Höfling and T. Franosch, Rep. Prog. Phys. 76, 046602 (2013).
[42] M. Weiss, H. Hashimoto, and T. Nilsson, Biophys. J. 84, 4043

(2003).
[43] A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, Proc.

Natl. Acad. Sci. USA 108, 6438 (2011).
[44] C. Manzo, J. A. Torreno-Pina, P. Massignan, G. J. Lapeyre, M.

Lewenstein, and M. F. Garcia Parajo, Phys. Rev. X 5, 011021
(2015).

[45] W. He, H. Song, Y. Su, L. Geng, B. J. Ackerson, H. B. Peng,
and P. Tong, Nat. Commun. 7, 11701 (2016).

[46] M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, Biophys. J.
87, 3518 (2004).

[47] A. Caspi, R. Granek, and M. Elbaum, Phys. Rev. Lett. 85, 5655
(2000).

[48] G. Seisenberger, M. U. Ried, T. Endreß, H. Büning, M. Hallek,
and C. Bräuchle, Science 294, 1929 (2001).

[49] I. Golding and E. C. Cox, Phys. Rev. Lett. 96, 098102 (2006).
[50] J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel,

K. Berg-Sørensen, L. Oddershede, and R. Metzler, Phys. Rev.
Lett. 106, 048103 (2011).

[51] S. M. A. Tabei, S. Burov, H. Y. Kim, A. Kuznetsov, T. Huynh, J.
Jureller, L. H. Philipson, A. R. Dinner, and N. F. Scherer, Proc.
Natl. Acad. Sci. USA 110, 4911 (2013).

[52] D. S. Banks and C. Fradin, Biophys. J. 89, 2960 (2005).
[53] J. Szymanski and M. Weiss, Phys. Rev. Lett. 103, 038102

(2009).
[54] J.-H. Jeon, N. Leijnse, L. B. Oddershede, and R. Metzler, New

J. Phys. 15, 045011 (2013).
[55] R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, Phys.

Chem. Chem. Phys. 16, 24128 (2014).
[56] V. M. Kenkre, The Generalized Master Equation and its Appli-

cations (Springer US, Boston, MA, 1977), pp. 441–461.
[57] V. M. Kenkre, E. W. Montroll, and M. F. Shlesinger, J. Stat.

Phys. 9, 45 (1973).
[58] W. Wyss, J. Math. Phys. 27, 2782 (1986).
[59] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
[60] I. Podlubny, Fractional Differential Equations: An Introduction

to Fractional Derivatives, Fractional Differential Equations,
to Methods of Their Solution and Some of Their Applica-
tions, 1st ed., Mathematics in Science and Engineering 198
(Academic Press, San Diego, CA, 1998).

054117-9

https://doi.org/10.1126/science.1081406
https://doi.org/10.1088/1367-2630/8/5/068
https://doi.org/10.1103/PhysRevLett.122.024102
https://doi.org/10.1039/C9SM02375E
https://doi.org/10.1073/pnas.2200924119
https://doi.org/10.1083/jcb.200202050
https://doi.org/10.1016/j.bbamem.2016.01.022
https://doi.org/10.1038/nrm1435
https://doi.org/10.1529/biophysj.104.045484
https://doi.org/10.1038/nrm2330
https://doi.org/10.1016/j.cub.2006.07.056
https://doi.org/10.1002/advs.201600347
https://doi.org/10.1016/j.bpj.2018.01.039
https://doi.org/10.1038/s41467-018-06494-6
https://doi.org/10.1038/s41467-017-01390-x
https://doi.org/10.1016/j.biomaterials.2020.120420
https://doi.org/10.1209/0295-5075/ac757a
https://doi.org/10.1103/PhysRevE.97.052605
https://doi.org/10.1103/PhysRevE.97.052615
https://doi.org/10.1103/PhysRevE.91.022306
https://doi.org/10.1103/PhysRevE.96.022606
https://doi.org/10.1103/PhysRevX.7.031039
https://doi.org/10.1039/D0SM00281J
https://doi.org/10.1103/PhysRevE.97.042605
https://doi.org/10.1103/PhysRevB.102.075416
https://doi.org/10.1038/s41467-022-30128-7
https://doi.org/10.1088/1367-2630/ac9079
https://doi.org/10.1021/acs.jpcc.7b01721
https://doi.org/10.1039/D0CP06474B
https://doi.org/10.1088/1742-5468/ac0eda
https://doi.org/10.1016/j.physa.2021.126012
https://doi.org/10.3389/fphy.2021.634792
https://doi.org/10.1103/PhysRevLett.18.988
https://doi.org/10.1103/PhysRevA.1.18
https://doi.org/10.1103/PhysRevA.3.1394
https://doi.org/10.1016/0370-1573(75)90019-8
https://doi.org/10.1017/S0022112075003102
https://doi.org/10.1088/0305-4470/14/12/025
https://doi.org/10.1103/PhysRevA.46.1942
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1016/S0006-3495(03)75130-3
https://doi.org/10.1073/pnas.1016325108
https://doi.org/10.1103/PhysRevX.5.011021
https://doi.org/10.1038/ncomms11701
https://doi.org/10.1529/biophysj.104.044263
https://doi.org/10.1103/PhysRevLett.85.5655
https://doi.org/10.1126/science.1064103
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.106.048103
https://doi.org/10.1073/pnas.1221962110
https://doi.org/10.1529/biophysj.104.051078
https://doi.org/10.1103/PhysRevLett.103.038102
https://doi.org/10.1088/1367-2630/15/4/045011
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1007/BF01016796
https://doi.org/10.1063/1.527251
https://doi.org/10.1016/S0370-1573(00)00070-3


VALDÉS GÓMEZ AND SEVILLA PHYSICAL REVIEW E 108, 054117 (2023)

[61] V. E. Tarasov, Int. J. Mod. Phys. B 27, 1330005 (2013).
[62] B. J. West, Rev. Mod. Phys. 86, 1169 (2014).
[63] T. Sandev and Ž. Tomovski, Fractional Equations and Models:

Theory and Applications (Springer International Publishing,
Cham, 2019).

[64] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
[65] V. Kobelev and E. Romanov, Prog. Theor. Phys. Suppl. 139,

470 (2000).
[66] E. Lutz, Phys. Rev. E 64, 051106 (2001).
[67] S. Burov and E. Barkai, Phys. Rev. Lett. 100, 070601 (2008).
[68] R. F. Rodriguez and E. Salinas-Rodriguez, J. Phys. A: Math.

Gen. 21, 2121 (1988).
[69] N. Makris, Phys. Fluids 33, 072014 (2021).
[70] B. B. Mandelbrot and J. W. Van Ness, SIAM Rev. 10, 422

(1968).
[71] I. M. Sokolov, Soft Matter 8, 9043 (2012).
[72] F. Biagini, Y. Hu, B. Øksendal, and T. Zhang, Stochastic Calcu-

lus for Fractional Brownian Motion and Applications, 1st ed.,
Probability and Its Applications (Springer, Berlin, 2008).

[73] F. Thiel and I. M. Sokolov, Phys. Rev. E 89, 012136 (2014).
[74] J.-H. Jeon, A. V. Chechkin, and R. Metzler, Phys. Chem. Chem.

Phys. 16, 15811 (2014).
[75] H. Qian, Fractional Brownian motion and fractional Gaussian

noise, Processes with Long-Range Correlations: Theory and Ap-
plications, Lecture Notes in Physics Vol. 621 (Springer-Verlag,
Berlin, Heidelberg, 2003), pp. 22–33.

[76] A. H. O. Wada and T. Vojta, Phys. Rev. E 97, 020102(R)
(2018).

[77] T. Guggenberger, G. Pagnini, T. Vojta, and R. Metzler, New J.
Phys. 21, 022002 (2019).

[78] T. Vojta, S. Halladay, S. Skinner, S. Janušonis, T.
Guggenberger, and R. Metzler, Phys. Rev. E 102, 032108
(2020).

[79] D. A. Beard and H. Oian, Chemical Biophysics: Quantita-
tive Analysis of Cellular Systems (Cambridge University Press,
Cambridge, UK, 2008).

[80] S. McLaughlin, J. Wang, A. Gambhir, and D. Murray, Annu.
Rev. Biophys. Biomol. Struct. 31, 151 (2002).

[81] The Structure of Biological Membranes, 2nd ed., edited by
Philip L. Yeagle (CRC Press, Boca Raton, FL, 2005).

[82] D. Brogh, F. Bhatti, and R. F. Irvine, J. Cell Sci. 118, 3019
(2005).

[83] R. D. Blind, E. P. Sablin, K. M. Kuchenbecker, H.-J. Chiu,
A. M. Deacon, D. Das, R. J. Fletterick, and H. A. Ingraham,
Proc. Natl. Acad. Sci. USA 111, 15054 (2014).

[84] T. C. Buckles, B. P. Ziemba, G. R. Masson, R. L. Williams, and
J. J. Falke, Biophys. J. 113, 2396 (2017).

[85] E. Yamamoto, T. Akimoto, M. Yasui, and K. Yasuoka, Sci. Rep.
4, 4720 (2014).

[86] J. M. Spanjers and B. Städler, Adv. Biosys. 4, 2000174 (2020).
[87] B. Esteban-Fernández de Ávila, W. Gao, E. Karshalev, L.

Zhang, and J. Wang, Acc. Chem. Res. 51, 1901 (2018).
[88] F. Zhang, R. Mundaca-Uribe, N. Askarinam, Z. Li, W. Gao, L.

Zhang, and J. Wang, Adv. Mater. 34, 2107177 (2022).
[89] Y. Wu, A. Fu, and G. Yossifon, Sci. Adv. 6, eaay4412 (2020).
[90] J. R. Gomez-Solano and F. J. Sevilla, J. Stat. Mech.: Theory

Exp. (2020) 063213.
[91] K. Ritchie, X.-Y. Shan, J. Kondo, K. Iwasawa, T. Fujiwara, and

A. Kusumi, Biophys. J. 88, 2266 (2005).
[92] R. Benelli and M. Weiss, New J. Phys. 23, 063072 (2021).
[93] D. Ernst, M. Hellmann, J. Köhler, and M. Weiss, Soft Matter 8,

4886 (2012).
[94] A. A. Sadoon and Y. Wang, Phys. Rev. E 98, 042411 (2018).
[95] A. Sabri, X. Xu, D. Krapf, and M. Weiss, Phys. Rev. Lett. 125,

058101 (2020).
[96] K. Speckner and M. Weiss, Entropy 23, 892 (2021).

054117-10

https://doi.org/10.1142/S0217979213300053
https://doi.org/10.1103/RevModPhys.86.1169
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1143/PTPS.139.470
https://doi.org/10.1103/PhysRevE.64.051106
https://doi.org/10.1103/PhysRevLett.100.070601
https://doi.org/10.1088/0305-4470/21/9/025
https://doi.org/10.1063/5.0059452
https://doi.org/10.1137/1010093
https://doi.org/10.1039/c2sm25701g
https://doi.org/10.1103/PhysRevE.89.012136
https://doi.org/10.1039/C4CP02019G
https://link.springer.com/book/10.1007/3-540-44832-2
https://doi.org/10.1103/PhysRevE.97.020102
https://doi.org/10.1088/1367-2630/ab075f
https://doi.org/10.1103/PhysRevE.102.032108
https://doi.org/10.1146/annurev.biophys.31.082901.134259
https://doi.org/10.1242/jcs.02426
https://doi.org/10.1073/pnas.1416740111
https://doi.org/10.1016/j.bpj.2017.09.018
https://doi.org/10.1038/srep04720
https://doi.org/10.1002/adbi.202000174
https://doi.org/10.1021/acs.accounts.8b00202
https://doi.org/10.1002/adma.202107177
https://doi.org/10.1126/sciadv.aay4412
https://doi.org/10.1088/1742-5468/ab8553
https://doi.org/10.1529/biophysj.104.054106
https://doi.org/10.1088/1367-2630/ac0853
https://doi.org/10.1039/c2sm25220a
https://doi.org/10.1103/PhysRevE.98.042411
https://doi.org/10.1103/PhysRevLett.125.058101
https://doi.org/10.3390/e23070892

