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Nonequilibrium dynamics of the Jaynes-Cummings dimer

G. Vivek, Debabrata Mondal , and S. Sinha
Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia-741246, India

(Received 11 July 2023; accepted 16 October 2023; published 9 November 2023)

We investigate the nonequilibrium dynamics of a Josephson-coupled Jaynes-Cummings dimer in the presence
of Kerr nonlinearity, which can be realized in the cavity and circuit quantum electrodynamics systems. The
semiclassical dynamics is analyzed systematically to chart out a variety of photonic Josephson oscillations and
their regime of stability. Different types of transitions between the dynamical states lead to the self-trapping
phenomenon, which results in photon population imbalance between the two cavities. We also study the
dynamics quantum mechanically to identify characteristic features of different steady states and to explore
fascinating quantum effects, such as spin dephasing, phase fluctuation, and revival phenomena of the photon
field, as well as the entanglement of spin qubits. For a particular “self-trapped” state, the mutual information
between the atomic qubits exhibits a direct correlation with the photon population imbalance, which is promising
for generating photon mediated entanglement between two non interacting qubits in a controlled manner. Under
a sudden quench from stable to unstable regime, the photon distribution exhibits phase space mixing with a rapid
loss of coherence, resembling a thermal state. Finally, we discuss the relevance of the new results in experiments,
which can have applications in quantum information processing and quantum technologies.
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I. INTRODUCTION

Recent advancements in cavity and circuit quantum elec-
trodynamics (QED) have paved the way to study the nonequi-
librium dynamics in quantum systems [1–3], apart from their
potential application to quantum information processing [2,3].
Moreover, such atom-photon interacting systems exhibit var-
ious fascinating phenomena, some of which include quantum
phase transition [4–6], the onset of chaos [5], thermalization
[7,8], and the formation of quantum scars [9,10], which has
attracted significant interest in recent years. In addition, a
range of quantum effects associated with photons can also be
explored, for example, the collapse and revival phenomenon
[11–13], formation of Schrödinger’s cat state [14–18], and
nonclassical state of light [19–24]. Current experiments have
demonstrated that coupling atomic condensates to the cavity
mode can lead to fascinating phenomena, like the formation
of super-solid phase [25,26] and nonequilibrium transition
[27]. It is also important to note that photon loss and other
natural processes are inherent in the above mentioned sys-
tems [28,29], which give rise to various dissipative effects
for sufficiently strong dissipation [30–34]. In a single cavity,
the atom-photon interacting systems within a specific regime
can be effectively described by the Jaynes-Cummings [35]
or Tavis-Cummings model [36], depending on the number
of atoms in it. Moreover, coupling the cavities in an ar-
ray opens up the possibility to explore many body physics
with light matter interacting systems [1,37–50], similar to
the Hubbard model. A variety of these models can exhibit
quantum phase transitions, which have been explored the-
oretically [48,51–56]. The simplest configuration of such a
many body system is the dimer of two coupled cavities form-
ing a Jaynes-Cummings Josephson junction (JCJJ), which
has been realized in circuit QED setup [57]. This system

can serve as a test bed to study various nonequilibrium
phenomena [57–59].

In the present work, we investigate the nonequilibrium
dynamics and the various associated quantum phenomena in
an atom-photon interacting system described by JCJJ in the
presence of Kerr nonlinearity [60–68]. An insight into the
overall dynamical behavior can be gained from the semiclas-
sical analysis, which is also useful for identifying a variety
of photonic Josephson oscillations in the JCJJ and tran-
sitions between them. Interestingly, this system exhibits a
self-trapping phenomenon, for which photons are dynami-
cally localized in one of the cavities [57–59,69]. Apart from
this, other self-trapped states also appear as a consequence
of Kerr nonlinearity, which we analyze in detail, focusing
on their dynamical origin and regime of stability. However,
in quantum dynamics, atoms and photons become entangled,
which gives rise to interesting quantum effects, leading to the
deviation from classical behavior. Additionally, the photon
field can lose its coherence as a result of phase fluctuation
during the time evolution. It is a pertinent issue to study the
entanglement dynamics and change in the state of photons
due to the combined effect of interaction and entanglement
for different dynamical states, as well as for a rapid quench
to a dynamically unstable regime. We also demonstrate how
the self-trapping phenomena can be employed to control the
photon mediated correlation between the atomic qubits, which
are otherwise noninteracting. Such dynamical manipulation
of entanglement between the qubits in the Jaynes-Cummings
dimer model can have potential applications in quantum in-
formation processing.

The paper is organized as follows. In Sec. II, we describe
the JCJJ model and analyze it semiclassically in Sec. III to
obtain different branches of Josephson dynamics, their stabil-
ity as well as transitions between them. Quantum dynamics
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and its comparison with semiclassical steady states are pre-
sented in Sec. IV. Section V contains a detailed discussion
on the quantum nature of the photon field, particularly phase
diffusion and revival phenomena. In this section, we also
investigate the entanglement properties of the spin 1/2 atomic
qubits corresponding to the different steady states, as well as
the signature of phase space mixing of photons in the quench
dynamics. Finally, we summarize the results and conclude in
Sec. VI.

II. THE MODEL

The Jaynes-Cummings Josephson junction formed by cou-
pling two cavities [57] can be described by the Hamiltonian

Ĥ =
∑

i

[
Ĥ(i)

JC + U

2
n̂i(n̂i − 1)

]
− J (â†

LâR + H.c.) − μM̂,

(1)

where the site index i = L, R indicates the left and right cavity,
which are coupled by the Josephson coupling J . Each cavity
can be modeled by the Jaynes-Cummings Hamiltonian

Ĥ(i)
JC = ωn̂i + ω0σ̂

+
i σ̂−

i + g(âiσ̂
+
i + â†

i σ̂
−
i ), (2)

describing the interaction between an atom and single mode
cavity field with frequency ω, represented by the annihilation
(creation) operators âi(â

†
i ). The two-level atom with energy

gap ω0 at each cavity is described by the Pauli spin operators
�̂σi. The last term of Ĥ(i)

JC describes the atom-photon interaction
with strength g. In addition, we consider the effect of Kerr
nonlinearity [60–68] in each cavity, represented by the second
term in Eq. (1), giving rise to the repulsive interaction of
the photon field with strength U . The JCJJ described by the
Hamiltonian in Eq. (1) preserves the U (1) symmetry similar
to the Jaynes-Cummings model [60], leading to the conserved
total excitation number,

M̂ =
∑

i=L,R

(n̂i + σ̂+
i σ̂−

i ). (3)

In the grand canonical ensemble, the μ in Eq. (1) represents
the chemical potential corresponding to the number of excita-
tions. Such a JCJJ has been realized in circuit QED setup [57],
where the strength of interactions and the photon hopping
amplitude can be tuned. Moving forward, we will discuss
the different Josephson oscillations of the JCJJ, described by
the Hamiltonian in Eq. (1) within the semiclassical method
and compare them with the quantum mechanical dynamics.
Throughout the paper, we use units such that h̄, kB = 1 and
have scaled the energy (time) by J (1/J ).

III. SEMICLASSICAL ANALYSIS

In this section, we study the dynamics of the JCJJ governed
by the Hamiltonian given in Eq. (1), using the time-dependent
variational method [70]. The photons and two-level atoms
in the cavities can be described semiclassically by their re-
spective coherent states [71], using which we construct the
following time-dependent variational wave function,

|ψc(t )〉 =
∏

i=L,R

|αi(t )〉 ⊗ |θi(t ), φi(t )〉 . (4)

The coherent state of the cavity mode is given by

|αi〉 = exp(αiâ
†
i − α∗

i âi ) |0〉 , (5)

where αi is the eigenvalue of âi, representing the photon field
classically. The wave function for the two-level atoms can be
expressed as follows:

|θi, φi〉 = cos(θi/2) |↑〉 + sin(θi/2)eiφi |↓〉 , (6)

where |↓〉 (|↑〉) represents the ground (excited) state and the
canonically conjugate variables φi, zi = cos θi describe the
orientation of such a spin 1/2 system on the Bloch sphere,

for which 〈 �̂Si〉 = S(sin θi cos φi, sin θi sin φi, cos θi ) with S =
1/2. The coherent state representation of the photon field is
appropriate for a large number of photons in each cavity,
giving rise to the substantial number of conserved total exci-
tations that can be written semiclassically as M = ∑

i |αi|2 +
(1 + zi )/2. It is evident from the conservation equation that
the amplitude of the classical field αi scales with

√
M. There-

fore, for a large number of conserved excitations, we define
αi/

√
M = √

ni exp(ιψi ) = (xi + ιpi )/
√

2, where ni ∈ [0, 1] is
the scaled photon number, ψi represents its phase, and xi, pi

are the corresponding conjugate variables. In terms of the
dynamical variables x = {ni, ψi, zi, φi}, the Lagrangian scaled
by the total excitation number M can be written as

L = 1

M
〈ψc| i

∂

∂t
− Ĥ |ψc〉

=
∑

i=L,R

[
−ψ̇ini + η

2
φ̇izi − (ω − μ)ni − η

2
(ω0 − μ)zi

− Ũ

2
n2

i − g̃
√

ni

√
1 − z2

i cos(φi + ψi )

]

+ 2
√

nLnR cos(ψL − ψR), (7)

where η = 2S/M and the interaction strengths are scaled as
g̃ = g/

√
M, Ũ = UM. Note that, in general, η = 2S/M for

a large spin system with magnitude S, which is considered
to be small in the present case of the Jaynes-Cummings
model with S = 1/2 and M � 1. From the Euler-Lagrange
equation d

dt ( ∂L
∂ ẋ ) − ∂L

∂x = 0 of the dynamical variables x =
{ni, ψi, zi, φi}, we obtain the following equations of motion
(EOM),

ṅi = −g̃
√

ni

√
1 − z2

i sin (φi + ψi )

+ 2
√

nini sin (ψi − ψi ), (8a)

ψ̇i = −(ω − μ) − g̃

2
√

ni

√
1 − z2

i cos (φi + ψi )

+
√

ni

ni
cos (ψi − ψi ) − Ũni, (8b)

ηφ̇i = η(ω0 − μ) − 2g̃zi√
1 − z2

i

√
ni cos (φi + ψi ), (8c)

ηżi = 2g̃
√

ni

√
1 − z2

i sin (φi + ψi ), (8d)
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FIG. 1. Schematic diagram illustrating the spin orientations of
the various steady states in the Sx-Sy plane: (a) depicts the steady
states corresponding to the ferromagnetic class, and (b) represents
the steady states corresponding to the antiferromagnetic class.

where ī �= i. Conservation of the total excitation number
yields the constraint

nL + nR + η

2
(zL + zR + 2) = 1. (9)

We solve Eq. (8) within the grand canonical ensemble, where
μ is fixed by the Eq. (9). However, in the limit g̃ → 0, both
the photon number and atomic inversion become conserved
individually, and therefore our formalism cannot be contin-
ued to this limit. Hence, we exclude the regime of small g̃
from our discussion. First, we investigate the steady states
corresponding to the fixed point (FP) x∗ = (n∗

i , ψ
∗
i , z∗

i , φ
∗
i )

of the EOM given in Eq. (8), for which ẋ = 0. Next, we
perform the linear stability analysis around the steady states,
describing the evolution of small initial fluctuation δx(0) in
the form δx(t ) = δx(0)eiω̃t and determine the frequency ω̃.
The stability of FPs is ensured if the Im(ω̃) = 0 and the ω̃

yields the small amplitude oscillation frequency around the
corresponding steady states. In the JCJJ, the stable steady
states describe the different types of photonic Josephson os-
cillations with the frequency that can be obtained from the
linear stability analysis mentioned above. Next, we find the
different possible steady states from Eq. (8) and analyze their
stability.

A. Steady-state analysis

In this subsection, we systematically investigate various
steady states obtained from the EOM in Eq. (8) and analyze
their stability as outlined above. As evident from Eqs. (8a) and
(8d), the steady states satisfy the conditions,

sin(φ∗
i + ψ∗

i ) = 0, (10a)

sin(ψ∗
L − ψ∗

R ) = 0, (10b)

which correspond to the phase relations φ∗
i + ψ∗

i = 0, π and
ψ∗

L − ψ∗
R = 0, π , that is used to classify the steady states.

The relative phase of bosons ψ∗
L − ψ∗

R = 0(π ) equivalently
describes the (anti)ferromagnetic spin configuration of the
cavities in the Sx-Sy plane, corresponding to φ∗

L − φ∗
R = 0(π ).

We categorize the steady states in these two classes, which
are represented schematically in Figs. 1(a) and 1(b). Note that
the transformations φ∗

i → φ∗
i + δ and ψ∗

i → ψ∗
i − δ leave the

steady-state equations Eq. (8) invariant as a consequence of
the U (1) symmetry. This results in a continuous set of FPs

lying on circles in the xi-pi and Six-Siy planes with correspond-

ing radius
√

2n∗
i and

√
1 − z∗2

i /2, respectively [see Figs. 1(a)
and 1(b)]. For a particular class of spin configuration and a
given value of η, the steady states can be obtained in terms
of {n∗

i , z∗
i }, by solving Eqs. (8b) and (8c), subjected to the

constraint in Eq. (9), which conserves the total excitation. The
steady states thus obtained, can be categorized in terms of the
relative photon population f = n∗

R/n∗
L, which we denote as

symmetric ( f = 1) and sel f trapped ( f �= 1), corresponding
to equal and unequal photon population in the cavities. Note
that, once the photon population n∗

i is obtained, it also deter-
mines the atomic inversion z∗

i ,

z∗
i = ξ2η(ω0 − μ)√

η2(ω0 − μ)2 + 4g̃2n∗
i

. (11)

It is important to mention that the Hamiltonian given in
Eq. (1) remains invariant under the exchange of the degrees
of freedom between the two cavities (âL ↔ âR and �̂σL ↔ �̂σR),
which indicates the discrete left-right symmetry between the
cavities. The spontaneous breaking of this symmetry can give
rise to the self-trapped state. Next, we analyze the steady-
state equations graphically, which provides a physical picture
and qualitative behavior of the steady states as well as the
transitions [72,73] between them. For small values of η, from
Eq. (9), the total photon number can be approximately written
as n∗

L + n∗
R = 1 − η, which yields

n∗
L = (1 − η)

1 + f
, n∗

R = f (1 − η)

1 + f
. (12)

Using these relations, the steady-state equations Eqs. (8b) and
(8c) can be reduced to a single effective equation in terms of
the relative photon population f ,

Y ( f ) = ξ1( f − 1) − Ũ (1 − η)

(
1 − f

f + 1

)√
f

− ξ2g̃2
√

f

(
1√

FL( f )
− 1√

FR( f )

)
= 0, (13)

where Fi( f ) = η2(ω0 − μ)2 + 4g̃2n∗
i ( f ) and the discrete

variable ξ1 = cos(ψ∗
L − ψ∗

R ) = ±1 describes the spin orienta-
tion of two qubits while ξ2 = cos(φ∗

i + ψ∗
i ) = ±1. For small

η, the chemical potential μ is given by

μ = ω − ξ1

2

(√
f + 1√

f

)
+ Ũ

2
+ ξ2g̃

4

√
1 + f

(
1 + 1√

f

)
.

(14)

Note that, as a consequence of the left-right symmetry be-
tween the cavities, Eq. (13) remains invariant under the
transformation f → 1/ f , hence we only consider the steady-
state solutions for f ∈ [0, 1]. The roots of Eq. (13) yield the
possible steady states for a given combination of ξ1, ξ2, which
we discuss below.

1. Ferromagnetic class (ψ∗
L − ψ∗

R = 0)

For the ferromagnetic orientation of the qubits, ξ1 = +1
while the other variable can take two values ξ2 = ±1. When
ξ2 = −1, the equation Y ( f ) has only one root for f = 1,
describing a symmetric steady state corresponding to the
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FIG. 2. Graphical analysis of the function Y ( f ) to identify dif-
ferent steady states and their bifurcations: (a) Identification of the
steady states from the roots of the function Y ( f ) and (b) the steady-
state solutions in terms of f (see the text for details) are shown
as a function of g̃ for Ũ = 3, corresponding to the ferromagnetic
class (ξ1 = 1, ξ2 = 1). (c, e) Graphical representation of Y ( f ) and
(d, f) bifurcation diagram of the FPs in terms of photon population
imbalance Zp for antiferromagnetic class (ξ1 = −1) corresponding to
ξ2 = ±1, respectively (see the main text), at g̃ = 1 for different Kerr
nonlinearity Ũ . The different markers in panels (a, c, e) indicate the
various steady states corresponding to the respective classes. Solid
(dashed) lines in panels (b, d, f) represent stable (unstable) steady
states. Inset of panels (d, f) shows the behavior of Zp as a function
of g̃ for Ũ = 4, 1.5, respectively. Here and in rest of the figures, we
consider excitation number M = 30, equivalently, η = 1/M, unless
otherwise mentioned. The energy E and interaction strengths g̃, Ũ
are measured in the units of hopping amplitude J . We set h̄, kB = 1
and ω = ω0 = 2 for all figures.

ground-state configuration (Gs). However, ξ2 = 1 is a more
interesting scenario since it gives rise to various non trivial
steady states, as shown in Figs. 2(a) and 2(b). Similar to
the previous case, f = 1 is always a solution of equation
Y ( f ) describing a symmetric state with higher energy density
(scaled by the total number of excitation), which is denoted by
FP-F. Interestingly, two new solutions appear above a critical
coupling strength,

g̃c1(Ũ ) = 2 + 3

(
1 + Ũ

2

)4/3

η2/3 − η

2
, (15)

FIG. 3. Steady-state phase diagram as a function of interaction
strengths Ũ and g̃: (a) Ferromagnetic and (b) antiferromagnetic class.
Here, all the phase boundaries are obtained numerically. The bound-
ary of PST (dashed line) and instability line of FP-F (dashed-dotted
line) in panel (a) are described approximately by g̃c1 and g̃c2, re-
spectively, see Eqs. (15) and (16) of the main text. The bifurcation
lines between FP-AF, ST2 (dashed-dotted line) and FP-π , ST1 (solid
line) in panel (b) can be written approximately using Ũc1 and Ũc2, as
given by Eqs. (17) and (20) in the main text. The ST2 state becomes
unstable outside the dashed line [ŨI (g̃)] without giving rise to any
new steady state. Note that the small g̃ regime is kept blank, since
our formalism cannot be continued to g̃ = 0 (see the text for details).

giving rise to two self-trapped states, one of which is unstable,
as seen from Fig. 2(b). The FP with vanishingly small rela-
tive photon population f ≈ 0 corresponds to a stable perfect
self-trapped (PST) state [57,58], describing a situation where
almost all the photons are localized in one of the cavities. As
illustrated in Figs. 2(a) and 2(b), such self-trapped states arise
as a result of a saddle-node bifurcation occurring at g̃c1(Ũ ),
for which non vanishing small parameter η plays a crucial
role. The unstable self-trapped state STu (with larger value of
f ) undergoes a subcritical pitchfork bifurcation with FP-F at
the critical point g̃c2(Ũ ), which can be approximately written
as

g̃c2(Ũ ) = (
√

8 +
√

2Ũ ) −
(

3√
2

Ũ +
√

2

)
η, (16)

after which the symmetric state FP-F becomes unstable, as
depicted in Fig. 2(b). Now we focus on the steady states
corresponding to the antiferromagnetic spin configuration.

2. Antiferromagnetic class (ψ∗
L − ψ∗

R = π)

For the antiferromagnetic class with ξ1 = −1, the steady
states at higher energies compared to the ground state and the
transitions between them are very intriguing where the Kerr
nonlinearity Ũ plays a crucial role. The other variable can take
two values ξ2 = ±1, and we discuss the corresponding steady
states one by one.

ξ2 = 1 : In this case, a symmetric steady state denoted
by FP-π exists, which undergoes a pitchfork bifurcation at a
critical Kerr nonlinearity, as evident from Figs. 2(c) and 2(d).
After the bifurcation, FP-π becomes unstable, giving rise to a
stable self-trapped state ST1. This bifurcation is indicated by
the solid black line in Fig. 3(b). This phenomenon also occurs
in the Bose-Josephson junction, in absence of coupling to the
spin (g̃ = 0) [74–77], which has been detected experimentally
[78,79]. However, in the present case, the critical Kerr non-
linearity also depends on the coupling strength g̃, which is
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given by

Ũc1(g̃) = 2 + g̃√
2

+
(

2 + 3g̃

2
√

2

)
η, (17)

for small η. Unlike the perfect self-trapping, the relative pho-
ton population imbalance between the two cavities,

Zp = nL − nR

nL + nR
, (18)

of the self-trapped state ST1 increases continuously after the
bifurcation and approaches to unity with increasing Kerr non-
linearity Ũ , which is shown in Fig. 2(d). In contrast, the
relative population imbalance Zp decreases with increasing
atom-photon coupling strength g̃ [see the inset of Fig. 2(d)],
which serves as a characteristic feature of this ST1 state for its
identification. It is evident from Eq. (11), for the self-trapped
state, the photon population imbalance Zp leads to the atomic
population imbalance,

Za = |zR − zL|
2

, (19)

exhibiting similar behavior with coupling strength.
ξ2 = −1 : A similar type of phenomenon can also be ob-

served for ξ2 = −1. In this case, another symmetric state
FP-AF exists, which is energetically different from FP-π but
corresponds to the same antiferromagnetic spin orientation.
The symmetric state FP-AF undergoes a pitchfork bifurcation
at a critical strength of Kerr interaction,

Ũc2(g̃) = 2 − g̃√
2

+
(

2 − 3g̃

2
√

2

)
η, (20)

which occurs only for g̃ � 2. Above this critical coupling,
the FP-AF state becomes unstable, giving rise to a new self-
trapped state denoted by ST2 [see Figs. 2(e) and 2(f)]. Unlike
ST1, this self-trapped state loses its stability above a critical
Kerr nonlinearity ŨI(g̃) [denoted by the black dashed line in
Fig. 3(b)] without forming a new steady state, as shown in the
bifurcation diagram given in Fig. 2(f) for a fixed coupling g̃.
Thus, ST2 can exist as a stable state only in the range Ũc2(g̃) �
Ũ < ŨI(g̃) and for g̃ � 2. The relative photon population im-
balance Zp for ST2 state increases and approaches unity as
both the interaction strengths Ũ , g̃ increases [as depicted in
Fig. 2(f)]. This behavior is strikingly different from that of the
ST1, where Zp diminishes with g̃. Such qualitatively different
features can be employed to distinguish between the two self-
trapped states ST1 and ST2 during quantum dynamics, which
we will discuss in the next section. Note that, in addition
to ST1 and ST2, other self-trapped states can also appear,
exhibiting complicated scenarios, which we prefer to leave
out from the present discussion as they are less relevant due to
their existence within a small range of parameters. Moreover,
the signatures of these states have not been found in quantum
dynamics.

In the limit g̃ → 0, the steady states corresponding to
ξ2 = ±1 become almost identical [see Eq. (13)], with a small
difference of the order of η in the physical quantities. In
this regime, both the self-trapped states ST1 and ST2 be-
come practically identical. However, we exclude the small
g̃ regime from our discussion, as the formalism cannot be
extrapolated to g̃ = 0, for which both the atomic excitation

FIG. 4. Small amplitude oscillations of the different physi-
cal quantities and their characteristic frequencies corresponding
to FP-π state: Dynamics of (a) photon number δnL (t ) = nL (t ) −
n∗

L , (b) atomic inversion δzL (t ) = zL (t ) − z∗
L , subtracted from their

steady-state values. The respective Fourier spectra, δñL (ω̃)/δñL (ω̃0)
and δz̃L (ω̃)/δz̃L (ω̃0), scaled by the amplitude of the lowest frequency
are shown in panels (c) and (d). The lowest frequency ω̃0 obtained
from the linear stability analysis is present in both the quantities.
Here and in the remaining figures, time t and frequencies ω̃, ω̃0 are
scaled by 1/J and J , respectively.

and photon number are conserved separately. The plethora of
steady states obtained from the above analysis are summa-
rized in the phase diagrams, depicted in Figs. 3(a) and 3(b),
separately for ferromagnetic and antiferromagnetic classes,
indicating their region of stability. Here, the phase diagrams
are obtained by solving the steady-state equations exactly for
a fixed value of η (equivalently, a fixed number of excitations
M). The numerically obtained phase boundaries of the steady
states PST, FP-F [shown in Fig. 3(a)] and the transition lines
between FP-π to ST1 as well as FP-AF to ST2 [depicted in
Fig. 3(b)] are in good agreement with the analytical results
given in Eqs. (15), (16), (17), and (20) for small values of
η. The appropriate parameter regimes can be identified from
the phase diagrams for observation of different dynamical
behavior and transitions.

B. Classical dynamics

To this end, we investigate the classical dynamics cor-
responding to the different steady states illustrated in the
phase diagram of Fig. 3, which provides useful information
about various photonic Josephson oscillations and transitions
between them. The time evolution is performed by solving
the EOM given in Eq. (8) numerically for an appropriately
chosen initial condition. In general, if the initial condition
is chosen close to a stable fixed point, the photon number
and other physical quantities oscillate around the steady state,
with oscillation frequencies obtained from the linear stability
analysis. We illustrate the oscillation around the symmetric
state FP-π by computing the deviation of photon number
δni(t ) = ni(t ) − n∗

i and atomic inversion δzi(t ) = zi(t ) − z∗
i

from the corresponding steady-state values, which exhibits
small amplitude oscillation around zero, shown in Figs. 4(a)
and 4(b). Numerically, the Fourier transform of the time
evolution of photon population and atomic inversion yields
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FIG. 5. Classical phase portrait and variation of oscillation fre-
quency across the transition between FP-π and ST1 states: Dynamics
of photon field in xL-pL plane of left cavity corresponding to the
(a) stable regime with (g̃, Ũ ) = (1.0, 1.5) and (b) unstable regime
with (g̃, Ũ ) = (1.0, 6.5), of FP-π state. The red (blue) trajectory in
panel (b) is obtained by starting the dynamics near the stable ST1 (un-
stable FP-π ) state. (c) Time evolution of the relative phase of photon
ψr = ψL − ψR for stable FP-π state. (d) Dynamics of the relative
photon population imbalance Zp in the unstable regime of FP-π . The
colored lines carry the same meaning as in panel (b). (e) Variation
of the lowest frequency ω̃0 (of small amplitude oscillation) with Ũ
across the transition, for g̃ = 1. The black circles and the solid lines
denote the lowest frequency obtained from the Fourier transform of
the dynamics, and the linear stability analysis, respectively.

the relevant frequencies present in the dynamics. As observed
from Figs. 4(c) and 4(d), the lowest frequency ω̃0 obtained
from the linear stability analysis of the steady state FP-π
corresponds to the highest amplitude of the Fourier transform,
indicating its dominant role in both the photon and spin (atom)
dynamics. However, as evident from Fig. 4(d), the higher-
frequency modes also contribute to the spin degree with small
amplitude, resulting in fast dynamics [see Fig. 4(b)]. Such
dynamics around a stable fixed point as depicted in Figs. 4(a)
and 4(b) usually lie on an invariant KAM torus [80] with
off-resonant frequencies. Consequently, a trajectory over a
long duration of time densely fills the region around the ring
of FPs.

It is fascinating to study the dynamics across the bifurca-
tion of the steady states, particularly the emergence of the
self-trapped states. Here, we focus on the classical dynamics
across the pitchfork bifurcation of the symmetric state FP-π
to the self-trapped state ST1, which occurs by tuning the Kerr
nonlinearity Ũ . Before the bifurcation, since the stable FP-π
is a symmetric state, we study the dynamics of the photon field
in x-p plane for one of the cavities, depicted in Fig. 5(a). As
mentioned before, due to the U (1) symmetry, the continuous
FPs lie on a circle in the x-p plane of the photon field [black
line in Fig. 5(a)]. Ideally, the small amplitude dynamics is
expected to be confined around one of the FPs, which only
occurs if we consider the initial condition for φ + ψ to be the

FIG. 6. Classical dynamics around different self-trapped states:
(a, b) Relative photon population imbalance Zp and (c, d) atomic
imbalance Za for the ST1 and ST2 states, respectively, at different
coupling strengths g̃. The Kerr interaction strength for the dynamics
of ST1 and ST2 are Ũ = 5 and Ũ = 2, respectively. The horizontal
lines with different line styles indicate the classical steady-state val-
ues of both Zp as well as Za.

same as the value of the FPs, without any fluctuation around
it. However, for an arbitrary initial condition around one of the
FPs, the trajectory surrounds all the fixed points on the ring,
as depicted in Fig. 5(a). As the main characteristic feature of
the FP-π mode, the relative phase of photons ψr = ψL − ψR

oscillates around the value π , which is shown in Fig. 5(c).
Above the critical coupling Ũc1, FP-π becomes unstable, and
depending on the initial condition, the dynamics is attracted
toward one of the stable self-trapped states. It is evident from
Fig. 5(b) that the trajectory is repelled from the FP-π state
and attracted toward the ring of FPs corresponding to the
ST1 state. Consequently, the photon imbalance Zp oscillates
around a finite value corresponding to the steady state [see
Fig. 5(d)]. The signature of this transition can be observed
from the oscillation frequencies of FP-π and ST1 state, both
of which vanish at the critical coupling strength Ũc1, as evident
from Fig. 5(e). A similar phenomenon also occurs for the
bifurcation of FP-AF to ST2 state. Such behavior is similar to
the mode softening phenomenon associated with the quantum
phase transition [81].

Next, we focus on the dynamics of the self-trapped states
ST1 and ST2. As a distinguishing feature between them,
the relative photon population imbalance Zp decreases with
increasing atom-photon coupling g̃ for ST1 [see Fig. 6(a)],
whereas it increases for ST2, as depicted in Fig. 6(b). Since
the atomic inversion is directly related to the photon pop-
ulation in each cavity, as given in Eq. (11), the relative
photon population imbalance Zp can also induce an atomic
inversion imbalance, Za for the self-trapped states. The vari-
ation of Za with g̃ can also distinguish between the two
self-trapped states ST1 and ST2, exhibiting opposite behav-
ior, which is illustrated in Figs. 6(c) and 6(d). However, its
variation is small for the ST2 state as compared to that of
ST1.
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So far, we have analyzed the classical dynamics based on
a simplified description, neglecting the atom-photon corre-
lation. Hence, it is important to investigate the signature of
such dynamical states in quantum dynamics and the effect
of atom-photon entanglement, which we consider in the next
sections.

IV. QUANTUM DYNAMICS

In this section, we study the full quantum dynamics of the
JCJJ and compare them with the classical dynamics to investi-
gate the effect of Kerr nonlinearity as well as the atom-photon
correlation. We evolve the initial state |�(0)〉, with a fixed
number of excitations M, within the Schrödinger prescription,
which is performed numerically by truncating the basis up to
a sufficiently large number Nmax. To compare with classical
dynamics, we choose the initial state as the product of coher-
ent states of photons and spins, described in Eqs.(5) and (6),
respectively which represents the classical phase space point.
To investigate the signature of different branches of the dy-
namical states, we time evolve the appropriately chosen initial
state and obtain the dynamics of different physical quantities
such as the population of photons and the atom in different
cavities as well their imbalance, characterizing those states.
The parameters are also chosen from the stability region of the
corresponding states from the phase diagram, given in Fig. 3.

First, we study the dynamics of the symmetric states FP-
F and FP-AF corresponding to the ferromagnetic and the
antiferromagnetic classes, respectively. To characterize these
states quantum mechanically, we obtain the photon popula-
tion imbalance, Zp = (〈n̂L〉 − 〈n̂R〉)/(〈n̂L〉 + 〈n̂R〉) where 〈n̂i〉
is computed from the time evolved state |�(t )〉 starting from
the initial coherent state. For both FP-F and FP-AF states, we
obtain the time evolution of Zp and compare them with that
obtained from the classical dynamics, as shown in Figs. 7(a)
and 7(b). It is clear from Figs. 7(a) and 7(b) that the simple
classical analysis is able to capture the full quantum dynamics
reasonably well, however, there are certain deviations as t
increases. To reveal the relative spin orientation in the two
cavities, we introduce the quantity

CLR = 〈ŜLxŜRx + ŜLyŜRy〉√(
1
4 − 〈ŜLz〉2

)(
1
4 − 〈ŜRz〉2

) , (21)

which in the classical limit takes the value −1(+1) corre-
sponding to the (anti)ferromagnetic class of steady states.
As shown in Figs. 7(c) and 7(d), the quantum dynamics
of CLR also approaches these values for FP-F and FP-AF,
which is consistent with their classification based on classi-
cal analysis. However, in quantum dynamics, the correlation
(entanglement) between spins and photons gives rise to in-
teresting effects leading to the deviation from classicality.
In the spin dynamics of the FP-F state, the average values
of the spin components in the x-y plane evolve around a
circle corresponding to the classical FPs. Whereas for the
FP-AF state, the spin trajectory deviates from the ring of
classical FPs and spirals to the center corresponding to 〈Ŝx〉 =
〈Ŝy〉 = 0, exhibiting spin dephasing phenomena [82], as seen
from Fig. 7(f). Typically for spin 1/2 qubits, the classical

FIG. 7. Comparison between quantum dynamics of the symmet-
ric states FP-F and FP-AF: The small amplitude oscillation of the
photon imbalance Zp around (a) FP-F, (b) FP-AF, are compared
with their respective classical dynamics (black dashed lines). The
spin orientations of these states are described by CLR in panels (c,
d), respectively. The spin trajectory in the 〈ŜLx〉-〈ŜLy〉 plane of the
left cavity is shown for (e) FP-F and (f) FP-AF state. The black
dashed circles in panels (e, f) represent the ring of classical FPs.
The evolution of spins around the FP-AF state exhibits dephasing
phenomenon. Parameter chosen: (g̃, Ũ )=(0.5,0.5).

description fails due to the enhanced quantum fluctuations and
entanglement with photons, which we analyze later.

Next, we investigate different types of self-trapping phe-
nomena from quantum dynamics. We search for a perfect
self-trapped state, where almost all the photons become lo-
calized in one of the cavities. It is evident from the classical
phase diagram that atom-photon interaction is crucial for
perfect self-trapping of photons. For small Kerr nonlinearity,
we identify the perfect self trapped state quantum mechani-
cally, for which the relative imbalance of photon Zp remains
close to unity for a sufficiently long time [see the red line in
Fig. 8(a)]. However, for sufficiently large Kerr nonlinearity,
the imbalance becomes significantly lower than unity and
decays with time, which is shown in Fig. 8(a). The rate of
exponential decay � can be obtained by numerically fitting the

FIG. 8. Quantum dynamics corresponding to the perfect self-
trapped state PST: (a) Time evolution of the relative photon
population imbalance Zp for g̃ = 5 and different Kerr nonlinearity Ũ .
The imbalance decays above a certain large value of Kerr interaction
strength. (b) Variation of the decay rate � of the imbalance with Ũ .
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FIG. 9. Comparison between the quantum dynamics of the two
distinct self-trapped states ST1 and ST2: The plots (a, c, e) and (b,
d, f) correspond to dynamics of various quantities around ST1 and
ST2 states for Ũ = 5 and Ũ = 2, respectively. Time evolution of the
(a, b) relative photon imbalance Zp and (e, f) atomic imbalance Za, for
different coupling strength g̃. (c, d) Dynamics of the spin correlation
function CLR at g̃ = 1.2.

time evolution of the imbalance. The variation of the decay
rate with Kerr nonlinearity exhibits an interesting feature as
it grows rapidly above certain Kerr nonlinearity, which is
depicted in Fig. 8(b). This indicates that sufficiently large Kerr
nonlinearity induces an instability in perfect self trapping. Al-
though, classically, the stable perfect self-trapped state exists
for g̃ > g̃c1, the sufficiently large Kerr nonlinearity gives rise
to instability in such a state during quantum dynamics.

We also analyze the self-trapped states ST1 and ST2 of the
antiferromagnetic class, shown in Figs. 9(a) and 9(b). As a
characteristic feature of these states, we study the dynamics of
the photon imbalance Zp for increasing values of atom-photon
coupling strength g̃. As depicted in Fig. 9(a), for ST1, the
imbalance decreases with g̃, whereas, it increases for ST2

[see Fig. 9(b)], which is consistent with the classical analysis
and can be used to distinguish between these two self-trapped
states. Since both these states belong to the antiferromagnetic
class, during dynamics, the quantity CLR acquires a negative
value for both states, however, its deviation from the classical
value is large for ST2 [depicted in Figs. 9(c) and 9(d)]. We also
study the dynamics of the atomic imbalance Za = |〈ŜLz〉 −
〈ŜRz〉|, which decreases with increasing coupling strength g̃
for ST1, as shown in Fig. 9(e), that is in agreement with the
classical analysis (see Fig. 6). For the ST2 state, the evolution
of Za always saturates to a very small value, exhibiting a weak
variation with g̃ [see Fig. 9(f)], which is in stark contrast with
the ST1 state. The above analysis reveals that the deviation
from classicality is significantly large for the ST2 state as
compared to ST1. In spite of such quantitative differences, the

main features of the semiclassical steady states are observed
in the quantum dynamics.

It is worth mentioning that new effects in dynamics can
arise, since dissipation is inevitable in such systems, specif-
ically due to photon loss and spontaneous emission from
atoms, which can however be controlled by the appropriate
experimental setup [83–86]. For weak dissipation, it is ex-
pected that in JCJJ the photonic oscillations corresponding to
the symmetric states will be damped, nevertheless, their signa-
ture can be detected from the oscillation frequency. Similarly,
the self-trapping phenomenon can still be detected within
its lifetime due to a decay in the photonic imbalance. Even
in the presence of dissipation, the self-trapping phenomenon
has already been observed in different experimental setups
[57,78,87]. It is possible to stabilize the steady states through
the incoherent pumping processes, balancing the photon loss
[34,59].

In addition to the characteristic features of the steady states,
it is crucial to investigate other quantum effects manifested in
the dynamics. These include the generation of entanglement
between the qubit and the photonic degree of freedom, as well
as the quantum state of the photon field, which we discuss in
the next section.

V. ENTANGLEMENT AND QUANTUM FLUCTUATIONS

The semiclassical formalism presented in Sec. III is based
on the product coherent state representation, which is appro-
priate for describing the phase coherent photonic Josephson
dynamics. However, the presence of interactions and Kerr
nonlinearity can destroy such coherent dynamics due to en-
hanced phase fluctuations, which in turn gives rise to the
deviation from classicality due to a change in the nature of the
quantum state. To this end, we study the phase fluctuations of
the photon field by constructing the phase states [79,88],

|ψm〉 = 1√
Nmax + 1

Nmax∑
n=0

exp(inψm) |n〉 , (22)

with ψm = ψ0 + 2πm/(Nmax + 1), where m is an integer m ∈
[0, Nmax] and ψm ∈ [−π, π ]. These phase states are eigen-
states of the phase operator ψ̂ , as given by

exp(±iψ̂ ) |ψm〉 = exp(±iψm) |ψm〉 . (23)

The phase distribution corresponding to the photon field in
one of the cavities (i = L, R) is given by

P
(
ψ i

m

) = Tr
(
ρ̂ i

p |ψm〉 〈ψm| ), (24)

with
∑

m P(ψ i
m) = 1, where ρ̂ i

p is the reduced density matrix
corresponding to the photon field of the ith cavity, obtained
by tracing out the other degrees. The average value and the
fluctuation of the phase of the photon field in each cavity can
be computed from the phase distribution as

〈ψ̂i〉 =
∑

m

ψmP
(
ψ i

m

)
, (25a)

(�ψ̂i )
2 =

∑
m

(ψm − 〈ψ̂i〉)2 P
(
ψ i

m

)
. (25b)

Using the above prescription, we compute the mean phase dif-
ference between the cavity modes ψr = 〈ψ̂L〉 − 〈ψ̂R〉 and its
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FIG. 10. Classical-quantum correspondence for the symmetric
states FP-F and FP-π : Quantum dynamics of the small amplitude
oscillation of the relative phase ψr = 〈ψ̂L〉 − 〈ψ̂R〉 of the photon
field corresponding to (a) FP-F and (b) FP-π states for the coupling
strengths (g̃, Ũ ) = (0.5, 0.5). The black dashed lines represent the
classical dynamics around these states.

time evolution. The dynamics of the relative phase of the pho-
ton modes for the symmetric FP-F and FP-π states are shown
in Figs. 10(a) and 10(b), respectively, which exhibit coherent
oscillations around their steady-state values 0 and π . To
quantify the degree of coherence, we calculate the normalized
phase fluctuation of photons (�ψi)2

N = (�ψi )2/(�ψi )2
max in

one of the cavities (i = L, R) where the maximum phase
fluctuation (�ψi )2

max = π2/3 corresponds to a uniform phase
distribution [79]. For the FP-π state, the phase fluctuation re-
mains small during time evolution, as illustrated in Fig. 11(a),
due to which the coherent phase oscillation is retained. How-
ever, the phase fluctuation of the FP-π state increases slowly,
and after a sufficiently long time, it approaches the maximum
value. On the other hand, an enhancement in the growth of
phase fluctuation can be observed for the self-trapped state
ST1, arising for large Ũ , as seen from Fig. 11(b). In general,
the phase fluctuation increases with Kerr nonlinearity, which
is evident from the above comparison. Such enhanced phase

FIG. 11. Phase diffusion dynamics: Time evolution of the rel-
ative phase fluctuation (�ψ )2

N for (a) symmetric state FP-π with
(g̃, Ũ ) = (1.0, 0.5) and (b) self-trapped state ST1 for (g̃, Ũ ) =
(1.0, 6.5). The horizontal dashed line indicates the maximum value
(�ψ )2

N = 1. (c, d) Snapshots of the corresponding phase distribu-
tions at different times.

fluctuation during the time evolution is associated with the
broadening of the phase distribution, indicating the deviation
of the photon field from its classical representation in terms
of the coherent state. Spreading of the phase distribution of
FP-π and ST1 states during time evolution is apparent from
Figs. 11(c) and 11(d). Even though the phase fluctuation at-
tains its maximum value almost immediately for the ST1 state,
the appearance of dips in the time evolution of (�ψL )2

N, as
observed from Fig. 11(b), corresponds to the revival of the
phase of the photon field, which we discuss later.

Apart from the phase fluctuation, the entanglement be-
tween the photon field and spins during the time evolution
gives rise to interesting quantum effects and deviation from
classicality. Starting from the total density matrix ρ̂ =
|�(t )〉 〈�(t )|, computed from the full wave function |�(t )〉,
the reduced density matrix of a subsystem (such as the
spin/photon field of each cavity) can be obtained by inte-
grating out the rest of the degrees of freedom. Following
this prescription, we compute the entanglement entropy of the
subsystem (corresponding to the cavities) as

Si = −
∑

l

λi
l log

(
λi

l

)
, (26)

where λi
l represents the eigenvalue with index l of the reduced

density matrix corresponding to the subsystem denoted by
i (for example, i = L, R is the cavity index). In a similar
manner, we can also compute the reduced density matrix and
entanglement entropy SLR for the total photon and spin degree
separately. Ideally, Si vanishes for product state, but due to
atom-photon interactions, the entanglement entropy increases
during time evolution. We obtain the entanglement entropy
Si of the spin in each cavity, corresponding to the symmetric
states FP-F and FP-AF, which are compared in Figs. 12(a) and
12(b). Unlike the FP-F state, Si grows rapidly and saturates to
its maximum value kB ln 2 for the FP-AF state, due to which
the spin dynamics deviates from the classical steady states,
exhibiting dephasing phenomenon [see Fig. 7(f)], as discussed
in Sec. IV.

We also compare the entanglement entropy of spins in both
the cavities for the self-trapped states ST1 and ST2, which
reveals contrasting features between them. For ST2, the Si

is almost the same for both the cavities and saturates to the
maximum value. On the contrary, for ST1, the entanglement
entropy is larger, corresponding to the cavity containing more
number of photons, as seen from Figs. 12(c) and 12(d). In ad-
dition, we also study the difference between the entanglement
entropy of spins in the two cavities �S = SL − SR and their
variation with coupling strength g̃, as shown in Figs. 12(e)
and 12(f). For ST1 state, similar to the photon imbalance Zp,
the saturation value of �S decreases with increasing g̃, which
is in stark contrast to ST2 state, for which �S vanishes over
time, irrespective of the values of g̃. However, the timescale at
which �S vanishes exhibits a weak variation with g̃ within a
small range. Such contrasting feature of entanglement dynam-
ics of two qubits can also distinguish the self-trapped states
ST1 and ST2.

Apart from the interaction induced entanglement between
spins and photons in each cavity, two apparently non interact-
ing spins can also be entangled, which is mediated by photons.
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FIG. 12. Entanglement entropy of the spin degree for various
dynamical states: Dynamics of the scaled entanglement entropy SL

of the spin in the left cavity corresponding to (a) FP-F and (b) FP-AF
for (g̃, Ũ ) = (0.5, 0.5). Entanglement entropy of the spins in both the
cavities corresponding to (c) ST1 state for (g̃, Ũ ) = (0.5, 5.0) and
(d) ST2 state for (g̃, Ũ ) = (1.2, 2.0). (e, f) Variation of the relative
entanglement entropy �S = SL − SR with coupling strength g̃ for
ST1 and ST2 states, respectively. The Kerr nonlinearity in panels (e,
f) is chosen the same as that in panels (c, d).

Such photon induced hidden correlation between two spins
can be analyzed from the mutual information [89–94],

I = SL + SR − SLR, (27)

which reveals very interesting behavior for the self-trapped
states. For the ST2 state, both �S and I are very small, ex-
hibiting almost no variation with interaction strengths, which
indicates that the reduced density matrix corresponding to
the two spins approaches to the maximally mixed state [89].
However, in the case of ST1, increasing the photon population
imbalance leads to an increase in �S , while the mutual infor-
mation I decreases, as evident from Fig. 13. Such tunability
of quantum correlations between the two non interacting spins
in the cavities can have potential applications in quantum
information processing. Additionally, for the ST1 state, the
mutual information I exhibits dip and spike like structure
during the time evolution, as seen from Fig. 14(a). Such dips
in the mutual information correspond to the phase revival
phenomenon [11–13,95], resulting in a sudden drop in phase
fluctuation, as seen in Fig. 14(b). This revival cycle can be
analyzed from the evolution of the semiclassical phase space
density of the photon field, described by the Husimi distribu-
tion,

Q(α, α∗) = 1

π
〈α| ρ̂ p

i |α〉 , (28)

FIG. 13. Photon mediated correlation between the spins in the
different cavities for the ST1 state: The dynamics of (a) mutual
information I and (b) relative entanglement entropy �S between
the spins in the cavities for different Kerr strengths Ũ . The saturation
value of the photon population imbalance Z p obtained after long
time, corresponding to these values of Ũ are mentioned in the figure.
Here, we set g̃ = 1.

where ρ̂
p
i represents the reduced density matrix of the photon

field in the cavities. To compare the Husimi distribution with
the corresponding classical dynamics, we introduce the scaled
phase space variables xi = (αi + α∗

i )/
√

2M and pi = (αi −
α∗

i )/i
√

2M, where M represents the conserved total excitation
number associated with the initial state. Initially, the density
is localized around one of the FPs, exhibiting the coherent
structure of the photon field. As time evolves, the phase space
density spreads over the ring of fixed points, describing the
loss of coherence and finally, it is reconstructed at a point in
the phase space when another dip in (�ψ )2

N occurs, exhibiting

FIG. 14. Evolution of the quantum state and its signature in the
phase fluctuation and mutual information: Dynamics of (a) mutual
information I of the spins and (b) relative phase fluctuation (�ψL )2

N

of the photon field, corresponding to ST1 state. (c) Husimi distri-
bution Q in the xL-pL plane of the photon field at different time
instances of the revival cycle, marked in panels (a, b) by different
symbols. The white dashed lines in panel (c) represent the ring
of FPs corresponding to the ST1 state. Parameter chosen: (g̃, Ũ ) =
(1.0, 6.5).
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the revival phenomenon [see Fig. 14(c)]. Interestingly, in the
middle of the cycle, the phase space density splits and be-
comes localized around two diagonally opposite phase space
points. Although such bimodal phase space distribution of
photons resembles that of a cat state [14–18,60], they differ
in terms of their coherence property, which can be captured
from the Wigner function, as discussed in the Appendix. Such
structure of phase space density is associated with the ap-
pearance of a spike in the mutual information, as seen from
Fig. 14(a).

The above analysis elucidates fascinating quantum effects
and entanglement associated with the evolution of the quan-
tum state, corresponding to different dynamical branches,
which can also be relevant in the context of quantum in-
formation processing. Such quantum effects give rise to the
deviation from classicality, nevertheless, the qualitative be-
havior of the system can still be captured from the coherent
state description. Apart from the steady-state dynamics, it
would also be interesting to investigate the evolution of the
quantum state, particularly that of the photon field, when the
system is driven to the unstable regime.

Quench dynamics to unstable regime

Next, we investigate the quench dynamics corresponding to
an abrupt change in the Kerr nonlinearity Ũ , starting from the
initial coherent state corresponding to the stable FP-π state.
First, we consider a small change in Ũ , for which the FP-π
state remains stable. Under this sudden change, the system
still follows the stable FP-π branch, exhibiting oscillations
around it. After quench, the initial coherent state begins to
move around the ring of FPs, as depicted in Fig. 15(e). During
the time evolution, the wave function initially remains fairly
localized and then slowly spreads along the ring of FPs. As
a consequence, the scaled potential energy (PE) and kinetic
energy (KE) (mω〈x̂2

i 〉/2h̄M, 〈p̂2
i 〉/2h̄mωM ) of the photon field

in each cavity oscillate coherently, keeping the average photon
number fixed [see Fig. 15(a)]. Moreover, the photon phase
fluctuation increases slowly and finally saturates to its maxi-
mum value after a sufficiently long time, while its phase space
density remains localized around the ring of FPs.

On the contrary, when the interaction strength Ũ is
quenched above the transition point where the π -mode be-
comes unstable, the system exhibits incoherent dynamics,
dominated by large fluctuations, instead of following any
stable branch of the self-trapped state. After quenching, the
photon field loses its coherence rapidly, as the phase fluc-
tuation attains the maximum value [see inset of Fig. 16(b)].
Moreover, the scaled kinetic and potential energies approach
the same steady value, without exhibiting large amplitude os-
cillations [see Fig. 15(b)], analogous to the equipartitioning of
energy. In this regime, the reduced density matrix of the pho-
ton field in each cavity exhibits a predominant contribution
from the diagonal elements. Simultaneously, the associated
Husimi distribution spreads widely across the phase space,
revealing substantial fluctuations in photon number (�ni )2 =
〈n̂2

i 〉 − 〈n̂i〉2 � 〈ni〉, notably in contrast to the initial coherent
state for which (�ni )2 = 〈ni〉. The entanglement entropy of
the photon field grows linearly with time and finally saturates,
as seen from Fig. 16(b). Moreover, the reduced density matrix

FIG. 15. Quench dynamics under sudden change in the Kerr non-
linearity Ũ : The initial state is prepared corresponding to the stable
FP-π state for Ũ = 0.5 before the quench. Panels (a, c, e) and (b,
d, f) correspond to the dynamics after a quench to the stable regime
of FP-π with Ũ = 1.5 and unstable regime at Ũ = 6.5, respectively.
(a, b) Time evolution of the scaled potential and kinetic energies, PE
= mω〈x̂2

L〉/2h̄M (red) and KE = 〈 p̂2
L〉/2h̄mωM (blue), respectively.

(c, d) Dynamics of scaled photon number variance (�nL )2/〈nL〉.
The pink dashed line in panels (c, d) represents (�nL )2/〈nL〉 = 1,
corresponding to the coherent state. (e, f) Husimi distribution Q of
the photon field in the left cavity at time t = 4. The white dashed
line in panel (e) represents the ring of steady states corresponding to
the FP-π state. Parameter chosen: g̃ = 0.5.

of the spins in two cavities approaches the maximally mixed
state. Such scenarios of quench dynamics to an unstable
regime resemble thermalization, which led us to compare the
state of the photon field with that of thermal gas.

FIG. 16. Comparison of the photon field with the thermal state,
after the quench to the unstable regime. (a) Angular averaged Husimi
distribution of the photon field in the left cavity Q(rL ) (solid red line)
compared with the thermal distribution (black dashed line) at time
t = 4. (b) Dynamics of the entanglement entropy S p

L of the photon
field in the left cavity. The entropy of the thermal state is marked by
the black dashed line. The inset of panel (b) shows the time evolution
of the relative phase fluctuation (�ψ )2

N, which saturates to unity.
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The density matrix of the thermal photon gas is given
by [96]

ρ̂Th =
∞∑

n=0

〈n̂〉n

(1 + 〈n̂〉)1+n
|n〉 〈n| , (29)

where 〈n〉 is the average number of photons. The correspond-
ing Husimi distribution of thermal photons expressed in terms
of the dimensionless classical variables x, p takes the form of
a symmetric Gaussian function, which can be written as

QTh = 1

π (1 + 〈n〉)
exp

(
− r2

2(1 + 〈n〉)

)
, (30)

where r2 = M(x2 + p2). For a comparison with the thermal
state, we obtain the angular averaged Husimi function Q(r) =∫ 2π

0 Q(r, θ )dθ of the photon field after the quench dynamics.
Although the spread in the phase space distribution is com-
parable to that of the thermal state, their detailed structure
differs, which is illustrated in Fig. 16(a). Notably, a peak
appears in the phase space distribution of the photon field
near the ring of fixed points. Interestingly, such a scenario
indicates the retention of memory of the underlying steady
states, even when they become unstable after quench, which
is similar to scarring phenomena [9,10,97,98]. Consequently,
the entanglement entropy S p

L saturates to a slightly lower value
compared to the entropy of the thermal state, as depicted in
Fig. 16(b).

The approach to a thermal state can be investigated exper-
imentally through nonequilibrium dynamics of photon field
in JCJJ by initially preparing identical coherent states in both
cavities with a total energy corresponding to the π mode. A
subsequent quench to the unstable domain of π mode can be
performed by suitably choosing the strength of Kerr nonlin-
earity or photon hopping. Both the cavity and circuit QED can
serve as ideal platforms to achieve such tunable parameters
[37,67]. Moreover, the optomechanical systems can also be
used to generate Kerr nonlinearity in a controlled manner [68].
In this context, it is noteworthy that the thermalization of the
photonic gas has already been observed in experimental setups
such as optical microwave resonators [20,99]. Apart from the
coherence properties, such nonequilibrium dynamics of the
photon fields can also reveal interesting phenomena, which
can be probed in experiments [25,27].

VI. CONCLUSION

To summarize, we explore the nonequilibrium dynamics
of the Jaynes-Cummings dimer model in the presence of
Kerr nonlinearity, focusing on the quantum states of photons
as well as entanglement properties corresponding to the dif-
ferent dynamical states. Within the semiclassical approach,
we systematically study the dynamics to chart out a variety
of steady states and their regime of stability for different
atom-photon coupling strengths and Kerr nonlinearity. More-
over, the stability analysis yields the frequency of photonic
Josephson oscillation that can be probed in experiments. The
various branches of dynamical states are categorized based on
the relative spin orientation and photon population imbalance
between the cavities. Self-trapped states with unequal photon
populations in the two cavities emerge as a consequence of the

different transitions. Apart from a perfect self-trapped state,
arising from a saddle-node bifurcation, we also identify two
different self-trapped states for which the Kerr interaction
plays an important role. From quantum dynamics, we also
observe the characteristic features of different steady states
obtained semiclassically. However, interactions and atom-
photon entanglement give rise to intriguing quantum effects,
leading to a deviation from classicality. In contrast to the
classical motion, dephasing is observed in spin dynamics as
a result of relatively large quantum fluctuations in the spin
1/2 qubits. During the time evolution, the state of the photon
field deviates from the initial coherent state and gradually
loses its coherence due to phase fluctuation, which is typ-
ically enhanced by the Kerr nonlinearity. Apart from the
phase fluctuations, we identify a periodic revival phenomenon
for the self-trapped state, exhibiting fascinating phase space
structures of the photon field, particularly the appearance of
a bimodal density distribution, resembling a cat state of the
photon. Interestingly, photon mediated entanglement between
the two atomic qubits, which are otherwise non interacting,
makes JCJJ a promising candidate for quantum information
processing. Using mutual information, we demonstrate how
the quantum correlation between the atomic qubits in the two
cavities can be manipulated by changing the photon popula-
tion imbalance. Finally, we investigate the quench dynamics
starting from a stable steady state to an unstable regime, which
results in the formation of an incoherent gas of photons spread
over the phase space, resembling a thermal state.

The Jaynes-Cummings dimer has already been realized
in a circuit QED setup [57], as well it can be engineered
by coupling the optical cavities [37,39,42]. The signature of
the self-trapping phenomena has also been observed exper-
imentally in micro-cavities [87], which is promising for the
observation of different types of photonic Josephson oscil-
lations discussed in this work. The Kerr nonlinearity can be
realized in circuit QED [62,67] as well as in optical cavities
[63–66], which is the key ingredient for the observation of
various quantum phenomena related to the steady states, such
as the revival cycle in self-trapped regimes. A rich variety
of collective phenomena can also be observed in cavities
containing many atoms, which have been implemented in
experiments by coupling the condensates of ultracold atoms
with a cavity mode [25–27].

Since dissipation is inherent in such atom-photon interact-
ing systems, they serve as an ideal platform to explore out of
equilibrium dissipative phenomena [30–34], which has gained
momentum due to recent experiments [28,29]. Consequently,
the dynamical states of JCJJ can acquire a finite lifetime,
primarily due to weak dissipation arising from photon loss,
which requires further investigation.

In conclusion, the Josephson-coupled Jaynes-Cumming
dimer can serve as a test bed to study the fascinating nonequi-
librium phenomena, as well as manipulation of entanglement
between the two atomic qubits, which can have potential ap-
plications in quantum information processing.
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FIG. 17. Distinguishing the dynamical state of the photon field
from the cat state in terms of the Wigner function: The distribution
(a) corresponds to the quantum state representing the photon field in
the left cavity in the middle of the phase revival cycle (at a time
marked by a square in Fig. 14 of the main text) and (b) the cat
state given in Eq. (A1). The inset of panel (b) represents the Wigner
function of the mixed density matrix ρ̂m

L given in Eq. (A2), which
does not show any coherent oscillation between the two peaks, unlike
the cat state.

APPENDIX: COMPARISON BETWEEN THE CAT STATE
AND DYNAMICALLY GENERATED BIMODAL

DISTRIBUTION OF PHOTONS

Here, we present a comparison between the photonic cat
state and the bimodal phase space distribution of photons,
which appears during the revival cycle of the self-trapped
(ST1) state, shown in Fig. 14(c) of Sec. V. The Husimi dis-
tribution corresponding to this photonic state in a particular
cavity exhibits sharply peaked densities at the diametrically

opposite points in phase space, which resembles the probabil-
ity distribution of a cat state [14–18,60] given by

|ψcat〉 = |α〉 + |−α〉√
2(1 + e−2|α|2 )

, (A1)

where the density is peaked at the two phase space points
α,−α. Although the cat state is a superposition of two
coherent states, their interference effect in the probability
distribution almost disappears when they are far apart in phase
space with |α|2 � 1. However, the Wigner function of the cat
state reveals the interference pattern at the center, as seen in
Fig. 17(b).

In contrast, the Wigner function of the density matrix rep-
resenting the dynamical state of the photons in a particular
cavity does not exhibit any interference pattern. Nevertheless,
it is localized at two diagonally opposite points in the phase
space, similar to a cat state [see Fig. 17(a)]. Furthermore, the
reduced density matrix of the photon field in each cavity repre-
sents a mixed state, as well as the phase fluctuation approaches
close to its maximum limit [see Fig. 14(b)]. Consequently, due
to the lack of coherence, such a dynamical state of the photons
cannot be described by a simple linear combination of two
coherent states similar to the cat state. Instead, this photonic
state closely resembles an incoherent mixture of two coherent
states represented by the density matrix,

ρ̂m
i = |αi〉 〈αi| + |−αi〉 〈−αi|

2
, (A2)

which exhibits the bimodal phase space distribution without
any interference pattern [see inset of Fig. 17(b)].
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041801(R) (2012).

054116-13

https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1103/RevModPhys.73.565
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1016/0003-4916(73)90039-0
https://doi.org/10.1103/PhysRevLett.90.044101
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevLett.112.173601
https://doi.org/10.1103/PhysRevLett.108.073601
https://doi.org/10.1088/1367-2630/14/7/073011
https://doi.org/10.3390/e25010008
https://doi.org/10.1038/s41467-021-21123-5
https://doi.org/10.1088/1361-648X/abe26b
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1103/PhysRevA.49.1202
https://doi.org/10.1103/PhysRevA.87.042336
https://doi.org/10.1038/nature13436
https://doi.org/10.1103/PhysRevX.13.021004
https://doi.org/10.1103/PhysRevLett.122.120402
https://doi.org/10.1103/PhysRevA.45.8190
https://doi.org/10.1103/PhysRevLett.113.193601
https://doi.org/10.1103/PhysRevLett.117.056801
https://doi.org/10.1103/PhysRevLett.111.136601
https://doi.org/10.1103/PhysRevA.99.023822
https://doi.org/10.1103/PhysRevA.85.041801


G. VIVEK, DEBABRATA MONDAL, AND S. SINHA PHYSICAL REVIEW E 108, 054116 (2023)

[24] K. Weiher, E. Agudelo, and M. Bohmann, Phys. Rev. A 100,
043812 (2019).

[25] J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T.
Donner, Nature (London) 543, 87 (2017).

[26] J. Léonard, A. Morales, P. Zupancic, T. Donner, and T.
Esslinger, Science 358, 1415 (2017).

[27] J. Klinder, H. Keßler, M. Wolke, L. Mathey, and A. Hemmerich,
Proc. Natl. Acad. Sci. USA 112, 3290 (2015).

[28] F. Brennecke, R. Mottl, K. Baumann, R. Landig, T. Donner, and
T. Esslinger, Proc. Natl. Acad. Sci. USA 110, 11763 (2013).

[29] M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and
A. A. Houck, Phys. Rev. X 7, 011016 (2017).

[30] H. J. Carmichael, Phys. Rev. X 5, 031028 (2015).
[31] F. Reiter, T. L. Nguyen, J. P. Home, and S. F. Yelin, Phys. Rev.

Lett. 125, 233602 (2020).
[32] K. C. Stitely, A. Giraldo, B. Krauskopf, and S. Parkins, Phys.

Rev. Res. 2, 033131 (2020).
[33] J. Li, R. Fazio, and S. Chesi, New J. Phys. 24, 083039 (2022).
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