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Impact of social distancing on disease transmission risk in the context of a pandemic
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Changes in pedestrian dynamics caused by social distancing policies place new demands on pedestrian
motion modeling during the pandemic. This study summarizes pedestrian movement characteristics during the
pandemic, based on which, the traditional floor-field cellular automata model was improved by introducing
two floor fields related to pedestrian density to simulate social distancing in crowded places. Especially, the
cumulative density field guides pedestrians in route selection, thereby compensating for the limitation of the
previous models in which only local repulsion was considered. By selecting an appropriate combination of
parameters, the desired social distancing behavior can be observed. Then, the rationality of our model is
verified by the fundamental diagram. Moreover, to assess the influences of social distancing on the risk of
disease transmission, we considered both person-person transmission and environment-person transmission. The
simulation results show that although social distancing is effective in preventing interpersonal transmission, an
increase in environmental transmission may somewhat offset this effect. We also examined the influence of
individual motion heterogeneity on infection spread and found that the containment was the best when only
patients complied with the social distancing restriction. The trade-off between safety and efficiency associated
with social distancing was also initially explored in this study.
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I. INTRODUCTION

Humans have been fighting infectious diseases since the
Athens plague in 430 BC [1]. The emergence of smallpox,
plague, as well as COVID-19 pneumonia, and other infectious
diseases, not only directly caused animal or human casualties,
but also caused a series of problems, such as social panic, eco-
nomic recession, and so on. With the development of science
and technology, mankind has also developed various meth-
ods for combating unpredictable infectious diseases [2–4].
Social distancing (hereinafter referred to as SD) is one of
the most common nonpharmacological interventions, which
refers to the establishment of a physical barrier between two
or more persons to suppress the spread of the virus [5]. The
experiences of Philadelphia and St. Louis are often compared
to demonstrate how SD interventions worked in preventing
disease transmission [6]. During the Spanish flu pandemic, St.
Louis established strict SD measures early on, while Philadel-
phia implemented minimal restrictions much later. As a result,
the outbreak in St. Louis was milder, while Philadelphia had
one of the highest death rates in the United States. It is
therefore essential to apply SD restrictions to populations for
infectious diseases for which no effective vaccine has been
developed. Similarly, the desire for SD during the COVID-19
epidemic became a key concept in media coverage on how to
stop the disease from spreading further [7,8].

Social distancing can be implemented centrally, such as
by closing schools and workplaces and canceling activities,
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or it can occur naturally as a result of individual actions.
Some studies have used macromodeling methods to explore
the effect of large-scale and centralized SD policies on epi-
demic prevention and control. Milne et al. modeled pandemic
influenza transmission within a small community based on
household demographics, intracommunity mobility, and indi-
vidual interaction patterns [9]. The effects of four kinds of SD
interventions were then evaluated: school closures, case iso-
lation, work absences, and community lockdowns. Early and
sustained multiple SD measures were detected to be helpful in
containing a pandemic. Epstein et al. used an equation-based
epidemiological model to explore the influence of reducing air
travel on the global propagation of infectious diseases [10].
The results suggest that restrictions on international air travel
may slightly slow the spread of the epidemic across regions.
Supporting evidence is presented by Brownstein et al. that the
grounding of U.S. flights after September 11, 2001 delayed
the flu dynamics for the 2001–2002 season by about two
weeks [11]. In addition, isolation policies have been shown to
be a good tool for disease attenuation, especially in endemic
areas with relatively high disease progression rates [12,13]. As
for SD at the level of individual actions, different countries
and organizations put forward various distance restrictions.
For instance, when the COVID-19 epidemic broke out in
2020, the World Health Organization recommended a physical
distancing of 1 m or more when performing public activities.
Accordingly, the United States, the United Kingdom, and
Canada have adopted distancing policies of 6 feet and 2 m in
public spaces, respectively. During a pandemic, maintaining
SD inevitably becomes the new normal of human life, leading
to drastic changes in pedestrian dynamics in public spaces.
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Thus, it is essential for researchers to understand and quantify
this shift.

Studies have begun to look at shifts in real population
dynamics in the pandemic environment through experiments,
field observations, social distancing detection, and monitoring
algorithms. At present, several researchers have carried out a
series of new pedestrian movement experiments, exploring the
speed-density and headway-speed relation in pedestrian flow
with physical distancing requirements and determining the
limit of crowd density that can guarantee a SD of 1 m [14–16].
Tanis et al. collected a series of SD motion datasets from
experiments with different walking directions and behavioral
interventions [17]. Hayes et al. obtained the movement char-
acteristics of passengers getting on and off the train when the
SD policy was adopted by analyzing CCTV footage taken at
the railway platform [18]. Similarly, the comparison of videos
of a railway station before and during the pandemic was made
by Pouw et al. [19]. They also used sparse graphs to estimate
the physical distancing and exposure time of pedestrians. In
the specific field of pedestrian detection and monitoring al-
gorithms, epidemic-related research focuses on the issue of
visual SD, which means using cameras and other imaging sen-
sors to automatically estimate distances between individuals
in real time [20,21]. Visual SD provides a noninvasive way
to determine if individuals in a crowd maintain safe physical
distances, thereby identifying potential hotspots for distancing
violations.

From the above studies, we can learn that real crowd dy-
namics have undergone great changes due to SD policies.
To study adaptive traffic planning in time for restoring more
pedestrian mobility in public spaces, there is an urgent need
to address the shift in pedestrian behavior from a normal to
an epidemic state in simulations. At present, some researchers
have introduced SD into pedestrian simulation systems. For
example, the traditional social force model has been revised
to take into account the psychological factors and avoidance
behavior of pedestrian movement during the epidemic. Re-
searchers modified the algorithm of the pedestrian driving
force and repulsion interaction force, or the desired distance
pedestrians want to maintain, and then simulated SD scenarios
using a combination of parameter calibration and operational
improvement [22–25]. Silva et al. constructed a new agent-
based model to analyze the impact of seven SD measures
on pandemic dynamics [26]. Trying to simulate SD, Mayr
and Köster updated the optimal steps model in the pedestrian
simulator VADERE [27]. Two parameters in the model were
systematically studied to find the combination of parameters
that is best suited to observe imposed SD behavior in crowds.
Parisi et al. simulated pedestrian movement in a supermarket
using an agent-based model [28]. The number and duration
of events with a physical distance of less than 2 m in the
simulation system were calculated to explore how the number
of pedestrians affected safe distances.

Available evidence suggests that the main trend in microso-
cial distancing modeling remains to resort to straightforward
mechanisms of repulsion or avoidance, such as the repulsive
force in social force models. However, since not all pedestrian
simulation models contain a core of motion layer which is
based on social forces, further research is needed to determine
how to control the distance between agents in the absence

of a non–social-force framework. When discussing the chal-
lenges and opportunities of crowd modeling in the pandemic
era, Haghani also emphasized the need to further investigate
whether grid-based models can use more direct parameter
changes to make agents avoid cells that are in close proximity
to another agent [29]. To the best of our knowledge, no cellular
automata have been used for SD simulation.

In addition, pedestrian dynamics is fused with epidemiol-
ogy to study microscopic infection spread on an individual
scale. These studies tend to focus on crowded scenarios, such
as foot traffic at train stations [30], daily activities on cruise
ships [31], airline boarding and alighting policies [32–34],
pedestrian movements on college campuses [35], as well
as shopping malls [36]. These studies considered people’s
movements when maintaining traditional human distancing.
However, in these cases, the influence of physical distancing
between pedestrians on the dynamics of disease transmission
has received little attention. Population-level SD measures,
such as closing schools, canceling mass gatherings, and quar-
antining cases, have proven to be effective in containing
epidemics. The impact of SD at the individual level on disease
transmission remains to be further explored [37].

To fill the above research gaps, this study will design
a grid-based pedestrian social distancing model by intro-
ducing pedestrians’ antiepidemic psychology. We introduce
two floor fields related to crowd density to describe the
pedestrian’s spontaneous decision-making behavior and group
phenomenon under the SD policy. The local density field is
used to describe the local repulsion of pedestrians. The cumu-
lative density field represents the global route information and
helps pedestrians choose routes with less congestion, which
cannot be achieved by the above social force model and agent-
based model that only considers local repulsion. Previously,
global route information was commonly used for shortest
route planning, but it has not been used for pedestrian evac-
uation simulation in the context of a pandemic. Therefore, we
hope to overcome the limitations of models that only consider
local repulsion and incorporate global density information in
cellular automata (CA), allowing a more detailed analysis of
the role of pedestrian microscopic risk-avoiding behavior in
containing disease transmission. Moreover, different modes
of disease transmission are considered in this paper for better
application extensibility.

The remainder of this paper is organized as follows. We
modify the traditional floor-field cellular automata model to
depict individuals’ spontaneous SD behavior in Sec. II In
Sec. III, the key parameters significantly affecting pedestri-
ans’ SD behavior are identified through a combination of
visual observation and sensitivity analysis. Then, we validate
our model using the fundamental diagram in Sec. IV. In Sec-
tion 5, we evaluate the influence of SD on the risk of disease
transmission through numerical experiments. The conclusions
of our study are summarized and future research prospects are
presented in Sec. VI.

II. MODEL FORMULATION

Our work aims to study the spontaneous SD behavior
of individuals. An individual’s decision can be influenced
by many factors, including infection awareness, government
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FIG. 1. Sketch of Moore neighborhood. Pedestrian at cell (i, j)
can move to its eight neighboring cells or be immobile in original
cell at each time step.

advice, and psychological factors. Through an extensive col-
lection of relevant social psychology literature [38,39], video
observations [18,19], real pedestrian experiments [14–17],
online questionnaires [40–42], etc., we can summarize the
characteristics of pedestrian movement during the pandemic:
(1) Pedestrians have a tendency to keep greater physical dis-
tances from the crowd around them, and the space required for
walking increases. (2) When choosing a route, most pedes-
trians tend to move towards areas with fewer pedestrians to
avoid crowd gathering. (3) Pedestrians are more purposeful
when moving, which means their walking direction is more
monotonous and will not be easily changed. These obser-
vations encouraged us to build a motion model to simulate
pedestrian evacuation during a pandemic.

As a typical pedestrian and evacuation dynamic model,
the floor-field cellular automata (FFCA) model has unique
advantages in terms of scalability, such as representation
of individual attributes, faster computation, and so on. The
FFCA model is designed to reproduce herding behavior and
shortest path-finding behavior during evacuation [43], appli-
cable to incorporating other social and psychological factors
in pedestrian movement simulations due to its flexibility and
scalability [44,45]. However, the general FFCA model has
not been extended to the simulation of SD behavior in crowd
evacuation and is not suitable for pedestrian movement sim-
ulation in the context of a pandemic. Therefore, based on the
traditional FFCA model, this study improved the expression
of pedestrian movement choice by considering the psycho-
logical factors of pedestrians, namely the instinct to avoid
others and move towards low pedestrian-density areas during
a pandemic.

First, the whole space is divided into a two-dimensional
grid of square cells, where each cell occupies an area of
0.25 m2 [46]. The pedestrian movement of each time step is
updated by using the Moore neighborhood, as shown in Fig. 1.
The pedestrian at cell (i, j) can move to its eight neighboring
cells or be immobile in the original cell at each time step. The
transfer probability depends entirely on the potentials of these
nine cells in the Moore neighborhood, defined as follows:

Px,y
i, j = Nx,y∑i+1

m=i−1

∑ j+1
n= j−1 Nm,n

x ∈ [i − 1, i + 1] ; y ∈ [ j − 1, j + 1], (1)

where Px,y
i, j refers to the probability of pedestrian at cell (i, j)

moving to cell (x, y), and Nx,y refers to the potential of cell
(x, y). This is a normalization method where all nine transfer
probabilities add up to a value of 1. Nx,y is relevant to four
floor fields, that is,

Nx,y = Ex,y exp(ksSx,y + kOOx,y + kLLx,y + kCCx,y), (2)

where Ex,y is a 0–1 variable indicating if cell (x, y) is in the
occupation of a pedestrian or an obstacle. If cell (x, y) is
empty, the value of Ex,y is 1; otherwise, it is 0.

The four floor fields used to describe the different move-
ment characteristics of pedestrians are defined as follows:

Finding the shortest path:Sx,y represents the Euclidean dis-
tance from cell (x, y) to the destination, calculated as follows:

Sx,y = min{
√

(x − x0)2 + (y − y0)2|(x0, y0)

∈ φ, φ is the set of exits}. (3)

Obstacle avoidance: Ox,y denotes the repulsion of obsta-
cles to pedestrian movement, with a value of the number of
nonobstacle cells in the eight adjacent cells of cell (x, y).

Pedestrian repulsion: Lx,y represents the local density of
people around cell (x, y) and is used to describe the instinct of
pedestrians to avoid surrounding pedestrians. Its value is the
number of pedestrians within the Moore neighborhood of the
cell (x, y).

Moving towards low-density region: Cx,y represents the cu-
mulative density of the route from cell (x, y) to the destination,
that is, the accumulation of pedestrian density in each cell that
the route passes through. It is used to describe the tendency of
pedestrians to move towards areas with fewer pedestrians. The
greater Cx,y, the more pedestrians may be encountered on the
route, and the smaller the possibility of moving towards cell
(x, y). It is calculated as follows [Cx,y = C(x, y)]:

C(x, y) =
∫ x0,y0

x,y
g(x, y)ds

=
∫ x0,y0

x,y
(g(x, y)x′(s)dx + g(x, y)y′(s)dy), (4)

where g(x, y) gives the density distribution of pedestrians in
cell space. The average pedestrian density of 25 cells in a
square centered on cell (x, y) is calculated as the density
of cell (x, y) [47]. The integration path is represented by
l : x = x(s), y = y(s), and ds =

√
dx2 + dy2. The unit vector

[x′(s), y′(s)] points to the direction of integration. To guaran-
tee that C(x, y) is a single-valued function, we must assume
that the integral is path independent, namely:

Cx(x, y) = −g(x, y)x′(s) , Cy(x, y) = −g(x, y)y′(s). (5)

Equation (5) leads to the following Eikonal equation:
√

C2
x (x, y) + C2

y (x, y) = g(x, y). (6)

By setting C(x0, y0) = 0 as the boundary condition, C(x, y)
in the Eikonal equation (6) can be solved numerically by the
fast-sweeping method [48].
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In the improved FFCA model, Sx,y and Oi, j form a static
floor field, which describes the behavior of pedestrians search-
ing for the shortest route to their destination, and also reflects
the distribution of obstacles, while Lx,y and Cx,y constitute
a dynamic floor field, which describes pedestrians’ antiepi-
demic psychology to avoid close contact with others. The
static floor field does not change with the simulation time step,
while the dynamic floor field needs to be updated at each time
step due to the change of pedestrian position.

In Eq. (2), kS , kO, kL, and kC are corresponding parameters.
Nx,y drops with Sx,y and Lx,y, and Cx,y,increases with Oi, j , so
kS < 0, kL < 0, kC < 0, kO > 0.

III. PARAMETER SETTING

This section tries to assess the influence of different floor
fields in the model established above on pedestrians’ be-
haviors, adopting a combination of visual observation and
sensitivity analysis. The parameters that have significant im-
pacts on crowd movement and their range of values are
determined. To examine the extent to which pedestrians’
spontaneous risk-avoiding behavior promotes the formation
of SD, and to lay the foundation for subsequent simulation
experiments, we will identify the combination of parameters
that yields the optimal SD effect.

The constructed model is used in the simulation of crowd
evacuation in a simplified four-exit room. The room covers
an area of a 100×100 grid with four 12-grid-wide exits and
randomly distributed obstacles inside. The total number of
pedestrians is 500, randomly and evenly distributed in the
room at the beginning. Since our study focuses primarily on
reproducing pedestrians’ SD behavior, we fix the coefficients
kS = −5 and kO = 2, and observe the impact of local density
and cumulative density on pedestrian motion by systemati-
cally varying the values of kL and kC . For each parameter
combination, the simulation is run 50 times. We want pedes-
trians to maintain a physical distance of 1 m in the simulation,
corresponding to the safe interpersonal distance for many
respiratory infectious diseases.

A. Visual observation

First, we set the following four parameter combinations
for simulation: (a) kL = 0, kC = 0, which represents that
neither local density nor cumulative density is considered
during pedestrian evacuation; (b) kL = −20, kC = 0, which
represents that only local density is considered; (c) kL = 0,
kC = −20, which represents that only cumulative density is
considered; and (d) kL = −20, kC = −20, which represents
that both local density and cumulative density are consid-
ered. Using the simulation data for each time step, the crowd
movement at different moments during the evacuation can be
graphically displayed. Figure 2 presents the spatial distribu-
tion of crowd in different simulation experiments when 200
pedestrians have left and only 300 pedestrians remain in the
room. Comparing Fig. 2(a) with Fig. 2(d), we can see that
by introducing two floor fields related to pedestrian density,
SD behavior can be reproduced among pedestrians. And, lo-
cal density is more likely to trigger SD between pedestrians

FIG. 2. Screenshots of evacuation process when kL and kC take
different values: (a) kL = 0, kC = 0; (b) kL = −20, kC = 0; (c) kL =
0, kC = −20; and (d) kL = −20, kC = −20. Screenshot moment is
when 200 pedestrians have left and only 300 pedestrians remain in
room. Black dots represent pedestrians and gray squares represent
obstacles.

[comparing Fig. 2(b) with Fig. 2(c)], which is consistent with
previous theories.

As shown in Fig. 2, an arch-shaped crowd congestion is
generated at the exit during evacuation. In order to further
observe the effect of SD restriction on the generation and
dissipation of congestion at the exit, we selected a 10×10 grid

FIG. 3. Number of pedestrians in 10×10 grid at exit changes
over time during evacuation.
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area at the exit to observe the change of pedestrian flow in this
area. Figure 3 shows how the number of pedestrians in this
area varies over time during evacuation. It can be seen that
the curve trends of combinations (b), (c), and (d) are com-
parable, with more gradual flow changes than combination
(a). Therefore, SD restriction not only reduces close contact
between pedestrians but also prolongs the evacuation time of
crowds.

In addition, to observe how social groups reshape
themselves when attempting to comply with the require-
ments of physical distancing, we calculated the cumulative
SD violations (the events in which the distance between
two pedestrians was less than 1 m) in evacuation space

and cumulative pedestrian trajectories with the following
equations:

Vi, j =
ta∑

t=1

λt
i, j, (7)

Ti, j =
ta∑

t=1

μt
i, j, (8)

where Vi, j represents the number of SD violations occurring at
cell (i, j), Ti, j represents the number of pedestrian trajectories
passing through cell (i, j), t is the t th time step, ta is the total
number of time steps of a simulation, and λt

i, j and μt
i, j both

are 0–1 variables that can be defined as follows:

λt
i, j =

{
1, if the pedestrian at cell (i, j) violates the SD restriction at t
0, otherwise , (9)

μt
i, j =

{
1, if cell (i, j) is occupied by a pedestrian at t
0, otherwise . (10)

We drew the heat maps of cumulative SD violations and
cumulative pedestrian trajectories for the above four param-
eter combinations, as seen in Figs. 4 and 5, respectively.
Note that the color-bar scale varies for each panel in Figs. 4
and 5. Due to the introduction of the two density fields,
the pedestrian dynamics are greatly changed, resulting in
significant differences in pedestrian behavior in different pa-
rameter combinations. In order to highlight the differences
in pedestrian behavior and clearly show the color changes in
each panel, different scale ranges are used in the panels of
Figs. 4 and 5.

As shown in Fig. 4(a), when moving freely, pedestrians
accumulate at exits, resulting in frequent violations of SD.
Comparing Fig. 4(b) with Fig. 4(c), we can find that the
local density field outperforms the cumulative density field in
reducing SD violations. When both are considered [Fig. 4(d)],
the close contact of pedestrians at the exit is greatly reduced.
In addition, the movement trajectories of pedestrians are ana-
lyzed from Figs. 5 and 6 shows the localized enlargement of
congestion at the upper exit in each subplot of Fig. 5. When
both density fields are not considered, the movement trajec-
tories of pedestrians are more intensive, tending to evacuate
along the shortest path directly toward the exit [see Fig. 5(a)].
When the density fields are introduced, the distribution of
pedestrian trajectories changes significantly. The local density
field makes the trajectory distribution of pedestrians more
dispersed [see Fig. 5(b)], while the cumulative density field
causes pedestrians to queue up at exits to make room for
others [see Figs. 5(c) and 6(c)]. Figure 5(d) shows that the
simulation result of introducing both density fields is a su-
perposition of the result of introducing a single density field,
with both dispersed trajectory distribution and queuing up
at exits.

Through the above visual observations, we know that local
density plays a more obvious role in triggering the distance
between pedestrians. The effect of cumulative density on SD
needs to be further explored.

B. Sensitivity analysis

In order to systematically analyze the variation rule of SD
after introducing local density and cumulative density, and
to obtain the parameter combination that can maximize the
SD between pedestrians, it is necessary to measure the SD
violation events. The total number of pedestrians violating the
1-m distance restriction is denoted by VN and their average vi-
olating time is denoted by VT. We first ran several pretests by
varying the parameter values and found that when |kL| and |kC |
were greater than 20, VN and VT took values approximately
equal to those when |kL| and |kC | were 20. VN and VT hardly
changed as |kL| and |kC | increased, i.e., VN and VT varied
only in the range where |kL| and |kC | took values from 0 to 20.
Thus, the parameters were changed in the range of 0–20, after
which VN and VT for different parameter combinations were
counted and plotted as heat maps (Fig. 7).

As seen in the left subplot of Fig. 7, VN decreases with
the increase of |kL| and |kC |, indicating that both the local
density field and the cumulative density field play a role in
limiting the physical distancing between pedestrians. When
kL is fixed and kC is changed (observe the longitudinal grid
color change), the value of VN changes little; when kC is fixed
and kL is changed (observe the horizontal grid color change),
VN greatly decreases with the increase of kL. Thus, we know
that VN is insensitive to the change of cumulative density
but sensitive to the change of local density. Using the same
method to analyze the right subplot of Fig. 7, it can be seen
that VT is more sensitive to cumulative density when kL is
small, whereas the sensitivity of VT to local density does not
vary much with |kC |.

To sum up, local density plays a dominant role in limit-
ing proximity, that is, local avoidance of nearby pedestrians
can effectively control the distance between pedestrians. Al-
though cumulative density does not directly trigger physical
distancing, it can reduce the time pedestrians spend in close
contact. When combined, a better SD restriction effect can
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FIG. 4. Heat maps of cumulative SD violations in evacuation space when kL and kC take different values: (a) kL = 0, kC = 0; (b) kL = −20,
kC = 0; (c) kL = 0, kC = −20; and (d) kL = −20, kC = −20.

be obtained. Moreover, by comparing the total duration of
people violating SD, we identify the parameter combination
that maximizes SD as kL = −18 , kC = −19, which will be
applied to the situation of pedestrians complying with SD
requirements in subsequent simulation experiments.

IV. MODEL VALIDATION

The fundamental diagram is often used to verify the ra-
tionality of pedestrian motion models. Similarly, the model
established above can be validated from the perspective of
density-velocity relation. As shown in Fig. 8, we perform
unidirectional flow simulations in a channel (10 m×3 m) with
a periodic boundary. In this scenario, we use the proposed
model to carry out two types of pedestrian movement simu-
lation. The first is the normal motion without SD restriction
( kL = 0 , kC = 0), and is used to compare with the previous
unidirectional flow experimental data to prove the reliability

of our model. The second is the restricted motion with SD
requirement ( kL = −18 , kC = −19), which is used to ex-
plore the impact of SD on the density-velocity relation. We
used the classical method to measure the average velocity and
density in time and space. First, the 2-m×3-m green rectangle
in Fig. 8 is designated as the measurement section. Then, we
calculated the ratio of the number of pedestrians to the area of
the measurement section as the density, and the mean value of
all the pedestrian velocities in the measurement section as the
velocity. The equations are as follows:

ρ(t )�x = N (t )

bcor�x
, (11)

v(t )�x = 1

N (t )

N (t )∑
i=1

vi, (12)

where ρ(t )�x represents the density of pedestrians in the mea-
surement area at time t , and v(t )�x represents the average
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FIG. 5. Heat maps of cumulative pedestrian trajectories in evacuation space when kL and kC take different values: (a) kL = 0, kC = 0; (b)
kL = −20, kC = 0; (c) kL = 0, kC = −20; and (d) kL = −20, kC = −20.

velocity of all pedestrians in the measurement area at time
t ; N (t ) is the number of pedestrians in the measurement area
at time t ; bcor is the width of the measurement area; �x is
the length of the measurement area; and vi is the velocity of
pedestrian i in the measurement area, defined as follows:

vi = �x

tout − tin
, (13)

where tin and tout are the moments when pedestrian i enters
and leaves the measurement area, respectively.

Identifying the steady state of velocity and density time
series, the density-velocity relation can be obtained, as
shown in Fig. 9. Through comparison with data obtained
from previous unidirectional pedestrian flow experiments
[49–52], it can be found that when there is no SD
restriction (SD-0; see the red scatters), the density-velocity
relation in our study is consistent with the results of real
experiments, verifying the rationality of the proposed model.

When there is a SD restriction (SD-1; see the green scatters),
pedestrians’ stopping behavior occurs at a lower density, cor-
responding to the experimental results of Lu et al. [16]. They
conducted experiments on pedestrian movement for the SD
scenario and the normal scenario, respectively. The experi-
mental results show that in the normal scenario, pedestrians’
stopping behavior occurs at a density of 2 ped/m2, while
pedestrians stop at a density of 1 ped/m2 in the SD scenario.
The experimental results also provide support for the reliabil-
ity of our model.

V. MODEL APPLICATION AND ANALYSIS

As seen in the preceding section, SD restriction reduces the
proximity of pedestrians and causes pedestrians to congregate
longer. Its positive or negative impact on disease transmission
is unclear.
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FIG. 6. Enlarged view of congestion at upper exit in Fig. 5.

Transportation hubs, where large numbers of people gather
and disperse, often become the source of disease transmis-
sion [13]. Therefore, this study selected the waiting hall of a
railway station as the research scene to explore how crowd
movement affects disease transmission. Figure 10 shows a
simplified waiting hall with a grid size of 150×240, includ-
ing six ticket gates, two exits, and some benches. At the
beginning of the simulation, a total of 1500 pedestrians were
randomly and evenly distributed in the whole waiting hall
space. Suppose that the people in the waiting room immedi-
ately initiate an emergency evacuation when they are informed
of the presence of patients with a severe infectious disease (the
location of the patient is unknown). We compared different
scenarios of pedestrian compliance with SD to demonstrate
the impact of physical distancing restriction on disease

transmission dynamics from various perspectives. The fol-
lowing instructions need to be made before conducting the
simulation experiments:

—-Parameter setting of pedestrian movement model:

Pedestrians of SD compliance: kS = −5 , kO = 2 , kL =
−18 , kC = −19 ;

Pedestrians of free movement: kS = −5 , kO = 2 , kL =
0 , kC = 0 .

—-Mode of disease transmission:

Since this study was not designed to accurately predict
the number of illnesses, the infection assessment module

FIG. 7. Heat maps of pedestrian number and duration of SD violation events with different parameter combinations. Left: number of
violating pedestrians, VN. Right: average violating time, VT.
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FIG. 8. Sketch of simulation setup, where blue circles represent
pedestrians, red arrows represent direction of movement, and 2-
m×3-m green rectangle represents measurement section.

developed here is used only to assess the relative risk of dis-
ease transmission. Droplets containing the virus are secreted
when an infected person coughs or sneezes. These droplets
can spread disease if inhaled directly by others. They may
also contaminate adjacent surfaces, resulting in subsequent
infections among susceptible people. We consider these two
modes of infection transmission and define them as person-
person transmission and environment-person transmission:
(i) Person-person transmission: In our study, when a sus-
ceptible person is less than 1 m away from the patient, he
will be regarded as a close contact, which is consistent with
the World Health Organization’s definition [53]. We set the
probability of the close contact getting infected as θp. (ii)
Environment-person transmission: When a patient coughs or
sneezes, droplets he secreted spread the virus to surrounding
surfaces. We assume that the patient contaminates the cell
on which he stands, after which a susceptible person passing
through the contaminated cell may become infected with a
probability of θe.

Many viruses, such as the coronavirus, SARS, influenza,
and Ebola, can survive on the surface of inanimate organisms
for several days [54]. Compared with the lifespan of these
viruses, the duration of our simulation (15 min) is much
shorter, so the decay of the virus can be ignored. Before
the simulation, the number of infectors is set to ten, and
healthy individuals will initially be in a vulnerable state. The

FIG. 9. Fundamental diagrams for unidirectional flow in our
model and comparison with experimental data.

FIG. 10. Simplified waiting hall with 1500 pedestrians randomly
distributed. Inside waiting hall, gray dots represent pedestrians, and
black bars represent benches; on periphery of waiting hall, there is
exit on left and right and three ticket gates on top and bottom.

environment is thought to have been completely sterilized.
In this section, the average of the results of 1500 simulation
experiments is taken for each case.

A. Influence of social distancing on interpersonal infection
and environmental infection

To observe the specific performance of interpersonal in-
fection and environmental infection with the SD restriction,
the simulations with different values of θp and θe were im-
plemented. And, we calculated the difference �I = ISD−0 −
ISD−1 in total infections between the no-social distancing sce-
nario (SD-0) and the social distancing scenario (SD-1) when
different θp and θe are combined, as shown in Fig. 11. A
greater �I means better SD blocking.

As the figure shows, there is a significant difference in
the number of infections across the board, confirming the
effectiveness of SD. When θe is small, �I varies greatly with

FIG. 11. Difference in total infections between no-social dis-
tancing scenario (SD-0) and social distancing scenario (SD-1) with
different θp and θe combinations.
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FIG. 12. Curves of �I in different infection types for specified
θp values.

the increase of θp (see the left of Fig. 11). And the larger
θp and the smaller θe, the greater the difference. When θp is
small, �I changes little with the increase of θe(see the bottom
of Fig. 11). This suggests that interpersonal infection is more
sensitive to SD, whereas environmental infection is on the
contrary, which is consistent with the former findings [24].

In addition (see the upper part of Fig. 11), when θp = 0.1,
the value of �I gradually decreases as θe increases, indicat-
ing that environmental infection will offset the effect of SD
restriction. This can be explained by the dominance of in-
terpersonal infection and environmental infection in different
scenarios. In the SD-1 scenario, person-to-person infections
are significantly reduced, while the role of environmental
infections is enhanced by an increase in the number of avail-
able susceptible people. In other words, even if pedestrians
reduce the risk of interpersonal infection by adhering to
SD guidelines, they may still inevitably get infected due
to environmental transmission. The effectiveness of SD pol-
icy depends on interpersonal and environmental transmission
probabilities.

To provide a clearer explanation of the intriguing behavior
in Fig. 11, where an increase in θe leads to an increase in �I
(total infection) when θp is low but results in the opposite trend
when θp is high, we selected two specific values of θp, namely
0.01 and 0.09, and created three corresponding curves of �I
(interpersonal/environmental/total infection) for each pair of
θ values, shown as Fig. 12. It can be seen that when θp= 0.09,
the total infection �I decreases as θe increases, which is due
to the fact that both interpersonal infection �I and environ-
mental infection �I decrease. However, when θp= 0.01, total
infection �I increases as θe increases, due to the fact that
the increase in environmental infection �I is greater than the
decrease in interpersonal infection �I .

B. Influence of social distancing compliance on infection spread

Currently, the field of epidemic-related population psy-
chology offers a wide range of new research methods [30].
For instance, the problem of whether individuals in a crowd
comply with SD requirements or engage in risky behaviors
in congested scenarios is one of the important elements to

FIG. 13. Number of infections with different member compli-
ance rates.

explore. It is obvious that the successful implementation of
physical distance-related interventions in a crowd depends on
the compliance rate of individuals. The number of infections
under different member compliance rates is shown in Fig. 13.
Here, θp is set to 0.1, θe is set to 0.01, and the following
simulations use the same parameter settings.

It can be seen from Fig. 13 that the total number of
infections decreases with increasing member compliance.
Compared with the free-flow state, it decreased by about 60%
when all members complied with SD restriction, indicating
the effectiveness of SD policies in preventing the infection
spread. Moreover, SD restriction can help pedestrians avoid
physical contact, resulting in an obvious reduction in the num-
ber of interpersonal infections.

Moreover, the number of environmental infections in-
creased first and then decreased, which can be explained by
the competition between the positive and negative impacts
of the SD restriction. On the one hand, crowd evacuation
efficiency will be reduced due to the need to maintain physical
distance. The more pedestrians adhering to SD requirement,
the slower the evacuation, and the longer the susceptible stay
in the crowded environment, thus increasing the number of
environmental infections. On the other hand, when the crowd
moves with the SD restriction, their walking direction is more
monotonous and they will not easily change direction (see the
red route comparison in Fig. 14), which is consistent with the
characteristics of pedestrian movement during the pandemic
that we summarized in Sec. II. The monotonous walking di-
rection helps them avoid setting foot in areas contaminated by
patients. Therefore, when the SD policy is strictly enforced, it
can reduce the risk of environmental infection to some extent.

C. Influence of individual motion heterogeneity
on infection spread

To explore the impact of individual SD behavior and group
SD behavior on the spread of infection, we set the following
four cases of pedestrian movement: (a) The patients comply
with SD restriction and the others move freely; (b) The pa-
tients move freely and the others comply with SD restriction;
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FIG. 14. Movement process of same patient with and without SD
restriction, where red represents patient’s trajectory, black represents
obstacles, blue represents susceptible people in close contact with
patient while moving, and number represents sequence of patient’s
footsteps. Left: with SD restriction. Right: without SD restriction.

(c) All pedestrians comply with SD restriction; and (d) All
pedestrians move freely. The infections in the four cases are
shown in Table I.

To see this table, the number of total infections is smallest
when patients comply with SD restriction and other pedestri-
ans move freely. On the contrary, the infection risk is highest
when patients move freely and other pedestrians comply with
SD restriction. This is due to the fact that pedestrians other
than the patients move with the SD restriction, which slows
down the evacuation process and makes them spend more
time with the patients; at the same time, the patients’ free
movement increases their chances of contact with susceptible
people, thereby increasing the infection risk. Therefore, it
reveals that patients’ spontaneous SD behavior and rapid evac-
uation process play an important role in reducing infection.
The trade-off between safety and efficiency associated with
SD deserves further exploration.

D. Analysis of crowd evacuation control strategies
in the waiting hall

To assess the infection spread dynamics when differ-
ent evacuation policies are implemented, we calculated the
number of infections with different evacuation strategies in

TABLE I. Number of infections in four different pedestrian mov-
ing cases.

Number of Number of Number of
interpersonal environmental total

Case infections infections infections

The patients comply with SD
restriction and the others move
freely 1.42 0.56 1.98
The patients move freely and the
others comply with SD restriction 12.78 3.56 16.34
All pedestrians comply with SD
restriction 1.18 1.66 2.84
All pedestrians move freely 7.63 1.15 8.78

both SD-0 and SD-1 scenarios, as shown in Table II. The
first strategy is evacuation in batches, which aims to reduce
physical contact between people. The second strategy is to
add evacuation exits, aiming to enhance evacuation efficiency
and thus shorten the time pedestrians spend in dangerous
environments. The third strategy is a combination of the first
two. We will examine the effectiveness of SD restriction and
other control strategies in preventing the spread of disease.

It can be seen that in the SD-0 scenario, compared with
not taking control measures (8.78), the number of infections
could be decreased by using the strategy of evacuation
in batches and adding evacuation exits (8.74, 8.41, 8.34,
respectively). In the SD-1 scenario, compared with no control
measures (2.84), evacuation in batches reduces the evacuation
efficiency and increases the infection (3.28), while adding
evacuation exits helps rapid evacuation and reduces infection
(2.61). Therefore, without compromising the effectiveness
of spontaneous SD between pedestrians, managers may
need queue management, infrastructure development, and
additional resource deployment to speed up pedestrians’
movement in the waiting hall.

VI. CONCLUSION

In this work, we considered pedestrian movement charac-
teristics during a pandemic and refined the traditional FFCA
model so that SD can be simulated. During the parameter
setting, we systematically changed the coefficients of two
floor fields related to pedestrian density, which describes
the need for pedestrians to avoid crowds. We observed the
changing movement behavior of pedestrians with different
parameter combinations. Taking 1 m as the threshold of SD,
the frequency and duration of SD violations were studied. We
examined the influence of different parameters in the move-
ment model on pedestrians’ SD behavior and identified the
combination of parameters needed to maximize the distance
between pedestrians. And, the rationality of our model is
verified by the fundamental diagram.

We combined the pedestrian dynamics of physical distanc-
ing with the framework of infection spread to evaluate the
influence of SD behavior on fine-scale disease propagation.
The results reveal that SD policy works well in containing in-
terpersonal transmission, while an increase in environmental
transmission can offset some of the effects. The effectiveness
of SD depends on interpersonal and environmental trans-
mission probabilities. We also examined the influence of
individual motion heterogeneity on infection spread and found
that the containment was the best when only patients com-
plied with the SD restriction. Moreover, the trade-off between
safety and efficiency associated with SD was also initially
explored in this study.

We have tried our best to ensure the validity of our find-
ings, but several limitations remain to be solved in terms of
calibrating the parameters and validating our model. First,
we did not compare the simulation results with actual data
to confirm the accuracy of the proposed model. Second, in
the SD-0 version of the model, we have successfully repli-
cated the density-velocity experimental data by only using the
static floor field. Thus, exploring which parameters play an
important role in determining the shape of the fundamental
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TABLE II. Number of infections with different evacuation strategies.

Number of Number of Number of
Control strategies interpersonal infections environmental infections total infections

SD-0 scenario No control measures 7.63 1.15 8.78
Evacuation in batches 7.52 1.22 8.74 (0.5%↓)

Adding evacuation exits 7.27 1.14 8.41 (4.2%↓)
Evacuation in batches + Adding evacuation exits 7.14 1.20 8.34 (5.0%↓)

SD-1 scenario No control measures 1.18 1.66 2.84
Evacuation in batches 1.29 1.99 3.28 (15.5%↑)

Adding evacuation exits 1.12 1.49 2.61 (8.1%↓)
Evacuation in batches + Adding evacuation exits 1.19 1.83 3.02 (6.3%↑)

diagram is an area that deserves more attention. Third,
our assumed probabilities of infection are not purely bi-
ological parameters. It is difficult to get the exact values
of transmission probabilities by means of experiment, be-
cause of the limitations of morality and technology. And,
the mechanism of disease transmission in this paper has
been simplified. In order to make the simulation of disease
transmission more realistic, we can improve the environment-
person transmission according to the diffusion process in our
future work to simulate the impact of ventilation on disease
transmission.

Nonetheless, our work makes a contribution to the growing
literature on disease pandemics. This paper emphasizes the
need to modify the current tools used in pedestrian dynamic
simulation and the necessity of taking the influences of SD
on existing pedestrian simulators into consideration. Later
researchers can modify our model to allow it to be applicable

to the simulation of physical distancing of crowds in more
complex spaces. The results of this paper will help policymak-
ers think about different crowd-control strategies to eliminate
the potential negative influences of SD requirements on crowd
movement as well as on containing the infection spread.
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