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Sunburst quantum Ising model under interaction quench:
Entanglement and role of initial state coherence
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We study the nonequilibrium dynamics of an isolated bipartite quantum system, the sunburst quantum Ising
model, under interaction quench. The prequench limit of this model is two noninteracting integrable systems,
namely a transverse Ising chain and finite number of isolated qubits. As a function of interaction strength, the
spectral fluctuation property goes from Poisson to Wigner-Dyson statistics. We chose entanglement entropy as a
probe to study the approach to thermalization or lack of it in postquench dynamics. In the near-integrable limit,
as expected, the linear entropy displays oscillatory behavior, while in the chaotic limit it saturates. Along with the
chaotic nature of the time evolution generator, we show the importance of the role played by the coherence of the
initial state in deciding the nature of thermalization. We further show that these findings are general by replacing
the Ising ring with a disordered XXZ model with disorder strength putting it in the many-body localized phase.
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I. INTRODUCTION

There has been an upsurge of studies in the last decade,
both theoretically and experimentally, to understand funda-
mental questions like relaxation dynamics and thermalization
in out-of-equilibrium isolated quantum systems. Traditional
quantifiers like two-point or higher order correlations of lo-
cal operators and quantum information theoretic measures
like entanglement entropy and out-of-time ordered correla-
tors, among others, have been used as probes to understand
whether the system attains the steady state, what is the nature
of equilibrium, or what is the path to achieve the same. The
equilibrium state is described by generalized Gibbs ensemble
(GGE) or eigenstate thermalization hypothesis (ETH) depend-
ing on the system being integrable or quantum chaotic [1–12].
ETH essentially asserts that each energy eigenstate behaves
like a microcanonical ensemble [13–15]. Several analytical
and numerical studies have shown that generic isolated quan-
tum chaotic many-body systems relax to a state in which local
observables achieve a time-independent value predicted by
thermal distribution and are independent of the initial state
as long as they are chosen from a small band of considered
energy [16–20]. A generic approach for creating a system
that does not thermalize is provided by many-body local-
ization (for further information, see the reviews [21–23] and
references therein). Another notable exception occurs when a
many-body interacting system exhibits persistent revivals for
specific initial states from the middle of the spectrum while
exhibiting ergodicity for others. These specific initial states
are called many-body scarred states [24,25].

The dynamics of bipartite subsystem entanglement entropy
following a quantum quench that drives the system away from
its initial equilibrium state provides an equivalent method for
studying thermalization in many-body systems. The von Neu-
mann entropy is one of the most commonly used entanglement

measures in quantum information theory; however, we choose
linear entropy for the ease of the calculation as well as being
accessible to experimental measurements [11]. A many-body
system can be imagined as a bipartite system with interaction
strength between the two parts as a natural candidate for the
quench parameter. The quench protocol for the Hamiltonian
is written as

H =
{

HA ⊗ 1B + 1A ⊗ HB t < 0
HA ⊗ 1B + 1A ⊗ HB + VAB t � 0 (1)

where HA(B) is the Hamiltonian of subsystem A(B) and VAB is
the interaction between the two. Time is denoted by t .

When HA, HB, as well as postquench Hamiltonian H
are integrable, the analytical understanding of entanglement
evolution comes from the quasiparticle picture [26], a phe-
nomenological model which rather successfully predicts the
entanglement between two subsystems at time t in terms of the
number of intersecting trajectories of quasiparticles produced
at time t = 0 in two subsystems. The entanglement entropy
grows linearly in time before saturating to volume law en-
tanglement [27–38]. In the other scenario, when HA, HB, as
well as postquench Hamiltonian H are quantum chaotic, a ran-
dom matrix theory-based approach explains the entanglement
dynamics [39]. The quantum chaotic nature of subsystems is
crucial in this approach as all the fluctuation and entanglement
properties have been calculated by modeling the subsystem
Hamiltonian with a suitable random matrix ensemble [39–45].
It motivates us to study the third scenario where prequench
subsystems are integrable and interaction quench breaks the
integrability of the postquench system. The present paper
departs from the two previously studied scenarios as the inte-
grability of subsystems forbids a random matrix theory-based
approach. However, we can also not use a quasiparticle picture
due to the quantum chaotic nature of the postquench Hamil-
tonian. For this class of systems in which the total system is
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quantum chaotic due to coupling between the two integrable
systems, it is a valid question to ask whether the equilibrium
state of any of the two subsystems behaves like a thermal state
or it can be characterized by GGE as is expected for integrable
systems.

For the second scenario discussed above, where sub-
systems are modeled by the corresponding random matrix
ensemble, the initial coherence of the quantum state, defined
as the sum of the square of off-diagonal elements of the den-
sity matrix written in energy basis, under interaction quench is
shown to act as a resource for equilibration or thermalization
even when the ETH is not satisfied [46]. The equilibration is
called strong or weak depending on whether the initial state
averaged temporal fluctuation of linear entropy is small or
not. The equilibration will be referred to as thermalization
whenever the equilibrium value of linear entropy reaches
the corresponding random vector value, henceforth called the
Lubkin value [47]. For a random vector chosen uniformly
from Hilbert space HA ⊗ HB of dimension 2L+n with dimen-
sion HA(B), 2L(2n) such that L � n, the linear entropy of the
either subsystem is ≈1 − 1

2n .
In this paper, we study the spectral fluctuation of the static

sunburst quantum Ising model [48] and show a transition from
Poisson to Wigner-Dyson statistics as a function of interaction
strength. Then, using linear entropy as a probe, we study the
entanglement dynamics of qubits under interaction quench.
We also show how initial state coherence plays a role in
achieving strong thermalization under interaction quench. The
key differences from the existing literature are as follows.

(1) In the bipartite setting shown in Eq. (1), the prequench
limit of the quantum chaotic system is two noninteracting
integrable subsystems in contrast to the nonintegrable limit
studied in the literature [39–42,46].

(2) The coherence of the initial state is shown to control the
mean and variance of the postquench equilibrium value of the
linear entropy.

The paper is organized as follows: We recollect the details
of the sunburst quantum Ising model and results relevant to the
present paper in Sec. II, then study the transition from integra-
bility to chaos with varying interaction strength between the
Ising ring and qubits in Sec. III. We discuss the postquench
entanglement dynamics following the interaction quench in
Sec. IV, while Sec. V focuses on the role of the initial state co-
herence in controlling the nature of thermalization. We present
the summary and outlook in Sec. VI.

II. MODEL

We study a recently proposed sunburst quantum Ising
model that is composed of a transverse field Ising ring, sym-
metrically coupled to a few isolated external qubits [48]. The
subsystems A and B in Eq. (1) correspond to the transverse
field Ising model and isolated qubits, respectively. The total
Hamiltonian of this model is

H = HI ⊗ 1q + 1I ⊗ Hq + VIq, (2)

where HI and Hq are the Hamiltonian of the transverse field
Ising ring and isolated qubits respectively and VIq is the inter-
action term. 1q(I ) is the identity operator in the space of qubits

(Ising ring). The individual terms are defined as

HI = −
L∑

i=1

(
Jσ x

i σ x
i+1 + hσ z

i

)
,

Hq = − δ

2

n∑
i=1

�z
i , VIq = −κ

n∑
i=1

σ x
1+(i−1)b�

x
i (3)

where L is the number of lattice points in the Ising ring and
σ

x(z)
i denotes Pauli matrices on the ith site. Note that both

subsystems are integrable. Due to the ring topology of Ising,
σ x

L+1 = σ x
1 . J is hopping strength which we choose as unity

unless stated otherwise, and h is the strength of the transverse
field. The spin chain is coupled with n number of isolated
qubits for which the Hamiltonian is Hq and �i denotes the
Pauli matrix corresponding to the ith qubit. The energy gap
between the two lowest eigenstates for the isolated qubits is
denoted by δ. κ is the strength of homogeneous interaction
between a qubit and Ising spin while b represents the distance
between consecutive isolated qubits. For the case L = nb, the
complete Hamiltonian is translation invariant with a unit cell
containing b Ising spins and one isolated qubit. For all the
other cases, this symmetry is broken.

In addition to translation symmetry, the model has spin-flip
symmetry, i.e., the Hamiltonian remains invariant when spin
is flipped along the x and y direction while keeping spin in the
z direction unchanged. The symmetry operator is given by

P =
L∏

i=1

σ z
i ⊗

n∏
j=1

�z
j (4)

which commutes with the Hamiltonian in Eq. (2) and satisfies
P2 = I . Therefore, the Hamiltonian has a disjoint spectrum
corresponding to P = ±1. For integrable to chaotic transition,
spectral distribution is studied for a fixed symmetry sector,
P = +1.

To show the generality of results obtained in subsequent
sections, we also study a version of the sunburst quantum
Ising model where we replace the transverse field Ising ring by
the disordered XXZ spin chain and refer to it as the sunburst
quantum XXZ model. The subsystem Hamiltonian is

HXXZ =
L∑

i=1

σ x
i σ x

i+1 + σ
y
i σ

y
i+1 + σ z

i σ z
i+1 + Wiσ

z
i , (5)

where Wi is a uniform random number distributed between
[−D, D] with D as disorder strength. The Hamiltonian shows
a transition from ergodic to a many-body localized (MBL)
phase as the strength of the disorder is increased with the tran-
sition point at D ≈ 3.6 [49–52]. Notice that the MBL phase
presents a situation where the nearest neighbor spacings are
Poisson distributed like the transverse Ising chain despite the
lack of integrability in the traditional sense. Coupling this with
isolated qubits through identical interaction terms, as given
in Eq. (3), presents another example where two subsystems
showing Poisson distributed spacing behavior, when coupled,
lead to the Wigner-Dyson spacings, as shown in Fig. 1.
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FIG. 1. We plot here 〈r̃〉 as a function of κ . For κ � 0.1, 〈r̃〉
is closer to the Poisson limit, which indicates the system is in the
integrable regime. For 0.1 � κ � 0.5, the system is in transition from
the integrable to the chaotic regime. For 0.5 � κ , 〈r̃〉 is closer to the
GOE limit, which indicates the system is in a chaotic regime. The
system parameters are chosen as δ = 1, and to break the translational
symmetry hi is taken as a uniformly distributed random number be-
tween 0.8 and 1, i.e., hi ∈ Unif[0.8, 1) along with L = 9, n = 3. For
the XXZ chain Wi ∈ Unif[−4, 4]. The ensemble of 40 realizations is
considered for both models.

III. SPECTRAL FLUCTUATION: INTEGRABLE
TO QUANTUM CHAOTIC TRANSITION

Spectral fluctuation properties such as spacing distribution
have traditionally been used to classify dynamical systems.
For generic integrable systems, nearest neighbor spacings
follow Poisson distribution [53], while for systems with clas-
sically chaotic limits they follow Wigner-Dyson statistics
[54]. The nearest neighbor spacing distribution is between
these two limits for a general nonintegrable model. Calculat-
ing nearest neighbor spacing distribution requires eigenvalues
unfolding, which is carried out numerically for most of the
system. The sunburst quantum Ising model in the noninteract-
ing limit is an integrable system. The integrability is broken in
the presence of interaction terms between the Ising ring and
qubits. To follow the complete integrable to chaotic transition
as a function of coupling strength κ , we utilize the average
ratio of the nearest neighbor spacing, which captures the sta-
tistical correlation in the same fashion as spacing distribution
with the added advantage of relaxing the requirement of un-
folding the spectrum [55,56]. The ratio of nearest neighbor
spacing r̃n is defined as

r̃n = min(sn, sn−1)

max(sn, sn−1)
, sn = En+1 − En (6)

where En is the nth eigenvalue. The ensemble-averaged ratio
of spacing 〈r̃〉 takes the approximate value of 0.38 for the
Poisson spectrum (integrable system) while for the Gaussian
orthogonal ensemble (GOE) it is approximately 0.53 (quan-
tum chaotic systems with orthogonal symmetry) [55,56]. The
average ratio of spacing for the sunburst quantum Ising model
initially increases almost linearly with increasing coupling
strength κ and then saturates around the value 0.53 (GOE)
for κ � 0.5, as seen in Fig. 1 (blue circles). Interestingly, for
smaller coupling κ , 〈r̃〉 goes below Poisson value display-
ing the presence of Shnirelman’s peak [57–59]. Let us recall

that according to Shnirelman’s theorem, for classically nearly
integrable systems, at least every second spacing becomes
exponentially small, causing a peak in spacing distribution
at zero spacing [57,58]. For the systems with no classical
analog, this effect can be attributed to discrete symmetries,
which generate the quasidegenerate pair of eigenvalues. For
very small κ , in the sunburst quantum Ising model as well as
in the sunburst quantum XXZ model, the discrete permutation
symmetry of interchanging qubits is almost a good symmetry
responsible for enhanced values of smaller spacings. We have
numerically verified that a small variation in δi removes this
permutation symmetry and causes the disappearance of the
enhanced peak at zero spacing (figure not included). We show
only a portion of the plot to clearly highlight the transition
and plateauing. Utilizing this curve, we identify three regions:
(i) integrable (κ ≈ 0), (ii) transition regime (0.1 � κ � 0.5),
and (iii) chaotic limit (κ � 0.5). (For a single qubit connected
with the Ising core, see Appendix A.) For these three regions,
the fates of an initial state turns out very different from each
other. We probe the postquench dynamics of an initial state
using entanglement in Sec. IV.

IV. POSTQUENCH DYNAMICS: LINEAR ENTROPY

In this section, we seek to understand the role of coupling
strength κ in generating the dynamics for the initial state,
which is taken as the product state of respective ground states
of the Ising ring and isolated qubits. Such a scenario is pop-
ularly known as out-of-equilibrium dynamics under sudden
interaction quench. The quench protocol is

H =
{

HI ⊗ 1q + 1I ⊗ Hq t < 0
HI ⊗ 1q + 1I ⊗ Hq + VIq t � 0.

(7)

We use the linear entropy of the subsystem (qubits) as a
probe to understand the out-of-equilibrium dynamics. Linear
entropy of qubits is defined as

(SL )q = 1 − tr
(
ρ2

q

)
, (8)

where ρq is the reduced density matrix of the qubits obtained
by taking a partial trace over the Ising degree of freedom. A
note of caution here is that linear entropy is not a true measure
of entanglement; rather, it measures the amount of mixedness
of the subsystems, which increases with increasing the entan-
glement between the subsystems. As a result, linear entropy
can roughly quantify the degree of entanglement between the
subsystems [60]. In the limiting case of subsystems being in
a pure state, linear entropy is zero. As we seek to characterize
the nature of equilibration in the large time limit, we will focus
on the time average and variance of linear entropy.

A. Limiting case: h = 0, L > 1, n = 1

To gain analytical insight, we derive an exact expression
for linear entropy in the limiting case when we connect
one qubit with the Ising ring and take h = 0. The ground
state of the transverse Ising model with h = 0, consistent
with the Z2 symmetry, is |ψ I

G〉 = 1√
2
[| + + + · · · +〉 + | −

− − · · · −〉. This macroscopic superposition is known as
the “cat state” [61], or Greenberger-Horne-Zeilinger state
[62] in literature, and their generation has attracted much
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attention [63–66]. For nonzero but small h, this state is the true
ground state of the transverse Ising chain. Although very frag-
ile against “symmetry breaking” perturbation in the N → ∞
limit, this state is still interesting to study as our interaction
term does not break the Z2 symmetry. The ground state of the
prequench Hamiltonian is

|ψ (0−)〉 = ∣∣ψ I
G

〉 ⊗ |0〉, with∣∣ψ I
G

〉 = 1√
2

[|+ + + · · · +〉 + |− − − · · · −〉] (9)

with σx|±〉 = ±|±〉, �z|0〉 = |0〉. The superscript I signifies
the Ising part. In the h = 0 limit, the Ising Hamiltonian com-
mutes with the qubit and interaction part of the Hamiltonian,
and therefore the time-evolution operator can be factorized
and written as

U = exp(−iHIt ) exp[−it (Hq + VIq)] = UIUIq = UIqUI .

As the initial state [Eq. (9)] is an eigenstate of UI , its action
on |ψ (0−)〉 produces only a global phase which we can ig-
nore. We can evaluate UIq|ψ (0−)〉 in close form by noticing
that (Hq + VIq)|ψ (0−)〉 = − δ

2 |ψ I
G〉 ⊗ |0〉 − κ|ψ I

N 〉 ⊗ |1〉 and

(Hq + VIq)2|ψ (0−)〉 = ω2

4 |ψ (0−)〉 with ω2 = δ2 + 4κ2. The
evolved state at any time t is

|ψ (t )〉 = A(t )
∣∣ψ I

G

〉 ⊗ |0〉 + B(t )
∣∣ψ I

N

〉 ⊗ |1〉,∣∣ψ I
N

〉 = 1√
2

[|+ + + · · · +〉 − |− − − · · · −〉],

A(t ) = cos
ωt

2
+ i

δ

ω
sin

ωt

2
, B(t ) = 2iκ

ω
sin

ωt

2
. (10)

The quench protocol produces a superposition of two eigen-
states of the prequench Hamiltonian that, interestingly, is
already in Schmidt form. The reduced density matrix of the
qubit is

ρq(t ) = trI (|ψ (t )〉〈ψ (t )|) = |A(t )|2|0〉〈0| + |B(t )|2|1〉〈1|.
(11)

The linear entropy is then given by

SL(t ) = 1 − (|A(t )|4 + |B(t )|4) (12)

where A(t ) and B(t ) are defined in Eq. (10). It approaches to
the maximum possible value when |A(t )|2 = |B(t )|2 = 1

2 . The
time t∗ when the linear entropy reaches its maximum is given
by

t∗ = 2

ω
cos−1

[
±

√
4κ2 − δ2

8κ2

]
. (13)

It is clear from Eq. (13) that linear entropy can reach its
maximum possible limit only if the interaction strength κ is
greater than or equal to half of the energy gap of the qubit,
i.e., 2κ � δ. If this condition is satisfied, t∗ decreases with
increasing κ , implying that the linear entropy reaches its max-
imum value faster for the larger interaction strength, which is
what we expect intuitively.

For small but nonzero h such that h << J , |ψ I
G〉 and |ψ I

N 〉
are no longer the exact eigenstates of the Ising ring; however,
to a very good approximation, |ψ (t )〉 continues to be of the

FIG. 2. In two limiting cases, the analytical expression of linear
entropy is compared to the exact diagonalization calculations. In the
weak field limit where J = 1, h = 0.1, δ = κ = 1 numerics is shown
by orange triangles while in the strong field limit where J = 0.1, h =
1, δ = κ = 1 numerics is represented by blue stars. The respective
analytical results [Eq. (12) with A, B given by Eqs. (10) and (15)
respectively] are plotted by solid lines. The period of the oscillation
in both limits is 2π

ω
.

form given in Eq. (10). We compare the linear entropy cal-
culated in Eq. (12) with exact diagonalization calculation for
h = 0.1, J = 1 in Fig. 2. They are in good agreement.

B. Limiting case: J = 0, L > 1, n = 1

In this limit, the ground state of the prequench Hamiltonian
is given by

|ψ (0−)〉 = ∣∣ψ I
G

〉 ⊗ |0〉, with
∣∣ψ I

G

〉 = |000 . . . 0〉, (14)

where |ψ I
G〉 ⊗ |0〉 is the ground state of the prequench

Hamiltonian with ground state energy EG = −Lh − δ
2 . The

Ising Hamiltonian no longer commutes with VIq and, there-
fore, the unitary evolution operator is given by U =
exp −it (HI + Hq + VIq). In this limit J = 0, repeated appli-
cation of H on the prequench state does not yield the identity
operator. We set up a difference equation for Hn|ψ (0−)〉 in
terms of the initial state |ψ (0−)〉 and state H |ψ (0−)〉 [67].
Solving this difference equation using the characteristic root
method, we obtain the time evolved state at the time t (see
Appendix B for the details):

|ψ (t )〉 = A(t )
∣∣ψ I

G

〉 ⊗ |0〉 + B(t )
∣∣ψ I

N

〉 ⊗ |1〉,∣∣ψ I
N

〉 = |100 . . . 0〉,

A(t ) = cos
ωt

2
+ i

δ + 2h

ω
sin

ωt

2
, B(t ) = 2iκ

ω
sin

ωt

2
.

(15)

Note |ψ I
N 〉 ⊗ |1〉 also is an eigenstate of the prequench Hamil-

tonian with eigenvalue EN = −(L − 2)h + δ
2 . The expression

for linear entropy, given in Eq. (12), is valid in this limiting
case as well with modified ω2 = (2h + δ)2 + 4κ2.

The oscillatory behavior of linear entropy clearly shows
a lack of equilibration. Like the previous limit, for small
but nonzero J � h, the expression of linear entropy matches
very well with exact diagonalization calculation as |ψ (t )〉
continues to be a good approximation for finite but small J .
The analytical expression and exact diagonalization result for
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parameters J = 0.1, h = 1 are compared in Fig. 2 and are in
good agreement.

C. General case: J = 1, h ≈ δ ≈ κ ≈ O(1), L > 1, n > 1

For the parameter regime, h ≈ δ ≈ κ ≈ O(1), the total sys-
tem is in the chaotic regime (see Fig. 1). An analytical solution
for the time evolution of the linear entropy is beyond this
method. To understand the time evolution of linear entropy
under interaction quench and bring out the role played by
coherence of the initial state, we turn to exact diagonalization.
In this case, linear entropy tends to saturate around a mean
closer to the Lubkin value. When the large time limit of linear
entropy corresponds to the Lubkin value [47], we call such an
equilibration thermalization.

In the rest of the paper, we try to understand perturbatively
the initial growth of the linear entropy and, using this, whether
or not a complete transition happens to a thermalized state.
The emphasis will be on the role of initial coherence in the
thermalization process characterized here by linear entropy.
The exact diagonalization calculations for both models are
done for system size L = 9 and n = 1, 3 along with J =
1, h ≈ 1 unless mentioned otherwise.

V. ROLE OF INITIAL STATE COHERENCE
IN POSTQUENCH DYNAMICS

The coherence of a state is a basis-dependent quantity,
and we prefer to choose the energy basis to quantify the
coherence. A state is called incoherent in the given basis set
B = {|m〉}N

m=1 if the density matrix corresponding to this state
is diagonal in the said basis. A deviation from this earns the
name coherent. We use the sum of the square of off-diagonal
elements of the density matrix ρ as coherence measure [68]:

c2
B(ρ) =

∑
m =m′

|ρmm′ |2.

A maximally coherent state in this basis is given by

|αc〉 = 1√
N

N∑
m=1

eiφm |m〉 (16)

where φm ∈ Unif[0, 2π ) and can be chosen randomly [69].
Recently, the role of coherence has been explored in the
thermalization of the initial state using random matrix theory,
where individual subsystems are modeled by random matrices
[46]. It has been shown that the presence or lack of coherence
in the initial state results in strong or weak thermalization.
In this section, we first obtain perturbatively the very short-
time behavior of postquench linear entropy for the initial
state chosen as (a) the direct product of an incoherent state
(ground state of the Ising ring and ground state of a single
qubit) and (b) the direct product of a maximally coherent
state constructed using all the eigenstates of the Ising ring with
the ground state of a single qubit. By redefining the interaction
strength, we can write down the result for many qubits using
the conjecture proposed in [48]. Finally, we show that when
time evolved by a strongly interacting sunburst quantum Ising
model the maximally coherent initial state thermalizes while
the incoherent state continues to fluctuate about the long-time
average value.

A. Short-time behavior

Let us take the initial state of the sunburst quantum Ising
ring with a single qubit as

|ψ (0−)〉 = |αc〉 ⊗ |0〉 = 1√
2L

2L∑
m=1

eiφm
∣∣ψ I

m

〉 ⊗ |0〉, (17)

with |ψ I
m〉 as mth eigenstates of the Ising ring and φm ∈

Unif[0, 2π ), i.e., φm is chosen randomly for each m from
uniform distribution as in Eq. (16). In the interaction picture,
the time evolution operator can be approximated for a very
short time (t � κ−1) by UI (t ) ≈ exp(−iVIqt ) (for details see
Appendix C). The time evolved state corresponding to the
initial state given in Eq. (17) can be calculated using the se-
ries expansion of exp(−iVIqt ) and resumming the series after
applying each term on the initial state. For applying VIq on the
initial state, it is sensible to expand each of the eigenstates as
a linear superposition of σz eigenbasis, i.e.,

|αc〉 = 1√
2L

2L∑
m=1

eiφm

2L∑
n=1

cnm|n〉,

where |n〉 ∈ {|00 . . . 0〉, |00 . . . 1〉, . . . |11 . . . 1〉}. (18)

The action of VIq once on the initial state will produce the state
|α′

c〉 ⊗ |1〉 with

∣∣α′
c

〉 = 1√
2L

2L∑
m=1

eiφm

2L∑
n=1

cnm|ñ〉, where |ñ〉 = σ x
1 |n〉. (19)

Applying VIq twice on the initial state will return the initial
state as is evident from Eqs. (18) and (19). This helps in
obtaining a closed-form expression for |ψ (t )〉 as

|ψ (t )〉 = cos(κt )|αc〉 ⊗ |0〉 + i sin(κt )
∣∣α′

c

〉 ⊗ |1〉. (20)

The subsystem linear entropy at time t is

SL = 1
4 [1 − cos(4κt )][1 − |γ |2] (21)

where

γ = 〈αc|α′
c〉. (22)

Depending on the initial coherence, γ changes. Let us take
the extreme case when N = 1, i.e., only the ground state of
the Ising ring is taken, which is an example of an incoherent
initial state. Note that |α′

c〉 is orthogonal to |αc〉 in this case,
and therefore γ = 0. The fact that parity commutes with the
Ising Hamiltonian and anticommutes with interaction results
in the orthogonality of |αc〉 and |α′

c〉. The linear entropy for an
incoherent initial state then becomes

SL = 1
4 [1 − cos(4κt )], (23)

which, for a very short time, is

SL ≈ 2κ2t2. (24)

This quadratic dependence on time is a clear departure from
earlier studied linear dependence of linear entropy on time
[8,26,70–72]. A maximal coherent state with random phases
can be expanded in σz eigenbasis with random coefficients
as given in Eq. (18). The action of VIq on this will produce
another unit vector with random coefficients as defined in
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FIG. 3. Initial growth of linear entropy is plotted for different
initial states, such as two incoherent states constructed from (a) the
ground state (�) of the Ising ring and (b) a state from the middle of
the spectrum of the Ising ring (×) and the maximally coherent state
(◦) as a function of time. The length of the Ising ring is taken as L = 9
for all the sets while the number of qubits is taken as n = 1 and 3.
The solid line for n = 1 is the quadratic curve derived in Eq. (24),
while that for n = 3 denotes Eq. (25). The other system parameters
are h = 0.95, δ = 1, κ = 1. The quadratic behavior of linear entropy
for a short time is clearly visible for all the initial states.

Eq. (19). For the maximally coherent state, we approximate
|αc〉, |α′

c〉 by two independent random unit vectors and as |γ |
is defined as the dot product of these two random vectors
the average of |γ |2 over the random phases is equal to the
variance of the dot product of two unit random vectors, which
is of the order of 1/2L [73,74]. To check the approximation of
taking |αc〉, |α′

c〉 as random vectors in σz eigenbasis, we have
numerically checked that the average of |γ |2 over random
phases scales as 1/2L (figure not shown here). This contri-
bution vanishes in a large L limit. Let us recall again that
this behavior applies to a very short time during which the
interaction propagator is written in terms of only VIq.

For the Ising ring coupled with two qubits, the short-
time behavior of the linear entropy continues to be quadratic,
specifically as SL ≈ 4κ2t2 (for details see Appendix D). This
result is in agreement with the scaling conjecture numerically
verified in [48]. Motivated by this, for the Ising ring connected
with n qubits, the growth of linear entropy is taken as

SL ≈ 2nκ2t2. (25)

This conjecture agrees very well with exact diagonalization
calculations as seen in Fig. 3 where the length of the Ising
ring is L = 9 and the number of qubits is n = 3.

B. Long-time averaged entropy

Not surprisingly, when we time evolve the direct product of
the ground state of the Ising ring with the ground state of non-
interacting qubits (i.e., incoherent state) by the near-integrable
quenched Hamiltonian (κ = 0.05), the linear entropy fluctu-
ates a lot near zero value (see Fig. 4). For a larger value of
interaction strength (κ = 1) when the quench Hamiltonian has
a spectrum with Wigner-Dyson spacing, the time-averaged
linear entropy approaches the Lubkin value (random vector
value) with visible fluctuations around it (see Fig. 4). In the
second column of Fig. 4, we have shown the entanglement
generation in an incoherent state which is a direct product of
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FIG. 4. Time variation of linear entropy for incoherent and max-
imally coherent initial states in ultraweak (κ = 0.05), weak (κ =
0.1), and strong interaction (κ = 1) regimes. We have considered
L = 9, n = 3 and J = δ = 1, h = 0.95.

the eigenstate from the middle of the spectrum of the Ising
Hamiltonian and the ground state of noninteracting qubits.
The entanglement generated by the near-integrable case is
more than the incoherent state corresponding to the ground
state but less than the maximally coherent initial state. Only
in the case of large κ (= 1), the entanglement generation is the
same as in the case of a maximal coherent state.

On the other hand, we have plotted linear entropy with time
in the third column when the initial state is taken as a maxi-
mally coherent state and evolved in time with the quenched
Hamiltonian of the same coupling strength as in the first and
second columns of Fig. 4. It is clear that the magnitude of
fluctuations is significantly lower compared to the incoherent
initial state counterparts as well as that more entanglement
has been generated in the case of κ = 0.05, 0.1. Infinite time-
averaged entropy and variance to capture temporal fluctuation
around it are defined as

〈SL〉 = lim
τ→∞

1

τ

∫ τ

0
SL(t )dt,

σ 2(SL ) = 〈(SL(t ) − 〈SL〉)2〉. (26)

We have tabulated the effect of coherence on the long-time
averaged value of entropy along with variance to quantify this
fluctuation in Table I.

The variance decreases almost inversely proportional to the
initial state coherence and, at the same time, the long-time
averaged linear entropy increases to its limit of the Lubkin
value. This shows that coherence of the initial state acts as a
resource for entanglement generation and decreasing variance
signifies strong thermalization.

To understand the possible mechanism of fluctuations in
linear entropy around the Lubkin value seen when an incoher-
ent state is evolved in time with the strongly coupled quenched
Hamiltonian, we plot the inverse participation ratio (IPR) of
the time evolved state in the prequench eigenenergy basis. We
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TABLE I. The time-averaged entropy and variance listed as a
function of initial state coherence.

L = 9, n = 1 L = 9, n = 3

c2
B 〈SL (t )〉 σ 2(SL ) 〈SL (t )〉 σ 2(SL )

0.5000 0.2309 0.1103 0.5704 0.0651
0.7500 0.3236 0.0766 0.6959 0.0488
0.8750 0.3634 0.0635 0.7587 0.0247
0.9375 0.4100 0.0393 0.7849 0.0147
0.9687 0.4217 0.0286 0.8227 0.0082
0.9844 0.4651 0.0152 0.8408 0.0058
0.9922 0.4782 0.0090 0.8560 0.0030
0.9960 0.4877 0.0061 0.8654 0.0013
0.9980 0.4974 0.0018 0.8722 0.0005

define IPR as

I|ψ (t )〉 =
N∑

m=1

∣∣〈ψH0
m

∣∣ψ (t )
〉∣∣4

, with

(HI ⊗ 1q + 1I ⊗ Hq )
∣∣ψH0

m

〉 = Em

∣∣ψH0
m

〉
, m = 1 . . . N. (27)

This quantity takes two extreme values 1 and 1/N (inverse of
Hilbert space dimension) for the limits when the time evolved
state is built upon only one of the prequench states and when
it is built upon all the prequench eigenstates, respectively. To
show the correlation, we have plotted Ĩ (t ) ≡ 1 − I|ψ (t )〉 (red
dashed line for the n = 1 qubit, and green dotted lines for
n = 3 qubits) along with linear entropy (blue star for the n = 1
qubit and orange circle for n = 3 qubits) as seen in Fig. 5.
For the n = 1 qubit, Ĩ (t ) is fluctuating and averaging to nearly
half. This shows that the time evolving state explores a very
small subset of Hilbert space of the prequench system, and
therefore we see a large fluctuation in entropy. This fact is
borne out in Fig. 5 very clearly where the smaller value of
IPR, i.e., a larger value of Ĩ (t ) as plotted in the figure, corre-
sponds to larger entanglement entropy. This clearly shows that

FIG. 5. Time evolution of linear entropy and Ĩ (t ) of the state
|ψ (t )〉 evolved in time by the postquench sunburst quantum Ising
Hamiltonian. The blue star and orange circle are linear entropy for
the sunburst quantum Ising model for n = 1 and 3 qubits, respec-
tively. The red dashed line (n = 1 qubits) and green dotted line
(n = 3 qubits) are representing Ĩ (t ) for the same time evolved state
in the prequench eigenbasis. For these κ = δ = 1.0 has been taken
along with h = 0.95, and the initial state is incoherent. The choice
of plotting Ĩ (t ) in place of I|ψ (t )〉 is to show that hills and valleys
correspond exactly to those of linear entropy.

FIG. 6. Evolution of linear entropy when the maximally coherent
product state is evolved by the sunburst quantum Ising model and
sunburst quantum XXZ model. In the XXZ model, parameters are
chosen in such a way that the system is in the MBL phase. The solid
lines are analytical results derived in Eqs. (28) and (29). The sunburst
quantum XXZ model where qubits are connected with the ring of
XXZ chain with disorder strength D = 4 puts the XXZ ring in the
many-body localized phase. The other parameters are δ = 1, L = 9,
and κ = 1.5.

an increase (decrease) in entanglement entropy corresponds
to instantaneous larger (smaller) participation of prequench
eigenstates in the time evolved incoherent initial state. For
the maximally coherent initial state [Eq. (17)] on the other
hand, IPR calculated in the prequench eigenenergy basis is
approximately independent of time. This observation is in-
tuitively clear as a maximally coherent state is constructed
with all eigenstates of the Ising ring. The IPR comes out to
be ≈1/2L+n, which shows that the complete Hilbert space of
the prequench Hamiltonian is explored by the time evolving
state for all time.

For the case when complete Hilbert space is being ex-
plored, we derived the initial dependence of linear entropy on
time to be quadratic [Eq. (24)]. Using the perturbation theory
developed in [39] and initial time dependence of entropy, the
complete transition of linear entropy from zero to the Lubkin
value can be obtained (see Appendix E):

SL(t ) =
[

1 − exp

(
−2κ2t2

S∞
L

)]
S∞

L . (28)

This form is compared with linear entropy calculated numer-
ically for the sunburst quantum Ising model when a single
qubit is connected with the Ising ring in Fig. 6 (orange cir-
cles). Utilizing the initial time dependence of entropy for
the sunburst quantum Ising model with n qubits, Eq. (28) is
generalized to

SL(t ) =
[

1 − exp

(
−2nκ2t2

S∞
L

)]
S∞

L . (29)

This result is in clear agreement with the exact diagonalization
calculation as seen in Fig. 6 where n = 3 qubits have been
chosen (orange circles), and like in the single qubit case the
initial condition was a maximally coherent state.

For both cases, whether the initial state is incoherent or
maximally coherent, the reduced density matrix correspond-
ing to the qubit subspace becomes nearly diagonal, a telltale
sign of equilibration. The fluctuation in linear entropy then
captures whether equilibration is strong or weak. Therefore,
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the variance of the time series of linear entropy becomes a
good measure to identify the nature of the equilibration of
the time evolved state. As seen in Table I, for a fixed cou-
pling strength where the total system is quantum chaotic, and
variance is (almost) inversely proportional to the degree of co-
herence of the initial state. The time-averaged value of linear
entropy becoming equal to the Lubkin value with a very small
variance indicates the strong thermalization when the initial
state is maximally coherent and time evolution is done using
the postquench Hamiltonian showing Wigner-Dyson statistics
for its spectral fluctuation. On the other hand, thermalization
remains weak for an incoherent initial state for the same value
of coupling constant κ .

For the sunburst quantum XXZ model, the average ratio of
spacing with coupling strength κ is plotted in Fig. 1 (orange
triangle), showing a transition from integrability to chaos. We
choose a sufficiently large κ value to correspond to the average
ratio of the spacings to correspond to Wigner-Dyson statistics.
The time evolution of linear entropy of qubits postinteraction
quench in the sunburst quantum XXZ model is plotted in
Fig. 6. The numerical linear entropy evolution closely follows
the analytical form derived for the sunburst quantum Ising
model, as is borne out clearly from Fig. 6. A systematic lower
value of linear entropy from the Lubkin value may be specific
to MBL physics, which we will take up for a future study.

VI. SUMMARY AND OUTLOOK

In this paper, we have studied the nonequilibrium dynamics
of an isolated bipartite quantum system, the sunburst quan-
tum Ising model, under interaction quench where prequench
subsystems are integrable. The interaction strength drives the
postquench system to a quantum chaotic regime, with the
average ratio of spacings being ≈0.53 for κ � 0.5 consis-
tent with GOE of random matrix theory. We have derived a
quadratic in time growth of linear entropy for short time. The
coherence of the initial state is shown to slow it down a little,
but the contribution is vanishingly small as we increase the
length of the Ising ring. The initial state, which we chose
as a product state of eigenstates of prequench Hamiltonian
subsystems, equilibrates in the large time limit when the
postquench Hamiltonian generates the time evolution with
interaction strength value 1 or larger as long as level spacing
distribution remains Wigner-Dyson. We derived the full tran-
sition curve for linear entropy, which agrees with numerical
calculation. We further highlight the increase in time-averaged
entropy [Eq. (26)] tabulated in Table I as a function of the
initial state coherence, suggestive of later being a resource of
entanglement. The decreasing variance of linear entropy with
initial state coherence characterizes the smallness of oscilla-
tions around the mean value, or in other words, initial state
coherence helps in achieving the steady state behavior even
in a weak interaction regime (see the second row of Fig. 4).
We have shown that the effect of coherence on the nature of
equilibrium is a “generic” feature of bipartite near-integrable
or quantum chaotic systems with individual parts taken as in-
tegrable by replacing the Ising ring with the XXZ chain taken
in the MBL phase. Though quantifying this effect analytically
has earlier been done using random matrix theory in the limit
when prequench subsystems are chaotic [46], it remains an

FIG. 7. Plot of 〈r̃〉 as a function of interaction strength κ for the
sunburst quantum Ising model for different values of L. The other
parameters of the system are n = 1, J = δ = 1, h ∈ Unif[0.8, 1).

open problem for integrable subsystems as studied here. The
lack of a sunburst quantum XXZ model (in MBL phase)
in attaining the Lubkin value for linear entropy despite the
overall system showing Wigner-Dyson spacing also remains
an interesting open question to explore.

APPENDIX A: TRANSITION OF THE AVERAGE RATIO
OF SPACING IN SUNBURST QUANTUM ISING

MODEL WITH n = 1

In this Appendix, we present the behavior of the average
ratio of the spacing with increasing interaction strength in the
sunburst quantum Ising model. In the n = 1 limit, the discrete
permutation symmetry of interchanging qubits is no longer
applicable and therefore Shnirelman’s peak disappears and
the average ratio of spacing starts from ≈0.38 corresponding
to the integrable limit. For small L (say 9) and one qubit
system, the average ratio of spacing never attains the GOE
value of 0.53 signifying a lack of maximally quantum chaotic
behavior; however, with increasing L even with n = 1, the
average ratio of spacing nearly reaches to GOE value and
plateauing becomes more pronounced as seen in Fig. 7.

APPENDIX B: EVOLUTION IN THE J = 0 LIMIT:
SOLUTION USING THE DIFFERENCE EQUATION

In the J = 0 limit, the initial state is given by Eq. (14). The
action of Hamiltonian given in Eq. (2) with J = 0 produces

H |ψ (0−)〉 = EG|ψ (0−)〉 − κ
∣∣ψ I

N

〉 ⊗ |1〉, (B1)

H2|ψ (0−)〉 = (
E2

G + κ2)|ψ (0−)〉 − κ (EG + EN )
∣∣ψ I

N

〉 ⊗ |1〉
(B2)

where EG = −Lh − δ
2 , EN = −(L − 2)h + δ

2 , and |ψ I
N 〉 =

|100 . . . 0〉. Replacing |ψ I
N 〉 ⊗ |1〉 in terms of |ψ (0−)〉 using

Eq. (B1) we get

[H2 − (EG + EN )H − (κ2 − EGEN )]|ψ (0−)〉 = 0. (B3)

From above we can obtain the following difference equation:

Fn+2 − (EG + EN )Fn+1 − (κ2 − EGEN )Fn = 0, (B4)
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where Fn = Hn|ψ (0−)〉 with initial conditions F0 =
|ψ (0−)〉, F1 = EG|ψ (0−)〉 − κ|ψ I

N 〉 ⊗ |1〉. We can solve
this difference equation using the characteristic root method.
Let us assume a solution of this equation is of the form
Fn = χn, then the characteristic equation for the above
difference equation is given by

χ2 − (Eg + EN )χ − (κ2 − EgEN ) = 0 (B5)

with two fundamental solutions:

χ1,2 = (Eg + EN ) ± √
(Eg + EN )2 + 4(κ2 − EgEN )

2
. (B6)

The solution for this difference equation utilizing the initial
conditions can be written as

Hn|ψ (0−)〉 =
[

F1 − χ2F0

ω

]
χn

1 +
[−F1 + χ1F0

ω

]
χn

2 (B7)

where

ω =
√

(Eg − EN )2 + 4κ2. (B8)

The wave function |ψ (t )〉 = exp(−iHt )|ψ (0−)〉 utilizing
Eq. (B7) to a global phase is

|ψ (t )〉 =
∞∑

n=0

(−it )n

n!
Hn|ψI〉

= A(t )
∣∣ψ I

G

〉 ⊗ |0〉 + B(t )
∣∣ψ I

N

〉 ⊗ |1〉,

A(t ) = cos
ωt

2
+ i

δ + 2h

ω
sin

ωt

2
, B(t ) = 2iκ

ω
sin

ωt

2
.

APPENDIX C: EVOLUTION OPERATOR IN THE
INTERACTION PICTURE: SHORT TIME (t � κ−1)

The Hamiltonian in Eq. (2) can be expressed as

H = H0 + VIq, with H0 = HI ⊗ 1q + 1I ⊗ Hq, (C1)

where H0 is free part of the total Hamiltonian and VIq is
the interaction Hamiltonian. The evolution operator in the
interaction picture UI can be written as

UI (t, 0) = U †
0 (t, 0)US (t, 0) (C2)

where we take the initial time as zero. U0(t, 0) is the evolution
operator corresponding to the Hamiltonian H0 and US (t, 0)
is the evolution operator in the Schrödinger picture. Conse-
quently,

UI (t, 0) = eiH0t e−iHt . (C3)

Using Baker-Campbell-Hausdorff expansion [75–77] and
keeping terms only linear in time, we obtain

UI (t, 0) ≈ ei(H0−H )t = e−iVIqt . (C4)

This is consistent with the high-frequency approximation of
the evolution operator and the time scale is identified in the
inverse of the strength of VIq.

APPENDIX D: DERIVATION OF INITIAL GROWTH
OF LINEAR ENTROPY FOR TWO QUBITS

For a very short time, the time evolution operator U can be
approximated to

U ≈ 1 − iVIqt . (D1)

Applying this on |ψ (0−)〉 = |ψ I
G〉 ⊗ |00〉 yields

|ψ (t )〉 ≈ |ψ (0−)〉 + iκt
[∣∣φI

1

〉 ⊗ |10〉 + ∣∣φI
2

〉 ⊗ |01〉]. (D2)

The states |φI
1〉 and |φI

2〉 are obtained from the ground state of
the Ising by flipping the Ising spins connected with the qubits.
We rewrite Eq. (D2) as

|ψ (t )〉 ≈ ∣∣ψ (0−)
〉 + √

2κt
∣∣ψ I

N

〉
, (D3)

with ∣∣ψ I
N

〉 = 1√
2

[∣∣φI
1

〉 ⊗ |10〉 + ∣∣φI
2

〉 ⊗ |01〉]. (D4)

Since the Ising Hamiltonian commutes with parity, therefore,
the states obtained by flipping single spin will be orthogonal to
the ground state (|ψ I

N 〉 ⊥ |ψ I
G〉). The form of the time evolved

state for one ancillary qubit for a short time is

|ψ (t )〉 = |ψI (t )〉 + iκt |ψN (t )〉. (D5)

From Eqs. (D3) and (D5), we see that for two qubits if we
redefine the quench parameter κ as

√
2κ , we will get the same

form for the time evolved state as for one qubit. One can easily
show that such scaling of the interaction parameter still works
if the initial state is maximally coherent. This is consistent
with the scaling conjecture put forward in [48]. Therefore, we
approximate the short-time behavior of linear entropy for n
number of qubits by the same form as obtained for the one
qubit system by rescaling κ → √

nκ:

SL = 1
4 [1 − cos(4

√
nκt )]. (D6)

APPENDIX E: DERIVATION OF A COMPLETE
TRANSITION TO LUBKIN VALUE

The time evolved state at the initial time can be Schmidt
decomposed by using the unperturbed eigenstates as Schmidt
eigenvectors. With increasing time, another unperturbed
eigenstate energetically close to the earlier eigenstates will
contribute, resulting in three prominent Schmidt eigenval-
ues. The process is continuously repeated which results in
a fragmentation of Schmidt eigenvalues into smaller pieces.
The purity of the state is μ2 = trρ2

q where ρq is the reduced
density matrix of qubits. Following the iteration scheme, the
difference in purity between two consecutive iterations can be
expressed as

μ′
2 − μ2 = −2κ2t2μ2 + 2κ2t2,

dμ2

dt
= −4κ2tμ2 + 4κ2t,

the continuum version using

t2

2
=

∫
t dt,

d (1 − μ2)

dt
= −4κ2t (1 − μ2),

dSL

dt
= −4κ2tSL.

054114-9



AKASH MITRA AND SHASHI C. L. SRIVASTAVA PHYSICAL REVIEW E 108, 054114 (2023)

We know that, at t → ∞, SL (t ) → S∞
L , and as there is a

steady state the time derivative should vanish. S∞
L is the

Lubkin value [47]. Therefore,

dSL

dt
= −4κ2t

(
SL − S∞

L

)
.

Also, note that t → 0, the slope should be 4κ2t , and SL(t →
0) → 0; therefore, we must divide by S∞

L . This motivates us

to write the “correct” equation as

dSL

dt
= −4κ2t

S∞
L

(
SL − S∞

L

)
(E1)

which with initial condition SL(0) = 0 yields the solution:

SL(t ) =
[

1 − exp

(
−2κ2t2

S∞
L

)]
S∞

L . (E2)
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