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Kinetic blockings in long-range interacting inhomogeneous systems
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Long-range interacting systems unavoidably relax through Poisson shot noise fluctuations generated by their
finite number of particles, N . When driven by two-body correlations, i.e., 1/N effects, this long-term evolution
is described by the inhomogeneous 1/N Balescu-Lenard equation. Yet, in one-dimensional systems with a
monotonic frequency profile and only subject to 1:1 resonances, this kinetic equation exactly vanishes: this is a
first-order full kinetic blocking. These systems’ long-term evolution is then driven by three-body correlations,
i.e., 1/N2 effects. In the limit of dynamically hot systems, this is described by the inhomogeneous 1/N2 Landau
equation. We numerically investigate the long-term evolution of systems for which this second kinetic equa-
tion also exactly vanishes: this a second-order bare kinetic blocking. We demonstrate that these systems relax
through the “leaking” contributions of dressed three-body interactions that are neglected in the inhomogeneous
1/N2 Landau equation. Finally, we argue that these never-vanishing contributions prevent four-body correlations,
i.e., 1/N3 effects, from ever being the main driver of relaxation.
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I. INTRODUCTION

Following an initial violent relaxation happening on
dynamical timescales [1], long-range interacting N-body sys-
tems end up on quasistationary states. Force fluctuations
driven by finite-N shot noise then unavoidably lead to the
long-term relaxation of these systems, driving them ever
closer to their thermodynamical equilibrium. Fixing the sys-
tem’s total mass, the larger the number of particles N , the
slower this relaxation. Kinetic theory aims at describing such
long-term irreversible evolutions and spans a wide range of
physical systems [2–5]. In the present paper, we are interested
in inhomogeneous systems, i.e., integrable systems with a
nontrivial mean-field orbital structure [3], as is the case, for
example, in galactic discs [6], galactic nuclei [7], or globular
clusters [8].

In self-gravitating systems, particles generate the potential
within which they evolve. As such, any fluctuation in the parti-
cles’ distribution is associated with a gravitational potential’s
perturbation. These self-consistent fluctuations are referred to
as collective effects or equivalently as dressing (e.g., Debye
shielding in plasmas [2]). Limiting oneself to two-body cor-
relations, i.e., 1/N effects, the relaxation of self-gravitating
systems is described by the inhomogeneous Balescu-Lenard
(BL) equation [9,10]. In systems with weak pairwise interac-
tions, i.e., in the dynamically hot limit, collective effects may
be neglected. Then, the BL equation reduces to the inhomo-
geneous Landau equation [11]. When operating, the Landau
equation describes a relaxation happening on a timescale of
order TdN/G2, with Td the dynamical time and G the ampli-
tude of the pairwise interaction potential.

Yet, in inhomogeneous 1D systems with a monotonic fre-
quency profile and only subject to 1:1 resonances, both the
Landau and BL collision operators exactly vanish, whatever
the considered mean distribution function (DF) for the sys-
tem. This is a kinetic blocking [12–18]. Such a situation

cannot typically occur in higher dimensions, where nontrivial
and nonlocal resonances prevent the 1/N collision operator
from exactly canceling. While undergoing a kinetic block-
ing, systems can only evolve under the weaker contributions
of three-body correlations, i.e., through 1/N2 effects. In the
limit where collective effects can be neglected (i.e., the dy-
namically hot limit), Ref. [19] derived an inhomogeneous
self-consistent closed kinetic equation describing this relax-
ation which occurs on a timescale of order TdN2/G4. We
refer to this equation as the inhomogeneous 1/N2 Landau
equation.

Interestingly, Ref. [19] pointed out the existence of a class
of interaction potentials for which the inhomogeneous 1/N2

Landau equation also exactly vanishes—whatever the con-
sidered mean DF. We call this a second-order bare kinetic
blocking, where bare emphasizes here that this blocking only
holds in the limit where collective effects are neglected. In the
present paper, we are interested in the long-term evolution of
such peculiar systems. Placing ourselves in the dynamically
hot limit, we show that their relaxation occurs, in fact, on
a (slower) timescale of order TdN2/G6. We detail how such
a scaling stems from a “leakage” of collective effects. We
also argue that even when undergoing a second-order bare
kinetic blocking, these systems’ relaxation is still dominated
by 1/N2 effects and not by four-body correlations, i.e., 1/N3

effects. Consequently, we claim that the (still unknown) in-
homogeneous 1/N2 BL equation cannot vanish and that its
contribution always dominates over contributions from four-
body correlations.

The paper is organized as follows. In Sec. II, we detail
our system. In Sec. III, we recall the kinetic equations at
play and explain the various kinetic blockings. In Sec. IV, we
investigate numerically the long-term relaxation of the con-
sidered system. We conclude in Sec. V. Throughout the main
text, technical details are kept to a minimum and deferred to
Appendices or to relevant references.
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FIG. 1. Angular dependence, B2(θ ), from the interaction poten-
tial of Eq. (2).

II. THE SYSTEM

Let us consider a set of N particles of individual mass
μ = Mtot/N with Mtot the system’s (fixed) total mass. We
denote the 1D canonical (specific) phase space coordinates
w = (θ, J ), with θ the 2π -periodic angle and J the associated
action [3]. We consider a total specific Hamiltonian given
by

Htot =
N∑

i=1

Uext (wi ) +
N∑

i< j

μU (wi, w j ), (1)

with Uext (w) some given external potential and U (w, w′)
some pairwise interaction potential, whose typical ampli-
tude is denoted G. In practice, we assume the symme-
try U (w, w′) = U (|θ − θ ′|, {J, J ′}). This system is said to
be inhomogeneous because the pairwise interaction does
depend on the particles’ actions. This choice also en-
sures usual conservation laws [see Eq. (E2)]. In addi-
tion, the pairwise interaction can be Fourier expanded as
U (w, w′) = ∑

k,k′ δk′
k Uk (J, J ′)eik(θ−θ ′ ). Here, the Kronecker

symbol, δk′
k , imposes k = k′, which we refer to as the system

only sustaining 1:1 resonances.
The system’s statistics is described via the DF,

F = F (w, t ), normalized to
∫

dwF = Mtot. Here
and throughout, the range of integration is fixed to∫

dw = ∫ 2π

0 dθ
∫ +∞
−∞ dJ , where, importantly, the action

coordinate is assumed to have an infinite support [20]. We
also assume that the mean DF, F = F (J, t ), only depends
on the action and time t . Similarly, the mean Hamiltonian,
H (w) = Uext (w) + ∫

dw′U (w, w′)F (w′), is assumed to
satisfy H = H (J ). From it, we can define the mean orbital
frequencies �(J ) = dH/dJ . Finally, since both the mean DF
and mean Hamiltonian only depend on the action coordinates,
Jeans theorem [22] ensures the quasistationarity of its
mean-field dynamics.

For the rest of this paper, we will focus on one particu-
lar interaction potential, namely, Eq. (D6) of Ref. [19]. This
interaction potential allows one to design kinetically blocked
systems as we will detail in Sec. III. It reads [39]

U (w, w′) = G (J − J ′)2 B2[θ − θ ′], (2)

with B2(θ ) = B2[ 1
2π

w2π (θ )], B2(x) = x2 − x + 1
6 the second

Bernoulli polynomial, and the angle wrapping function

0 � w2π (θ ) < 2π ; w2π (θ ) ≡ θ [2π ]. (3)

The function B2(θ ) is illustrated in Fig. 1. We note that∫
dθB2[θ ] = 0, so F (J ) never generates any mean potential.

Mean-field quantities such as the frequency profile are there-
fore fully determined by the external potential Uext (w).

In this paper, we investigate the long-term evolution of
systems driven by Eq. (2) in the dynamically hot limit. In
that context, it corresponds to the limit G � Gcrit (abusively
denoted G → 0), where Gcrit stands for the critical value
of G above which the system becomes linearly unstable
(see Appendix A).

To highlight various regimes of relaxation, we explore
three different external potentials, i.e., three different fre-
quency profiles. More precisely, fixing the prefactors to unity,
we consider

Frequency profiles

(1) �(J ) = |J|, (4a)

(2) �(J ) = J |J|, (4b)

(3) �(J ) = J. (4c)

And, for each case, we will consider the same initial DF,
F (J ) ∝ exp(−J4), which does not correspond to the thermal
equilibrium of any of these profiles.

III. KINETIC BLOCKINGS

Given some interaction and external potentials, kinetic the-
ory aims at predicting ∂F (J, t )/∂t , i.e., the rate of orbital
redistribution, in the statistical limit N � 1. Let us now sketch
the equations describing the evolution of the previous systems
at successive orders in 1/N , highlighting, in particular, how
kinetic blockings may occur.

A. First-order kinetic equation

Accounting only for two-body correlations, assuming lin-
ear stability, and neglecting collective effects, the system’s
relaxation is described by the inhomogeneous Landau equa-
tion [11]. Limiting ourselves to 1:1 resonances, it reads

∂F (J )

∂t
∝ μ

∂

∂J

[ ∑
k1

k1

∫
dJ1 |Uk1 (J)|2

× δD(k · �) k · ∂

∂J
F2(J)

]
, (5)

where the time dependence was omitted for clarity (see
Appendix B for the full expression). We recall that
μ = Mtot/N , i.e., this relaxation is driven by 1/N effects.
In Eq. (5), we shortened the notations using the two-
vectors J = (J, J1), � = (�[J],�[J1]) and k = (k1,−k1),
and F2(J) = F (J )F (J1). This equation also involves the bare
coupling coefficients, Uk1 (J), namely, the Fourier transform in
angles of the pairwise interaction potential (see Appendix B).
When taking collective effects into account, Eq. (5) be-
comes the inhomogeneous BL equation [9,10]. It follows
from Eq. (5) with the substitution |Uk1 (J)|2 → |U d

k1
[F ](J)|2,

with the dressed coupling coefficients U d
k1

[F ](J) detailed in
Appendix B.
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On long timescales, two particles can efficiently cou-
ple to one another and drive relaxation only if they share
commensurate orbital frequencies. This is visible in Eq. (5)
through the presence of the Dirac delta, δD(k · �). For a
system with a monotonic frequency profile, J 	→ �(J ), the
resonance condition δD(k · �) imposes J1 = J (a so-called
local resonance), so the cross term, k · ∂F2/∂J, in Eq. (5)
exactly vanishes. Ultimately, this leads to ∂F (J )/∂t = 0, i.e.,
the kinetic equation predicts no relaxation. Importantly, for
a monotonic frequency profile, we stress that this cancella-
tion holds (i) whatever the considered interaction potential,
U (w, w′); (ii) whatever the considered (stable) DF, F (J ); and
(iii) for both the Landau and BL equations, i.e., independently
of whether collective effects are or are not accounted for.
This is a first-order full kinetic blocking: such systems cannot
relax via two-body correlations (1/N effects). In that case,
the relaxation is greatly delayed and can only occur through
three-body correlations (1/N2 effects).

B. Second-order kinetic equation

Placing themselves within this regime and neglecting col-
lective effects, Ref. [19] derived a closed kinetic equation
describing relaxation driven by 1/N2 effects. This inhomoge-
neous 1/N2 Landau equation is of the form

∂F (J )

∂t
∝ μ2 ∂

∂J

[ ∑
k1,k2

(k1 + k2)
∫

dJ1dJ2 |�k1k2 (J)|2

× δD(k · �) k · ∂

∂J
F3(J)

]
, (6)

and we refer to Appendix C for the full expression of
the equation and the coupling coefficients, |�k1k2 (J)|2.
In Eq. (6), notations are shortened using here the
three-vectors J = (J, J1, J2), � = (�[J],�[J1],�[J2])
and k = (k1 + k2,−k1,−k2), and F3(J) = F (J )F (J1)F (J2).
Since collective effects have been neglected, it is crucial to
note that the coupling coefficients, |�k1k2 (J)|2, only depend
on the pairwise interaction potential: they do not involve the
system’s DF, F (J ). In Eq. (6), the resonance condition on
orbital frequencies, δD(k · �), becomes more intricate than
the one in Eq. (5). Indeed, it now involves three particles
with commensurate orbital frequencies. This allows for
nonlocal resonances, i.e., triplet of actions, J, which are not
all identical.

The generalization of Eq. (6) to account for collective
effects, i.e. the inhomogeneous 1/N2 BL equation, is cur-
rently unknown. In particular, at order 1/N2, one may expect
collective effects to be more involved than a simple dressing
of the pairwise interaction potential see, e.g., footnote 5 in
Ref. [23]. Nonetheless, in Eq. (6), we note that the cross
term, k · ∂F3/∂J, does not explicitly involve the interaction
potential and its precise form is key to ensure all the conser-
vation laws and H theorem of the kinetic equation [19]. As
a consequence, we expect that the inhomogeneous 1/N2 BL
equation can be obtained from Eq. (6) through some intri-
cate substitution |�k1k2 (J)|2 → |�d

k1k2
[F ](J)|2, which is still

unknown.

In Eq. (6), the three-body cross term, k · ∂F3/∂J, never
vanishes at resonance except for the thermodynamical
equilibrium (see Sec. IV.C in Ref. [19]). In that sense, three-
body collisions always involve nontrivial resonances and
cannot generically vanish whatever the DF: this is in sharp
contrast with the first-order kinetic blocking of Eq. (5).

The goal of further delaying the relaxation described
by Eq. (6), was investigated in Sec. IV.D of Ref. [19].
Therein, they showed that the pairwise potential from Eq. (2)
in conjunction with profile (3) from Eq. (4c) ensures that
�k1k2 (J) = 0 at resonance. Phrased differently, the vanishing
condition obtained in Ref. [19] amounted to devising �(J )
and U (w, w′) so that δD(k · �) �k1k2 (J) = 0. In that case, one
gets ∂F (J )/∂t = 0 in Eq. (6), i.e., this kinetic equation pre-
dicts no relaxation whatever the considered (stable) F (J ). We
call this a second-order bare kinetic blocking.

Let us emphasize that the first-order blocking of Eq. (5)
relies on the vanishing of the crossed term k · ∂F2/J = 0 at
resonance, while the second-order blocking of Eq. (6) relies
on the vanishing of the coupling coefficients �k1k2 (J) = 0
at resonance. This is a fundamental difference. Indeed, the
vanishing of the bare coefficients, �k1k2 (J), does not imply
the vanishing of the dressed coefficients, �d

k1k2
[F ](J), because

dressing depends on the considered DF. Since �d
k1k2

[F ](J)
will generically be nonzero at resonance, the inhomogeneous
1/N2 BL equation is not expected to vanish. We claim that this
prevents any system from ever undergoing a second-order full
kinetic blocking.

C. Scalings of the relaxation

Let us now detail the scaling of the relaxation time with
respect to the total number of particles N and the amplitude of
the pairwise interaction, G, in these various regimes.

In Eqs. (5) and (6), the scaling with respect to N is
straightforwardly read from the dependence with respect to
the individual mass μ = Mtot/N . One has ∂F/∂t ∝ 1/N (re-
spectively, ∝ 1/N2) in Eq. (5) [respectively, Eq. (6)]. In the
present dynamically hot limit, the scaling with respect to G
stems from the scaling of the coupling coefficients. In Eq. (5),
one has Uk ∝ G, so ∂F/∂t ∝ G2. As for Eq. (6), the bare
coupling coefficients, �(J), are quadratic in the interaction
potential, i.e., �(J) ∝ G2 (see Appendix C). As a conse-
quence, Eq. (6) leads to ∂F/∂t ∝ G4. To summarize, in the
dynamically hot limit, the 1/N Landau Eq. (5) predicts a
relaxation timescale of order Tr ∝ TdN/G2. And, in the same
hot limit, the 1/N2 Landau Eq. (6) predicts a relaxation on the
(slower) timescale Tr ∝ TdN2/G4. In both cases, the larger
the number of particles, the slower the evolution; the stronger
the interaction, the faster the evolution.

Now, we need to consider the case of systems subject
to a second-order bare kinetic blocking. In the dynamically
hot limit, i.e., for G → 0, one expects for the 1/N2 dressed
coefficients, �d[F ](J), to converge to the bare ones, �(J).
Since �(J) ∝ G2, this leads to an expansion of the form

�d[F ](J) =
G→0

�(J) + G3�d
(3)[F ](J) + O(G4). (7)

For systems undergoing a second-order bare kinetic blocking,
one has �(J) = 0 at resonance. As a consequence, in the
hot limit, one finds the asymptotic scaling �d[F ](J) ∝ G3.
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Given that ∂F/∂t ∝ |�d[F ](J)|2, systems subject to a
second-order bare kinetic blocking are therefore expected to
relax on a timescale of order Tr ∝ TdN2/G6. In that limit,
relaxation is driven by leaks from dressed three-body inter-
actions. Phrased differently, 1/N2 effects, albeit made less
efficient by a second-order bare kinetic blocking, are always
driving some nonzero relaxation in the present long-range
interacting inhomogeneous 1D systems. We claim that one
cannot design a system in which three-body correlations
would systematically drive no dynamics, whatever the con-
sidered DF.

One could be worried that four-body correlations, i.e.,
1/N3 effects, could drive relaxation more efficiently than
the previous leaks from three-body collective effects. In
Appendix D, placing ourselves in the hot limit, we justify
that 1/N3 effects drive relaxation on a timescale of order
Tr ∝ Td N3/G6, i.e., a subdominant process. As a conclu-
sion, even if it was derived, an inhomogeneous 1/N3 Landau
equation can never be the main driver of relaxation in the
asymptotic limit N � 1. This is one of the main results of
the present paper.

IV. NUMERICAL MEASUREMENTS

Let us now recap for each of the frequency profiles consid-
ered in Eqs. (4) the scaling of the relaxation time expected as
one varies the total number of particles, N , and the amplitude
of the pairwise coupling, G. We recall that we place ourselves
within the limit of a dynamically hot system, i.e., G → 0.

(1) Profile (1). This profile is nonmonotonic. This allows
for nonlocal resonances, J1 
= J , in the 1/N Landau Eq. (5).
The system is not subject to any kinetic blocking. We then
expect Tr ∝ TdN/G2.

(2) Profile (2). This profile is monotonic, so the 1/N Lan-
dau and BL operators both vanish. The 1/N dynamics is fully
blocked. The system can only relax through 1/N2 effects, as
governed by Eq. (6) in the hot regime. Profile (2) is not sub-
mitted to any second-order bare kinetic blocking, i.e., Eq. (6)
gives a nonvanishing contribution. We expect then the scaling
Tr ∝ TdN2/G4.

(3) Profile (3). This profile is monotonic, hence the 1/N
dynamics is fully blocked. In addition, following Ref. [19],
this profile is also submitted to a second-order bare kinetic
blocking, i.e., the 1/N2 Eq. (6) vanishes. Yet, even though the
1/N2 Landau equation is zero whatever the considered DF,
we argued in Sec. III C that leaks from the (yet unknown)
1/N2 BL equation will lead to a relaxation time scaling like
Tr ∝ TdN2/G6 and not like Tr ∝ TdN3/G6 as one could have
(wrongly) guessed from the four-body correlations contribu-
tion (see Appendix D).

To summarize, the profiles from Eqs. (4) are predicted to
be associated with relaxation times scaling like

Relaxation times

(1) Tr ∝ TdN/G2, (8a)

(2) Tr ∝ TdN2/G4, (8b)

(3) Tr ∝ TdN2/G6. (8c)

FIG. 2. Dependence of the relaxation time, via the power-law
indices (γN , γG) from Eq. (9), as a function of the total number of
particles, N , and the strength of the pairwise interaction, G, for the
various frequency profiles from Eqs. (4) (associated with different
colors). Points correspond to the kinetic predictions from Eqs. (8),
while contours are obtained from N-body measurements (see Ap-
pendix E). A contour labeled x% contains x% of the measured
power indices: the thinner the contour, the larger the fraction of
measurements it encompasses (see Appendix E 6). As explained in
Appendix E 7, a systematic bias towards higher γG is to be expected.

We set out to recover numerically the scalings predicted in
Eqs. (8). To do so, for a given frequency profile, we explore a
5×5 grid of values of (N, G) running for each a large batch of
103 simulations. We then estimate from these the dependence
of the relaxation time with respect to (N, G). We refer to
Appendix E for details on how dynamics driven by Eq. (2)
may be efficiently integrated.

In practice, we search for a power-law dependence of the
form

Tr ∝ Td NγN /GγG , (9)

and constraints on the power indices (γN , γG). A handful of
reasons make these measurements challenging.

First, one needs to ensure that G is small enough for
collective effects to be negligible, though large enough so
that relaxation can still be observed numerically. We rely on
linear response theory (Appendix A) to determine appropriate
ranges in G.

Second, long-time integrations of the model from Eq. (2)
are challenging, given the limited smoothness of this inter-
action potential. To ease this exploration, we accelerate the
evaluation of the forces using an (exact) multipole method,
as detailed in Appendix E 2. We also carefully pick our inte-
gration parameters to keep the global integration errors under
control (Appendix E 4).

Finally, since we consider simulations with a small number
of particles, the estimation of the relaxation time requires
some care to prevent possible biases (Appendix E 6).

In Fig. 2, we report our main result, namely, the measure-
ment of the power indices (γN , γG) from Eq. (9) as one varies
the considered frequency profile.

In that figure, we first recover that all profiles exhibit their
expected scaling with respect to N , i.e., the value of γN . In
particular, even though profile (3) is submitted to a second-
order bare kinetic blocking, i.e., Eq. (6) exactly vanishes,
its relaxation is still driven by 1/N2 effects, i.e., three-body
correlations. Once again, we emphasize that this particularly
slow relaxation is sourced by leaks from dressed three-body
correlations and not by four-body correlations.
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In Fig. 2, we also find that all profiles show scalings with
respect to G, i.e., the value of γG, in agreement with the
predictions, though one could be suspicious about the system-
atic bias in the value of γG, which is always measured to be
larger than the predicted one. We argue that this was to be
expected since the measurements were made for a finite value
of G, while the predictions correspond to the limit G → 0. In
particular, given the difficulty of integrating the motion driven
by the potential from Eq. (2) (see Appendix E 3), we had to
limit ourselves to considering not so dynamically hot systems
(see Table I). In Appendix E 7, we show that the bias observed
in Fig. 2 is well within the limits that could be expected from
the effective use of finite values of G.

Ultimately, Fig. 2 allows us to numerically confirm the
scaling of the relaxation times predicted in Eqs. (8), along
with all the signatures associated with these various kinetic
blockings.

V. CONCLUSIONS

In this paper, we investigated the long-term evolution of
long-range interacting inhomogeneous 1D systems. In par-
ticular, we highlighted the existence of two types of kinetic
blockings: (i) a first-order full kinetic blocking in systems
with a monotonic frequency profile and only subject to 1:1
resonances, associated with the vanishing of the inhomoge-
neous 1/N BL equation; and (ii) a second-order bare kinetic
blocking associated with the vanishing of the inhomogeneous
1/N2 Landau equation.

Considering a fixed interaction potential [Eq. (2)], we pre-
sented a large numerical exploration to confirm the existence
of these various blockings. In particular, we showed that
dynamically hot systems submitted to a second-order bare
kinetic blocking still relax via 1/N2 effects, as a result of leaks
from collective effects. We argued that the (still unknown)
1/N2 BL collision operator would never vanish as the cancel-
lation of the 1/N2 Landau operator arises from very specific
conditions on the coupling terms, which change when taking
collective effects into account. Hence, four-body correlations,
i.e., 1/N3 effects, can never be the main driver of the relax-
ation of long-range interacting inhomogeneous systems, even
in the present contrived 1D geometry. As such, no system will
ever suffer from a second-order full kinetic blocking, and we
claim that the 1/N3 Landau equation does not need further
investigation.

The present numerical work is only one more step to-
wards a finer understanding of (very) long-term dynamics and
high-order correlations. Naturally, it would be worthwhile and
rewarding to derive the 1/N2 BL equation, hence generalizing
Eq. (6). This is no easy task, and we feel that a realistic road
map would be to perform such a delicate calculation first
for the (single-harmonic) homogeneous Hamiltonian mean-
field model [24,25], then for homogeneous systems with an
arbitrary potential of interaction [26], and ultimately for the
present inhomogeneous regime. Ultimately, this line of work
would convincingly show that second-order kinetic blockings
can never lead to the full vanishing of 1/N2 effects.

In the present paper, the action coordinate is assumed
to have an infinite support. This is not generically true for
inhomogeneous systems, where the action domain may be

semi-infinite or even finite. For such setups, it has been shown
that the presence of a minimum/maximum action drastically
slows down the decay of perturbations, which only vanish al-
gebraically with time [27–30]. It would then be worthwhile to
investigate how such a finite or semi-infinite range of actions
and the associated long-lasting perturbations affect the present
kinetic blockings. We reserve this to future works.

Finally, we also assumed that the system remains linearly
stable throughout its whole evolution. However, there exist
cases for which the system’s global thermodynamical equilib-
rium is magnetized, i.e., its DF, F = Feq(θ, J ), has a nontrivial
angular dependence [43] (see, e.g., Refs. [16,17,31,32]). In
that case, although the kinetically blocked DF, F = F (J, t ),
initially evolves slowly on a timescale of order N2Td, it
unavoidably becomes linearly unstable at some point. This
triggers a dynamical phase transition, and the DF (rapidly)
“magnetizes” to become F = F (θ, J, t ). The relaxation to-
ward the thermodynamical equilibrium, Feq(θ, J ), then keeps
proceeding. Yet, this dynamics does not suffer from a first-
order kinetic blocking because nonlocal resonances are now
permitted. As a result, in this second stage of evolution, the
relaxation occurs on a timescale of order NTd. Therefore, the
overall dependence with respect to N of the total relaxation
time toward the thermodynamical equilibrium must exhibit
an intermediate scaling between N and N2. Interestingly, this
agrees with the scaling N3/2 reported in Fig. 6 of Ref. [32]
which considered long-range coupled classical spins. Natu-
rally, in the light of the present kinetic theories, it would be
informative to further investigate the impact on relaxation of
such dynamical phase transitions, a question closely related to
marginal stability crossing (see, e.g., Refs. [33,34]).
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APPENDIX A: LINEAR RESPONSE THEORY

In this Appendix, we rely on linear response theory (see,
e.g., Sec. 5.3 in Ref. [3]) to estimate a system’s dynamical
temperature. This allows us to then carefully pick the value of
G to place ourselves within the dynamically hot limit. Because
the interaction potential from Eq. (2) is neither fully attrac-
tive nor repulsive, we first need to (slightly) generalize the
computation of the response matrix compared to the typical
gravitational case.

1. Basis elements

Let us consider a unidimensional Hamiltonian system with
the angle-action coordinates w = (θ, J ). Taking inspiration
from Ref. [35], we define a set of potential/density basis

054108-5



JEAN-BAPTISTE FOUVRY AND MATHIEU ROULE PHYSICAL REVIEW E 108, 054108 (2023)

elements (ψ (p), ρ (p) ) via

ψ (p)(w) =
∫

dw′ ρ (p)(w′)U (w, w′), (A1a)∫
dw ρ (p)(w) ψ (q)∗(w′) = −γp δq

p, (A1b)

where γp = ±1. With such a convention, the case γp = +1
(respectively, −1) corresponds, typically, to the attractive case
(respectively, repulsive). Using Eqs. (A1), one can decompose
the interaction potential as

U (w, w′) = −
∑

p

ψ (p)(w) �pq ψ (q)∗(w′), (A2)

with the diagonal matrix �pq = γpδ
q
p. The usual self-

gravitating case corresponds to � = I, the identity matrix.

2. Response matrix

Following Kalnajs’s matrix method [35] and paying partic-
ular attention to the basis normalization (see, e.g., Ref. [36]),
the susceptibility of the self-gravitating system is captured by
the dielectric matrix

E(ω) = � − M(ω), (A3)

with the response matrix

Mpq(ω) = −2π
∑

k

∫
L

dJ
k ∂F/∂J

k �(J ) − ω
ψ

(p)∗
k (J ) ψ

(q)
k (J ).

(A4)

In this expression, we used the Fourier transform of the basis
elements given by

ψ
(p)
k (J ) =

∫
dθ

2π
ψ (p)(w) e−ikθ . (A5)

We refer to Ref. [37] and references therein for a discussion on
the resonant denominator, 1/(k�(J ) − ω), and the associated
Landau integral,

∫
L dJ .

We stress that the response matrix scales as M(ω) ∝ G
since the potential basis elements (and therefore their Fourier
transform) scale like ψ (p) ∝ √

G. Consequently, in the dy-
namically hot limit, i.e., G → 0, one has E(ω) → �. The
smaller G, the smaller the collective effects.

3. Natural basis elements

We now focus on the interaction potential from Eq. (2).
We aim at constructing natural basis elements for it, following
Eqs. (A1). Equation (2) can be rewritten as

U (w, w′) = G (J − J ′)2 B2[θ − θ ′]

= GUJ (J, J ′)Uθ (θ, θ ′). (A6)

We decompose the angular part of the potential with

Uθ (θ, θ ′) = B2[θ − θ2]

= 1

π2

+∞∑
k=1

1

k2
cos[k(θ − θ ′)]

=
∑
pθ 
=0

1

2π2

1

p2
θ

eipθ θ e−ipθ θ
′
. (A7)

Following an approach similar to Sec. A2 in [38], we
periodise the function U (J, J ′) on a period 2JL. More pre-
cisely, we define Uper (J, J ′) = U (J, J ′) for |J − J ′| � JL and
Uper (J + 2kJL, J ′) = Uper (J, J ′) for k ∈ Z. Then, we have the
Fourier decomposition

Uper (J, J ′) = 1

3
J2

L +
+∞∑
pJ=1

4(−1)pJ

π2 p2
J

J2
L cos

[
pJ

π

JL
(J − J ′)

]

= 1

3
J2

L +
∑
pJ 
=0

2(−1)pJ

π2 p2
J

J2
L eipJ

π
JL

J e−ipJ
π
JL

J ′
. (A8)

We are now set to define our basis elements. We index them
with p = (pθ , pJ ) (with pθ 
= 0), and introduce

ψ (p)(w) =
√

|G| aθ (pθ ) aJ (pJ ) eipθ θ eipJ
π
JL

J
. (A9)

In that expression, the (positive) coefficients aθ (pθ ) and
aJ (pJ ) follow from Eqs. (A7) and (A8) and read

aθ (pθ ) = 1/(
√

2 π |pθ |), (A10)

as well as

aJ (pJ ) =
{

JL/
√

3 if pJ = 0,
√

2JL/(π |pJ |) otherwise.
(A11)

Following the convention from Eqs. (A1) (and reducing the
action integration range to −JL � J � JL), one finds that the
associated density elements read

ρ (p)(w) = (−1)pJ

4πJL

Sign[G]√|G|
eipθ θeipJ

π
JL

J

aθ (pθ ) aJ (pJ )
. (A12)

Finally, one finds the normalization constant

γp = −(−1)pJ Sign[G]. (A13)

4. Computing the response matrix

Using the basis elements from Eq. (A9), whose Fourier
transform satisfies ψ

(p)
k ∝ δ

pθ

k , we rewrite the response matrix
from Eq. (A4) as

Mpq(ω) = δqθ

pθ
A

∫
L

dJ
g(J )

h(J ) − ω
, (A14)

with

A = −2π |G| a2
θ (pθ ) aJ (pJ ) aJ (qJ )pθ , (A15a)

g(J ) = ∂F

∂J
e−i(pJ −qJ ) π

JL
J
, (A15b)

h(J ) = pθ �(J ). (A15c)

To carry out the integral in Eq. (A14), we trun-
cate the domain −JL � J � JL into KJ uniform inter-
vals of length J = 2JL/KJ centred around the locations
Jk = −JL + (k + 1

2 )J . Equation (A14) becomes

Mpq(ω) = δqθ

pθ
A

KJ∑
k=1

Ik (ω), (A16)
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FIG. 3. Determinant of the dielectric matrix, |E(ωcrit
R )|, as a func-

tion of G, for the profiles from Eqs. (4). For profile (1) [respectively,
(2); (3)], the critical frequency is ωcrit

R � 1.047 [respectively, 0; 0].
The value of Gcrit is reached when |E(ωcrit

R )| crosses zero.

with the integrals

Ik (ω) =
∫ Jk+J/2

Jk + J/2

L

dJ
g(J )

h(J ) − ω

�
∫ J/2

−J/2

L

dδJ
g0 + g1δJ

h0 + h1δJ − ω
, (A17)

using a first-order expansion with g0 = g(Jk ), g1 = g′(Jk ), and
a similar notation for (h0, h1).

The final step of the calculation is to compute

Ik (ω) �
∫ 1

−1

L

du
g0 + g1u

u − �
, (A18)

with g0 = g0/|h1|, g1 = g1J/(2h1) and the rescaled fre-
quency � = 2(ω − h0)/(|h1|J ). We recall that the resonant
denominator in that expression has to be interpreted using
Landau’s prescription (see, e.g., Ref. [3]). In practice, we use
the expression presented in Sec. D of Ref. [37], evaluated for
purely real frequencies. The computation presented in Ap-
pendix A 5 used JL = 5, KJ = 104, pθ = 1, and |pJ | � 100.

5. Nyquist contours

Owing to the Kronecker symbol δ
qθ
pθ

in Eq. (A14), E(ω),
as defined in Eq. (A3), is diagonal with respect to the an-
gular index pθ , so the pθ can be considered independently
of one another. Moreover, since aθ [pθ ] ∝ 1/|pθ | [Eq. (A10)],
the largest values of the response matrix are obtained for
pθ = ±1. Finally, by symmetry, we may limit ourselves to
pθ = 1 when assessing the system’s linear stability.

For a given profile, we define the critical coupling ampli-
tude, Gcrit , as

Gcrit = Min{ G > 0 | ∃ ωR ∈ R s.t. |E(ωR)| = 0}, (A19)

with |E(ω)| the complex determinant. Systems with
0 � G < Gcrit are linearly stable. And, the smaller G/Gcrit ,
the hotter the system and the more negligible collective effects
are. In Fig. 3, we represent the dependence of G 	→ |E(ωcrit

R )|,
where the (real) frequency, ωcrit

R , is the frequency of the sys-
tem’s first oscillating mode. It satisfies Im[|E(ωcrit

R )|] = 0 for
all G as well as |E(ωcrit

R )| = 0 for G = Gcrit . From that figure,
we readily determine the values of Gcrit for each profile, as
reported in Table I.

FIG. 4. Nyquist contours, ωR 	→ |E(ωR )|, for pθ = 1 and the
various frequency profiles from Eqs. (4), as one increases G (red to
yellow) for the values presented in Table I.

In Fig. 4, we illustrate the Nyquist contours (see, e.g.,
Ref. [40]), ωR 	→ |E(ωR)|, for the three frequency profiles,
as one varies the coupling amplitude, G. Following Eq. (B5),
the closer E(ω) is from the identity-like matrix �, the closer
the dressed coupling coefficients U d

k are from the bare ones
Uk , i.e., the more negligible the collective effects. Phrased
differently, the smaller G, the closer the contour from the

TABLE I. Integration parameters for the profiles from Eqs. (4).

All profiles

Gmax Gcrit/3
G 2−n/4 × Gmax (0 � n � 4)
N �2n/4 × Nmin� (0 � n � 4)

Profile (1)

Gcrit ; Nmin 1.85; 1024
Time step h (N/Nmin )1/2/50000
Total time Tmax 102 × (N/Nmin ) (G/Gmax)−2

Profile (2)

Gcrit ; Nmin 8.95; 32
Timestep h (G/Gmax)/3500
Total time Tmax 2.3 × 105 × (N/Nmin )2 (G/Gmax)−4

Profile (3)

Gcrit ; Nmin 9.87; 32
Time step h (G/Gmax)2/1500
Total time Tmax 9.3 × 104 × (N/Nmin )2 (G/Gmax)−6
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point det � = (−1, 0), i.e., the hotter are the systems. In prac-
tice, the ranges of G effectively simulated are detailed in
Table I.

APPENDIX B: 1/N KINETIC EQUATIONS

Following the notations from Sec. III A, the inhomoge-
neous 1/N Landau equation generically reads [11]

∂F (J )

∂t
= 2πμ

∂

∂J

[ ∑
k1

k1

∫
dJ1 |Uk1 (J)|2

× δD(k · �) k · ∂

∂J
F2(J)

]
. (B1)

In this equation, the bare coupling coefficients, Uk (J, J ′), are
the Fourier transform with respect to the angles (θ, θ ′) of the
interaction potential, U (|θ − θ ′|, {J, J ′}). They read

U (w, w′) =
+∞∑

k=−∞
Uk (J, J ′) eik(θ−θ ′ ), (B2)

with

Uk (J, J ′) =
∫

dθ

2π

dθ ′

2π
U (w, w′) e−ik(θ−θ ′ ). (B3)

Following Eqs. (A2) and (A5), the bare coupling coefficients
can equivalently be rewritten using the basis elements to be-
come

Uk (J, J ′) = −
∑
p,q

ψ
(p)
k (J ) �pq ψ

(q)∗
k (J ′). (B4)

For an interaction potential of typical amplitude G, one has
Uk ∝ G, so that the relaxation sourced by Eq. (B1) occurs on
a timescale of order Tr ∝ TdN/G2.

When accounting for collective effects, the 1/N Lan-
dau equation becomes the 1/N BL equation [9,10]. It is
straightforwardly obtained from Eq. (B1) by replacing the
bare coupling coefficients with their (frequency-dependent)
dressed analogs U d

k (J, J ′, ω). Using the self-consistency re-
lation from Eq. (F5) in [41], they read

U d
k (J, J ′, ω) = −

∑
p,q

ψ
(p)
k (J ) E−1

pq (ω) ψ
(q)∗
k (J ′), (B5)

with E the dielectric matrix from Eq. (A3). In practice,
in the 1/N BL equation, the dressed coupling coefficients
are evaluated at the resonant frequency ω = k �(J ). Ac-
cordingly, in Sec. III A, we shorten the notations and write
U d

k (J, J ′) = U d
k (J, J ′, k �[J]).

APPENDIX C: 1/N2 LANDAU EQUATION

We reproduce here the inhomogeneous 1/N2 Landau equa-
tion presented in Eq. (4) of Ref. [19]. Using the notations from
Sec. III B, it reads

∂F (J )

∂t
= 2π3μ2 ∂

∂J

[ ∑
k1,k2

(k1 + k2)P
∫

dJ1dJ2 |�k1k2 (J)|2

× δD[k · �]

(
k · ∂

∂J

)
F3(J)

]
. (C1)

In that expression, the sum over the resonance vectors (k1, k2)
is restricted to those such that k1, k2, and k1 + k2 are all
nonzeros. Equation (C1) also involves P , the Cauchy prin-
cipal value, acting on the integral over dJ1, and we refer to
Sec. C2 in Ref. [19] to prove the well-posedness of the asso-
ciated high-order resonant denominator. Finally, the coupling
coefficients, �k1k2 (J), read (see Sec. B in Ref. [19])

�k1k2 (J) = [�(J ) − �(J1)]U (1)
k1k2

(J) + k2 U (2)
k1k2

(J)

k1(k1 + k2)[�(J ) − �(J1)]2
, (C2)

with the coupling functions U (1,2) defined in the same section.
Equation (C1) conserves the total mass, energy, and momen-
tum, and satisfies an H theorem [19]. Importantly, for an
interaction potential of amplitude G, one has U (1,2)

k1k2
(J) ∝ G2.

The relaxation sourced by Eq. (C1) occurs therefore on a
timescale of order Tr ∝ TdN2/G4.

APPENDIX D: 1/N3 LANDAU EQUATION

Our goal in this Appendix is not to derive a detailed kinetic
equation but rather to investigate the scaling with respect to
N and G of the resulting evolution, when driven by 1/N3

effects in the hot limit. We follow Sec. A1 of Ref. [19] for
the setup of the notations. The dynamics of an N-body system
is exactly described by the BBGKY equations for the n-body
DFs, Fn = Fn(w1, . . . , wn, t ). They read

∂Fn

∂t
+ [Fn, Hn]n +

∫
dwn+1[Fn+1, δHn+1]n+1 = 0, (D1)

with the Poisson bracket

[ f , h]n =
n∑

i=1

(
∂ f

∂θi

∂h

∂Ji
− ∂ f

∂Ji

∂h

∂θi

)
. (D2)

We also introduced the specific Hamiltonian

Hn =
n∑

i=1

Uext (wi) +
n∑

i< j

μU (wi, w j ), (D3)

as well as the specific interaction energy

δHn+1(w1, . . . , wn+1) =
n∑

i=1

U (wi, wn+1). (D4)

Equation (D1) provides us with evolution equations for F1 up
to F4.

To perform perturbative expansions with respect to the
small parameter 1/N , we rely on the cluster expansion [42].
For the sake of completeness, we explicitly reproduce here
the associated expressions. For F2, we introduce

F2(1, 2) = F (1) F (2) + G2(1, 2), (D5)

using the shortened notation 1 = w1. Similarly, the three-body
DF, F3, is expanded as

F3(1, 2, 3) = F (1) F (2) F (3)

+
3∑

a=1

F (a) G2(rest)

+ G3(1, 2, 3), (D6)
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with rest = (2, 3) when a = 1 and so forth. Similarly, we
decompose F4 as

F4(1, 2, 3, 4) = F (1) F (2) F (3) F (4)

+
3∑

a=1

4∑
b=a+1

F (a) F (b) G2(rest)

+
4∑

a=1

F (a) G3(rest)

+
4∑

a=2

G2(1, a) G2(rest)

+ G4(1, 2, 3, 4). (D7)

Finally, the five-body DF, F5, is decomposed as

F5(1, 2, 3, 4, 5) = F (1) F (2) F (3) F (4) F (5)

+
3∑

a=1

4∑
b=a+1

5∑
c=b+1

F (a) F (b) F (c) G2(rest)

+
4∑

a=1

5∑
b=a+1

F (a) F (b) G3(rest)

+
5∑

a=1

a+4∑
b=a+2

F (a) G2(a + 1, b) G2(rest)

+
5∑

a=1

F (a) G4(rest)

+
4∑

a=1

5∑
b=a+1

G2(a, b) G3(rest)

+ G5(1, 2, 3, 4, 5), (D8)

with the periodic convention that 6 = 1, 7 = 2 . . .. We note
that these definitions ensure that all functions are symmetric
with respect to the interchange of any two coordinates.

To check the sanity of Eqs. (D5)–(D8), one can compute
the “norm” of the correlation functions, Gn, by integrating
over all their variables. Recalling that (see, e.g., Sec. A1 in
Ref. [26]) ∫

d1...dn Fn(1, . . . , n) = N!

(N − n)!
μn, (D9)

with the notation d1 = dw1, we find [45]∫
d1 F (1) = Nμ, (D10a)∫

d1d2 G2(1, 2) = −Nμ2, (D10b)∫
d1d2d3 G3(1, 2, 3) = 2Nμ3, (D10c)∫

d1d2d3d4 G4(1, 2, 3, 4) = −6Nμ4, (D10d)∫
d1d2d3d4d5 G5(1, 2, 3, 4, 5) = 24Nμ5. (D10e)

Since μ ∼ 1/N , we have the expected scalings with respect to
N , namely, F ∼ 1 and Gn ∼ 1/Nn−1.

The next step of the calculation is to inject the decomposi-
tions from Eqs. (D5)–(D8) into Eq. (D1) to obtain evolution
equations for ∂F/∂t and ∂Gn/∂t . These cumbersome manip-
ulations are more easily performed using a computer algebra
system, as explicitly detailed in [45].

To perform a truncation of the evolution equations at or-
der 1/N3, we follow the same approach as in Ref. [19] and
introduce the small parameter ε = 1/N . More precisely, we
perform the replacements

μ → με, (D11a)

G2 → εG(1)
2 + ε2G(2)

2 + ε3G(3)
2 , (D11b)

G3 → ε2G(2)
3 + ε3G(3)

3 , (D11c)

G4 → ε3G(3)
4 , (D11d)

G5 → ε4G(4)
5 . (D11e)

Once these replacements are performed, we keep only terms
up to order ε3, and gather the terms order by order in ε. We
are left with a series of evolution equations for the various
correlation functions [45].

Assuming that F (J, t ) and dJ are all of size 1 with respect
to N and G, and introducing U ∝ G as the typical scale of
the interaction potential, we are left with evolution equations
scaling like

∂F

∂t
= UG(1)

2 + UG(2)
2 + UG(3)

2 , (D12a)

∂G(1)
2

∂t
+ �G(1)

2 = UG(1)
2 + μU, (D12b)

∂G(2)
2

∂t
+ �G(2)

2 = UG(2)
2 + μUG(1)

2 + UG(2)
3 , (D12c)

∂G(3)
2

∂t
+ �G(3)

2 = UG(3)
2 + μUG(2)

2 + UG(3)
3 , (D12d)

∂G(2)
3

∂t
+ �G(2)

3 = UG(2)
3 + μUG(1)

2 + UG(1)
2 G(1)

2 ,

(D12e)

∂G(3)
3

∂t
+ �G(3)

3 = UG(3)
3 + μUG(2)

2 + UG(1)
2 G(2)

2

+μUG(2)
3 + UG(3)

4 , (D12f)

∂G(3)
4

∂t
+ �G(3)

4 = UG(3)
4 + μUG(2)

3 + μUG(1)
2 G(1)

2

+UG(1)
2 G(2)

3 . (D12g)

Deriving a kinetic equation for ∂F/∂t amounts to solving, in
sequence, this intricate hierarchy of coupled partial integro-
differential equations.

Placing ourselves in the limit U � 1, i.e., neglecting col-
lective effects, and assuming that the four-body correlation
function, G(3)

4 , drives the dynamics, we find that the system’s
evolution is sourced by the sequence of resolutions [44]

G(1)
2 → G(2)

3 → G(3)
4 → G(3)

3 → G(3)
2 → ∂F/∂t . (D13)
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Following Eq. (D12), we then successively find the scal-
ings [45]

G(1)
2 = μU, (D14a)

G(2)
3 = μ2U 2, (D14b)

G(3)
4 = μ3U 3, (D14c)

G(3)
3 = μ3U 4, (D14d)

G(3)
2 = μ3U 5, (D14e)

∂F/∂t = μ3U 6, (D14f)

with U ∝ G, the amplitude of the pairwise coupling. As a
conclusion, in the hot limit, the relaxation driven by four-body
correlations, i.e., by G(3)

4 , is associated with the (very) long
relaxation time Tr ∝ N3/G6.

APPENDIX E: NUMERICAL SIMULATIONS

Our goal is to integrate a set of N particles governed by
the Hamiltonian from Eq. (1), with the particular interaction
potential from Eq. (2).

1. Equations of motion

Following Hamilton’s equations, the motion obeys

dθi

dt
= �ext (Ji ) + G

N∑
j 
=i

μ 2 (Ji − Jj )B2[θi − θ j], (E1a)

dJi

dt
= −G

N∑
j 
=i

μ (Ji − Jj )
2 B′

2[θi − θ j], (E1b)

with �ext = dUext/dJ . Such a system has two invariants

Etot =
N∑

i=1

μUext (Ji ) +
N∑

i< j

μ2 U (wi, w j ), (E2a)

Jtot = 1

Mtot

N∑
i=1

μ Ji. (E2b)

Owing to the system’s 2π periodicity, we always rewrap
the angles θi within the interval [0, 2π ]. In that case, the
wrapping function from Eq. (3) reads

w2π [θ − θ ′] = |θ − θ ′| =
{

θ − θ ′ if θ ′ < θ

θ ′ − θ if θ < θ ′,
(E3)

and similarly for its gradient

dw2π [θ − θ ′]
dθ

= Sign[θ − θ ′] =
{

1 if θ ′ < θ

−1 if θ < θ ′.
(E4)

Two important remarks can be made from Eqs. (E3) and
(E4). First, provided that the respective order of (θ, θ ′) is
known, these two equations are separable with respect to both
angles. This enables an accelerated evaluation of the forces,
see Appendix E 2. Second, the pairwise force is discontinuous
when two particles cross in angle space. As a consequence,
high-order integration schemes can only be first-order accu-
rate. These discontinuities are the main source of errors when
integrating the system’s dynamics, see Appendix E 3.

2. Multipole acceleration

A naive implementation of Eq. (E1) requires O(N2) evalu-
ations. Fortunately, Eqs. (E3) and (E4) being quasiseparable,
this evaluation can be accelerated using a multipole-like
method.

Recalling that the angles θi are always rewrapped to the
interval [0, 2π ], we first sort the particles according to θi,
in O(N ln N ) operations. Once explicitly expanded, Eqs. (E1)
involve polynomials of second order in (θi, Jj ). Defining the
upper/lower moments as

Pkk′ (θi ) =
∑
θ j<θi

μθ k
j Jk′

j ;

Qkk′ (θi ) =
∑
θ j>θi

μθ k
j Jk′

j , (E5)

we can rewrite Eqs. (E1) as

dθi

dt
= �ext (Ji ) + dθi

dt

∣∣∣∣
P

+ dθi

dt

∣∣∣∣
Q

, (E6a)

dJi

dt
= dJi

dt

∣∣∣∣
P

+ dJi

dt

∣∣∣∣
Q

. (E6b)

In these expressions, the upper/lower contributions read

1

G

dθi

dt

∣∣∣∣
P

=
(

1

3
− 1

π
θi + 1

2π2
θ2

i

)
(JiP00 − P01)

+ 1

π

(
1 − 1

π
θi

)
(JiP10 − P11)

+ 1

2π2
(JiP20 − P21), (E7a)

1

G

dθi

dt

∣∣∣∣
Q

=
(

1

3
+ 1

π
θi + 1

2π2
θ2

i

)
(JiQ00 − Q01)

− 1

π

(
1 + 1

π
θi

)
(JiQ10 − Q11)

+ 1

2π2
(JiQ20 − Q21), (E7b)

as well as

1

G

dJi

dt

∣∣∣∣
P

= 1

2π
Ji

(
1 − 1

π
θi

)
(JiP00 − 2P01)

+ 1

2π

(
1 − 1

π
θi

)
P02

+ 1

2π2

(
J2

i P10 − 2JiP11 + P12
)
, (E8a)

1

G

dJi

dt

∣∣∣∣
Q

= − 1

2π
Ji

(
1 + 1

π
θi

)
(JiQ00 − 2Q01)

− 1

2π

(
1 + 1

π
θi

)
Q02

+ 1

2π2

(
J2

i Q10 − 2JiQ11 + Q12
)
. (E8b)

To compute the rates of change, one scrolls through the
angles-sorted particles in increasing order (respectively,
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decreasing order) while accumulating the various {Pkk′ } [resp.
{Qkk′ }]. This is performed in O(N ) operations.

3. Time integration

Because the interaction potential from Eq. (2) has
discontinuous derivatives, it is ill-advised to use high-
order integration schemes. In practice, we use the explicit
midpoint rule with a fixed time step, h. To integrate
ẏ = f (y) with y = {θi, Ji}i, we compute the transformation
y(t = nh) = yn → yn+1 via

f1 = f (yn), (E9a)

y1 = yn + 1
2 h f1, (E9b)

f2 = f (y1), (E9c)

yn+1 = yn + h f2. (E9d)

Because the force f (y) is discontinuous, the method from
Eq. (E9) is only first order. This therefore requires the use of
very small time steps, h, as we now detail.

4. Integration errors

We are interested in (very) long-term simulations for dif-
ferent values of (N, G). We must therefore carefully pick our
integration parameters to ensure an appropriate conservation
of the systems’ invariants.

We first consider the relative error in Jtot , as defined in
Eq. (E2b). Up to round-off errors, our computation of the rates
of change in Appendix E 2 conserves Jtot , i.e.,

∑N
i=1 μJ̇i = 0.

The midpoint method from Eq. (E9) conserves linear invari-
ants [see, e.g., Ref. [46]]. Therefore, the relative error in Jtot

will grow from the (biased) accumulation at every time step of
a round-off error of order ε0 � 10−16. The final relative error
in Jtot is then expected to scale like

εfinal
Jtot

∝ ε0 Tmax/h, (E10)

with Tmax the total integration time.
Let us now consider the relative error in Etot, as defined

in Eq. (E2a). For small enough time steps, errors will mainly
accumulate when particles collide in θ space, i.e., when their
angles cross, therefore experiencing the discontinuity from
Eq. (E4).

Let us assume that particles 1 and 2 cross. At the time
of crossing, the respective force between the two particles
changes abruptly by a factor of order G/N [see Eq. (E4)].
Then, the force on the two particles remains incorrect for
this amount for a duration of order h. During one such time
step, the typical error introduced in the phase-space position
of the two particles is then ε12 ∝ Gh/N . Since we are in
the dynamically hot limit, i.e., G → 0, the main source of
error in Eq. (E2a) stems from the total kinetic energy. Hence,
after one collision, the relative error introduced in Etot is of
order εEtot ∝ ε12/N . There are about O(N2) angle collisions
per dynamical time (which we take to be unity). Assuming
that errors accumulate in quadrature, we finally find that final
relative error in Etot scales like

εEtot ∝ GhT 1/2
max/N. (E11)

In practice, ensuring a good enough conservation of Etot is
the main constraint to consider when setting up the simula-
tions.

5. Simulation setups

For a given frequency profile, we need to ensure that our
final errors in Etot remain similar as one varies (N, G). For
all the simulations, we always consider the same initial DF,
namely,

F (J ) ∝ e−J4
, (E12)

correctly normalized. This DF is picked because it is not the
steady state of any of the external potentials from Eqs. (4).
We appropriately tune the total integration time, Tmax, and the
integration time step, h, as follows.

Integration times. To observe relaxation, we take
Tmax ∝ Tr [Eqs. (8)]. We therefore choose

(1) Tmax ∝ N/G2, (E13a)

(2) Tmax ∝ N2/G4, (E13b)

(3) Tmax ∝ N2/G6. (E13c)

Integration time steps. We fix h so the final relative error
in Etot [Eq. (E11)] is independent of (N, G). In practice, we
find

(1) h ∝ N1/2, (E14a)

(2) h ∝ G, (E14b)

(3) h ∝ G2. (E14c)

Computational cost. The difficulty of integrating for
one time step scales like O(N ln N ) (Appendix E 2). Hence,
the difficulty of performing one full integration scales like
O(NTmax ln N/h). For the different frequency profiles, we find

(1) Diff ∝ N3/2 ln N/G2, (E15a)

(2) Diff ∝ N3 ln N/G5, (E15b)

(3) Diff ∝ N3 ln N/G8. (E15c)

As expected, the integrations for profile (3) are the most chal-
lenging ones.

Following these guidelines, to obtain Fig. 2, we used
the integration parameters from Table I. For every fre-
quency profile and every value of (N, G), we perform a
total of Nreal = 103 realizations. These are time-consuming
simulations. Indeed, on a 128-core CPU, running 50 indepen-
dent realizations for all 25 values of (N, G) required ∼3 hr
(respectively, ∼140 hr; ∼150 hr) for profile (1) [respectively,
(2); (3)].

In Fig. 5 (respectively, Fig. 6), we illustrate the time de-
pendence of the relative errors in Etot (respectively, Jtot). As
expected, simulations with different values of (N, G) show
similar relative errors in Etot at the end of their respective
integrations.
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FIG. 5. Time evolution of the relative error in Etot for the fre-
quency profiles from Eqs. (4) (top to bottom panels) as one increases
N (thin to thick) and increases G (red to yellow).

6. Measuring relaxation

We track relaxation via centered moments in action. Taking
inspiration from [24,47], we consider

m4(t ) = 1

Mtot

N∑
i=1

μ (Ji − Jtot )
4, (E16)

where, up to integration errors, Jtot is conserved in every
realization [Eq. (E2b)].

For a given frequency profile and a given value of (N, G),
we have at our disposal a large set of realizations. Performing
an ensemble-average over realizations, we are left with a time
series of the form t 	→ 〈m4(t )〉, as illustrated in Fig. 7. During
the first few dynamical times, the systems undergo a (slight)
initial violent relaxation [1]. To prevent it from polluting our
measurements, we only consider the signals for t � 5.

The crux of the measurement is then as follows. For a given
time series, we perform a linear fit of the form

〈m4(t )〉 � β t + cst., (E17)

so that the slope β = β(N, G) is expected to be proportional
to 1/Tr . In Fig. 8, we illustrate the dependence of β as one
varies (N, G). Then, having at our disposal a set of β(N, G),
we perform a linear fit of the form

ln β(N, G) � −γN ln N + γG ln G + cst. (E18)

The coefficients (γN , γG) are the ones from Eq. (9).

FIG. 6. Same as Fig. 5 but for Jtot .

In practice, it is important to estimate the uncertainties of
this measurement. This is performed using bootstraps. A given
bootstrap proceeds as follows. For every value of (N, G), we
perform the ensemble average of m4(t ) over a sample of Nreal

realizations drawn, with repetitions, from the Nreal realizations
available. Using the associated 〈m4(t )〉, we perform the linear
fit from Eq. (E17) from which we also estimate the variance
of β. For every value of (N, G), we draw a value of β(N, G)
according to the associated Gaussian distribution. Finally,
from this sample of β(N, G), we perform the linear fit from
Eq. (E18). Relying on the variance-covariance of (γN , γG),
we can draw one value for (γN , γG), following the associated
Gaussian distribution. This constitutes one bootstrap measure-
ment. In practice, to obtain Fig. 2, we performed a total of
1280 bootstrap measurements.

Once these samples of γ = (γN , γG) are available,
we estimate their associated probability distribu-
tion function, P(γ ), using MATHEMATICA’s default
SmoothKernelDistribution. Finally, a contour labeled
x% in Fig. 2 corresponds to the level line P(γ ) = p, with p
set by Q(p)/Q(p = 0) = x% and Q(p) = ∫

P(γ )�p dγP(γ ).

7. Bias in γG

In Fig. 2, the kinetic prediction for γG corresponds to the
limit G → 0, while the measurements are performed for finite
values of G. This leads to a biased overestimation of γG,
once again associated with leaks from collective effects. In
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FIG. 7. Time evolution of the ensemble-averaged moment,
〈m4(t )〉, for the different frequency profiles from Eqs. (4) (top to
bottom panels) as one increases N (thin to thick) and increases G (red
to yellow). The time axis has been rescaled following the expected
relaxation time from Eqs. (8).

this section, we briefly estimate the maximum extent of that
pollution.

For a fixed value of N , the scaling of the 1/N BL equation
with respect to G is, roughly,

∂F

∂t
∝

(
G

1 − G/Gcrit

)2

. (E19)

Here, we followed Eq. (B5) and wrote the dressed coupling
coefficient as U d ∝ U/|E| ∝ G/(1 − G/Gcrit ), and subse-
quently abruptly neglected the frequency dependence of the
dielectric matrix, E(ω).

Similarly, within the same limits and following Eq. (6),
the 1/N2 BL equation is expected to scale with respect to G
roughly like

∂F

∂t
∝

(
G

1 − G/Gcrit

)4

. (E20)

FIG. 8. Dependence of the slope ln β(N, G) for the different
frequency profiles from Eqs. (4) (top to bottom panels) as a function
of (N, G).

When measuring numerically relaxation rates, we limited
ourselves to the values G/Gcrit = {2−n/4/3} with 0 � n � 4,
as detailed in Table I. To estimate the maximum bias in γG

associated with this particular choice, we can compute ∂F/∂t
as given by Eqs. (E19) and (E20), and perform the linear fit
ln(∂F/∂t ) � γ̃G ln G + cst. In that case, γ̃G is then an estimate
of the maximum value of γG that could stem from our use
of finite values of G. In practice, for the 1/N (respectively,
1/N2) dynamics from Eq. (E19) [respectively, Eq. (E20)], we
find γ̃G � 2.64 (respectively, γ̃G � 5.28). Fortunately, these
values of γ̃G are larger than the mean values obtained in Fig. 2.
This strengthens our confidence in the sanity of the numerical
measurements.
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