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We revisit the approach to the lower critical dimension dlc in the Ising-like ϕ4 theory within the functional
renormalization group by studying the lowest approximation levels in the derivative expansion of the effective
average action. Our goal is to assess how the latter, which provides a generic approximation scheme valid across
dimensions and found to be accurate in d � 2, is able to capture the long-distance physics associated with the
expected proliferation of localized excitations near dlc. We show that the convergence of the fixed-point effective
potential is nonuniform in the field when d → dlc with the emergence of a boundary layer around the minimum
of the potential. This allows us to make analytical predictions for the value of the lower critical dimension dlc and
for the behavior of the critical temperature as d → dlc, which are both found in fair agreement with the known
results. This confirms the versatility of the theoretical approach.
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I. INTRODUCTION

Collective behavior characterized by an emergent scale
invariance is encountered in a wide variety of physical situa-
tions where many degrees of freedom are correlated over long
distances. Since its introduction, the Renormalization Group
has been the theoretical tool of choice for understanding
and describing this phenomenon [1]. It provides a powerful
conceptual framework but, exact results being scarce, the
search for generic and efficient approximation schemes has
been very active from the very beginning [2–5]. One rela-
tively recent line of research starts from an exact formulation
of the Renormalization Group, in the form of a functional
Renormalization Group (FRG) for scale-dependent generat-
ing functionals of correlation functions [6–8], and introduces
potentially nonperturbative approximations through ansatzes
for the scale-dependent generating functional under study.
The question we want to address is to what extent such generic
approximation schemes are able to describe specific problems
in which the long-distance behavior involves strongly nonuni-
form configurations with localized excitations.

An example of such an approximation scheme within the
FRG is the so-called derivative expansion of the effective aver-
age action (coarse-grained Gibbs free energy in the language
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of magnetic systems), which amounts to truncating the func-
tional form of the latter in powers of the external momenta
or equivalently in gradients of the fields [9]. The versatility
and the effectiveness of the approach have been discussed
in several reviews: see Refs. [10,11]. One key advantage of
such an approach is that the space dimension d (as well as the
number of components of the fields, etc.) can be continuously
varied at will, allowing one to describe critical behavior from
the upper dimension duc where spatial fluctuations of the local
order parameter are easily tamed and classical (mean-field)
exponents are observed down to the lower critical dimension
dlc below which fluctuations become so strong that no phase
transition is possible.

The derivative-expansion approximation focuses on the
long-distance properties and, in terms of coarse-grained con-
figurations of the system, works about uniform configurations.
While taking into the account fluctuations around the latter,
it does so in a small momentum expansion, thus being best
suited for long-wavelength fluctuations. One may therefore
wonder if such a scheme is able to capture the physics associ-
ated with nonuniform configurations containing, e.g., domain
walls, spin waves, or localized defects. The answer appears to
be positive in the case of configurations involving extended
defects, i.e., defects whose energy scales with the system
size but in a subextensive way. For instance, the effect of
spin waves and domain walls, which govern the return to
convexity of the free energy of an O(N) model in its low-
temperature ordered phase when spatial fluctuations are taken
into account [10,12–14], or the role of singular avalanche
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events and of scale-free droplet excitations in the critical
random-field Ising model [15–17] are all properly accounted
for by the truncated derivative expansion even at the lowest
orders.

Yet, the jury is still out when the relevant coarse-grained
configurations that control the large-scale behavior involve
localized excitations such as the kinks and antikinks found
in the instanton analysis of the one-dimensional Ising model
[18] or in the one-dimensional sine-Gordon model [19,20].
As the approach to the lower critical dimension for systems
with a discrete symmetry is expected to be controlled by the
proliferation of such localized excitations [21–23], describing
the long-distance physics in, say, a model in the Ising univer-
sality class such as the ϕ4 theory in d = 1 + ε when ε → 0
is thus a more demanding task for the nonperturbative but
approximate FRG than describing the O(N > 2) universality
class near d = 2 [24].

In this paper we investigate how low orders of the deriva-
tive expansion in the FRG describe the approach to the lower
critical dimension of the scalar ϕ4 theory. The lowest order
is known as the local potential approximation (LPA) [8] and
is clearly unphysical in low dimensions as it predicts dlc = 2.
Indeed, field renormalization is not accounted for in the LPA,
implying that the anomalous dimension of the field is always
η = 0. This then misses a crucial ingredient for investigating
Ising criticality in dimensions less than 2. We thus consider
the simplest approximation beyond the LPA that incorporates
a nontrivial field renormalization and is often referred to as
LPA′ [10,11]. Working at this level allows us to provide a
detailed analytical treatment of the problem.

We stress that the issue per se is not to provide another
characterization of the ϕ4 theory near d = 1, as for instance
Bruce and Wallace [21–23] have already developed an effi-
cient approach in terms a specifically tailored droplet theory.
The issue is to assess the ability of a generic nonperturbative
approximation scheme within the FRG to quantitatively de-
scribe the long-distance physics of a model across the whole
range of space dimensions from dlc to duc without a priori
knowledge of the relevant real-space coarse-grained configu-
rations. This also involves the question of the continuity of the
critical behavior in the dimensionality of space, which was
first investigated by Ballhausen et al. [29]. At odds with the
latter work we show that convergence of the critical behavior
of the ϕ4 theory when d → dlc within the FRG is nonuniform
in the field.

The outline of the paper is as follows. In Sec. II we summa-
rize the FRG framework and the derivative expansion scheme
for the scalar ϕ4 theory and we introduce the LPA′ approxima-
tion. We illustrate the approach to dlc by presenting numerical
calculations at d > dlc, which serve as an illustration and
guide for our further analysis. We then show in Sec. III that the
convergence of the fixed-point effective potential to the lower
critical dimension is nonuniform in the field and involves
a boundary layer around the minimum of the potential. We
detail the singular perturbation treatment that allows us to find
the solution at leading order over the whole range of field.
We next present in Sec. IV the results that we obtain for the
value the lower critical dimension, which we find close to the
exact value dlc = 1, as well as for the critical temperature
and for the critical exponents as d → dlc. We finally give

some concluding remarks and provide additional details on
the method and the solution in several appendices.

II. FUNCTIONAL RG, DERIVATIVE EXPANSION,
AND THE LPA′

We are interested in the critical behavior of the Ising uni-
versality class, which can be represented at a field-theoretical
level by a a scalar ϕ4 theory,

S[ϕ] =
∫

x

(
1

2
(∂μϕ(x))2 + r

2
ϕ(x)2 + u

4!
ϕ(x)4

)
, (1)

where
∫

x ≡ ∫
dd x. To do so, we use the FRG approach which

is a modern version of Wilson’s RG in which fluctuations are
progressively incorporated in the calculation of the partition
function of the model through the addition to the action of an
infrared (IR) regulator [10],

�Sk[ϕ] = 1

2

∫
xy

Rk (x − y)ϕ(x)ϕ(y), (2)

where Rk is an IR cutoff function that suppresses integration
of modes with momenta less than k without altering that of
modes with momenta larger than k. Typical choices of Rk will
be discussed below. The modified partition function

Zk[J] =
∫

Dϕ exp(−S[ϕ] − �Sk[ϕ]+
∫

x
J (x)ϕ(x)) (3)

is the scale-dependent generating functional of correlation
functions and via a modified Legendre transform,

�k[φ] = − ln Zk[J] +
∫

x
J (x)φ(x) − �Sk[φ], (4)

one can introduce the effective average action �k[φ],
with φ(x) = 〈ϕ(x)〉 = δ ln Zk[J]/δJ (x), which is the scale-
dependent generating functional of the one-particle irre-
ducible (1-PI) correlation functions. It obeys an exact
functional RG equation that describes its evolution with the
IR scale k [7],

∂t�k[φ] = 1

2

∫
xy

∂t Rk (x − y)
[(

�
(2)
k [φ] + Rk

)−1]
xy

, (5)

where �
(2)
k is the second functional derivative of �k and t =

ln(k/
) with 
 a UV cutoff.
The exact FRG equation in Eq. (5) is a convenient starting

point for devising nonperturbative approximation schemes in
the form of ansatzes for the functional dependence of the
effective average action. One such scheme used to capture the
long-distance physics is the derivative expansion in which the
Lagrangian associated with �k is expanded in gradients of the
fields,

�k[φ] =
∫

x

[
Uk (φ(x)) + 1

2
Zk (φ(x))(∂xφ(x))2 + O(∂4)

]
.

(6)

When inserted in Eq. (5) the above ansatz provides a hierarchy
of coupled FRG equations for the functions Uk (φ), Zk (φ), etc.,
where the field configurations involved are now uniform, i.e.,
φ(x) = φ.

Scale invariance associated with criticality is described by
a fixed point of the FRG equations once the latter have been

054107-2



APPROACH TO THE LOWER CRITICAL DIMENSION OF … PHYSICAL REVIEW E 108, 054107 (2023)

cast in a dimensionless form via the use of scaling dimensions.
One defines dimensionless quantities ϕ, uk , zk , etc., through

φ = kDφ ϕ, Uk (φ) = kd uk (ϕ), Zk (φ) = Zkzk (ϕ), (7)

etc., where the dimension of the field is related to the anoma-
lous dimension η by Dφ = (d − 2 + η)/2 and where the field
renormalization constant Zk goes as k−η in the vicinity of the
fixed point. [Note that we have used the same notation ϕ for
the bare variable in Eq. (1) and the dimensionless average
field, as the former will no longer appear in what follows.]

The hierarchy of FRG equations when expressed in terms
of dimensionless quantities takes the form

∂t uk (ϕ) = −duk (ϕ) + (d − 2 + ηk )

2
ϕu′

k (ϕ) + βu(ϕ; ηk ),

∂t zk (ϕ) = ηkzk (ϕ) + (d − 2 + ηk )

2
ϕz′

k (ϕ) + βz(ϕ; ηk ),

(8)

etc., where a prime indicates a derivative with respect to the
argument of the function; βu, βz, etc., are functionals of u′′

k ,
zk , etc., and are given in Appendix A. The fixed points of the
flow equations are reached when t → −∞ (i.e., k → 0) and
the left-hand sides go to zero.

As already stressed, a proper description of the approach
to the lower critical dimension should incorporate field renor-
malization and a nonzero anomalous dimension η. The lowest
order of the derivative expansion that achieves this is the
so-called LPA′ in which one retains on top of the renormalized
potential Uk (φ) a field independent but scale dependent Zk . In
explicit form, the dimensionless equation for the fixed-point
potential is now

0 = −d u(ϕ) + d − 2 + η

2
ϕu′(ϕ) + 2vd�

(d )
0 (u′′(ϕ); η),

(9)

where v−1
d = 2d+1πd/2�(d/2) and �

(d )
0 is a (strictly positive)

dimensionless threshold function which enforces the decou-
pling of the low-momentum and high-momentum modes; it
is defined in terms of the dimensionless IR cutoff function
r(y = q2/k2) = Rk (q2)/(Zkq2) by

�
(d )
0 (w; η) = −1

2

∫ ∞

0
dyy

d
2

ηr(y) + 2yr′(y)

(y[1 + r(y)] + w)
(10)

and is described in more detail in Appendix B. We have
dropped the subscript k → 0 for dimensionless quantities at
the fixed point in the above equation to simplify the notation.

Deriving Eq. (9) with respect to the field ϕ gives an equa-
tion for u′(ϕ) from which one extracts the equation for its
minima ±ϕm [through u′(±ϕm ) = 0],

0 = (d − 2 + η)

2
ϕm + 2vd

u′′′(ϕm )

u′′(ϕm )
∂w�

(d )
0 (w; η)|w=u′′(ϕm ),

(11)

and deriving one more time gives an equation for the “squared
mass” u′′(ϕ). Both equations will be useful below.

In the LPA′ the field renormalization constant Zk is cho-
sen such that at the minimum of the potential zk (±ϕm ) = 1
[10,29]. From Eq. (8) and the explicit form of βz given in

−1 0 1
ϕ/ϕm

−1

0

1

u
(ϕ

)
−

u
(0

) d =1.6

d =1.10625

−1 0 1
ϕ/ϕm

0

2

u
′′ (

ϕ
)

−α

d =1.6

d =1.10625

(a)

(b)

FIG. 1. Dimensionless effective potential u(ϕ) (a) and its second
derivative u′′(ϕ) (b) at the LPA′ fixed point for several dimensions
d between 1.6 and 1.1. We have used the � IR cutoff function with
α = 1 and a numerical resolution of the FRG equations.

Appendix A one then obtains that

η = 4vd

d
u′′′(ϕm )2m(d )

4,0(u′′(ϕm ); η), (12)

where m(d )
4,0 is another (strictly positive) dimensionless thresh-

old function defined by

m(d )
4,0(w; η) = 1

2

∫ ∞

0
dyy

d
2

1 + (yr(y))′

(y[1 + r(y)] + w)4

[
2η(yr(y))′

+ 4(y2r′(y))′ − 4
y[1 + (yr(y))′][ηr(y) + 2yr′(y)]

y[1 + r(y)] + w

]
(13)

and discussed in Appendix B. Once a specific form for
the dimensionless IR cutoff function r(y) has been chosen,
the solution of Eqs. (9)–(13) (together with the appropriate
boundary conditions) fully characterizes the LPA′ fixed point.
In what follows we will use two much studied forms of r(y):

r(y) = α�(1 − y)(1 − y)/y,

r(y) = αe−y/y, (14)

where � is the Heaviside step function and α is a variational
parameter of O(1) that can be determined by various forms of
optimization [11,30–33]. We will refer to these two choices as
� and exponential cutoff functions.

We illustrate the results for the fixed point at LPA′ and
different choices of cutoff function in Figs. 1 and 2. Figure 1
displays the evolution of the dimensionless potential u(ϕ) and
the “square mass” function u′′(ϕ) as the space dimension d
decreases (for the � cutoff function with α = 1), and Fig. 2
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FIG. 2. Variation with the space dimension d of the field scaling
dimension Dφ = (d − 2 + η)/2 at the LPA′ fixed point as obtained
from a numerical resolution and the exponential IR cutoff function
for several values of α. Symbols represent every 30th data point.

that of the field scaling dimension Dφ = (d − 2 + η)/2 (for
the exponential cutoff function and several values of α). The
fixed-point dimensionless effective potential has a nonconvex
shape as a function of the dimensionless field with two sym-
metric minima, which is typical for the description a critical
point [10]. The corresponding dimensionful effective potential
is a convex function of the dimensionful field at the critical
point, albeit with a singular (power law) behavior. When the
lower critical dimension is approached, one expects the min-
ima of the dimensionless effective potential to go to infinity.
Note that it is numerically difficult to solve the fixed-point
equations for d � 1.1 so that the results presented here as only
illustrative and will only serve as a guide for a proper analysis
of the limit d → dlc.

To show that a qualitatively similar behavior in low di-
mension is also expected for higher orders of the derivative
expansion, so that the LPA′ level is not atypical, we display
in Appendix C the evolution with d of the dimensionless
potential and of the field dimension Dφ at the second order of
the derivative expansion for which the field renormalization is
now a full function of the field [see Eq. (8)].

A defining property of the lower critical dimension is that
(d − 2 + η)|d→dl → 0. This is equivalent to stating that the
scaling dimension Dφ of the field vanishes (see above and
Fig. 2). If the field does not rescale, then its fluctuations along
the RG flow remain of order 1 in terms of the dimensionful
field and ordering associated with a nonzero dimensionful
average field in zero applied source is impossible. We thus
find it convenient to define

ε̃(d ) = d − 2 + η

2(2 − η)
, (15)

which goes to 0 as d → dlc. We use the notation ε̃ to avoid
confusion with ε = d − dlc (with dlc = 1 in an exact treat-
ment).

Another anticipated feature of the approach to the lower
critical dimension is the fact that the propagator of the theory
approaches a singularity. Indeed, the lower critical dimen-
sion corresponds to the merging of the critical fixed point
and the zero-temperature fixed point associated with the
symmetry-broken ordered phase, and the return to convexity
of the dimensionful effective potential along the FRG flow is

controlled in the latter by the presence of a singularity in
the propagator [10,13,14,34]. In the LPA′ the dimensionless
propagator is given by

p(y; ϕ) = 1

y[1 + r(y)] + u′′(ϕ)
(16)

and must of course be positive. With the choice of the �

cutoff function in Eq. (14) the pole in either in y = q2/k2 = 0
and u′′(ϕ) = −α when α�1 or in y = 1 and u′′(ϕ) = −1
when α > 1. With the exponential cutoff function the pole is
either in y = 0 and u′′(ϕ) = −α when α�1 or in y = ln α and
u′′(ϕ) = −(1 + ln α) when α > 1: see Appendix B.

In the following we will investigate in more detail the
structure of the fixed-point solution at LPA′ when d → dlc.
As the numerical solution becomes harder if not impossible in
this limit, progress should be made through an analytical treat-
ment. We stress again that contrary to what happens for the
O(N > 2) models where there are Goldstone modes associ-
ated with the breaking of a continuous symmetry which quite
straightforwardly imply that dlc = 2 [10,11,35,36], the LPA′
or any level of truncation of the derivative expansion within
the FRG need not predict the exact value of the lower critical
dimension, dlc = 1, for the present model with a discrete Z2

symmetry. The approximate dlc must then be computed.

III. NONUNIFORM CONVERGENCE TO THE LOWER
CRITICAL DIMENSION

A. Nonuniform convergence and boundary layer

Consider the LPA′ fixed-point equation for the second
derivative of the potential,

0 = −u′′(ϕ) + ε̃(d )ϕu′′′(ϕ)+ 2vd

2 − η(d )
∂2
ϕ�

(d )
0 (u′′(ϕ); η(d )),

(17)

where η = 2 − d + d ε̃ + O(ε̃2). As the dependence of ε̃ on d
is expected to be monotonic, one can study the above equa-
tion at fixed ε̃ instead of fixed d , and when ε̃ → 0, which is
the limit of interest,

0 = −u′′(ϕ) + ε̃ϕu′′′(ϕ) + 2vd

d
∂2
ϕ�

(d )
0 (u′′(ϕ); 2 − d ), (18)

where d ≡ d (ε̃) → dlc and dlc a priori unknown. This equa-
tion is supplemented by boundary conditions: u′′(ϕ) is an even
function of the field so that u′′′(0) and all odd derivatives in
ϕ = 0 are equal to 0; furthermore, one expects that u′′(ϕ →
±∞) → +∞.

We are looking for a solution u′′(ϕ; ε̃) of Eq. (18) in
the limit ε̃ → 0. However, inserting a simple expansion,
u′′(ϕ; ε̃) = u′′[0](ϕ) + ε̃u′′[1](ϕ) + · · · , uniformly valid for all
fields does not work when u′′ varies very rapidly in a narrow
domain so that the second term of the right-hand side of
Eq. (18) becomes of the same order as the other two when
ε̃ → 0. This is a well-known problem treated by singular
perturbation theory [37–39]. Our claim, which we substantiate
below, is that this is indeed what happens and that the limit
ε̃ → 0 of the solution is actually nonuniform in the field.

From the shape of the fixed-point potential in Fig. 1 one can
see that three domains of field values can be distinguished:
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(a) the inner region from ϕ = 0 to values less than the
minima, where the potential and its derivatives seem to be of
magnitude of order one [i.e., of O(ε̃0)];

(b) the large-field region, |ϕ| → +∞, where u(ϕ) and its
derivatives increase rapidly;

(c) the two regions between (a) and (b) near the minima of
the potential.

Region (a) should be describable by the ε̃ = 0 equa-
tion (plus a regular perturbation in ε̃) and is further discussed
in Sec. III B. The large-field region (b) corresponds to the
situation where the square mass u′′(ϕ) is so large that the
nontrivial β functions are effectively zero leaving only the
scaling part of the equation: here, 0 = −u′′(ϕ) + ε̃ϕu′′′(ϕ),
which leads to

u′′(ϕ) ∼ |ϕ| 1
ε̃ when ϕ → ±∞. (19)

Region (c) in the close vicinity of the minima needs more
care and entails a boundary-layer treatment, which is further
discussed in Sec. III C. (Note that “interior” or “internal”
layer might be a more appropriate terminology because the
regions in which the variation of the solution is very fast are
away from the boundaries,[40,41] but with this caveat we will
nonetheless keep using the more common term “boundary
layer.”)

A unique global solution valid for all fields is obtained
by matching the partial solutions obtained in each domain;
this is done the intermediate regions of field over which
the solutions are still valid and yet overlap. This so-called
“asymptotic matching” procedure or “method of matched
asymptotic expansion” is a key element of the singular per-
turbation treatment [37–39].

The potential u(ϕ) being Z2 symmetric, we choose to re-
strict our analysis to positive fields, ϕ � 0.

B. The solution of the ε̃ = 0 equation

Consider first the LPA′ equation for ε̃ = 0. Introducing for
simplicity the notation w(ϕ) := u′′(ϕ), one has

w(ϕ) = 2vd

d
∂2
ϕ�

(d )
0 (w(ϕ); 2 − d ), (20)

where d = dlc, which we assume in the following to be strictly
less than 2; the initial conditions are w(0) = w0 and all the
odd derivatives of w are zero in ϕ = 0. Let us also define
�(ϕ) := �

(d )
0 (w(ϕ); 2 − d ). The function �

(d )
0 (w; 2 − d ) be-

ing monotonically decreasing with w, one can invert it and
define w = F (�) with F such that F (�(d )

0 (w; 2 − d )) = w.
Equation (20) can then be rewritten as

∂2
ϕ�(ϕ) = d

2vd
F (�(ϕ)), (21)

which is the equation of motion of an anharmonic oscillator
�(ϕ) with ϕ playing the role of time and (d/(2vd ))F (�)
being the force. The solution for �(ϕ) is a periodic function
starting in �0 = �

(d )
0 (w0; 2 − d ) with a velocity ∂ϕ�|0 = 0.

The half-period ϕ∗ corresponds to the first time at which the
velocity is again equal to 0. By using the energy balance
equation associated with Eq. (21),∫ �(ϕ)

�0

d�′ d

2vd
F (�′) = 1

2
[∂ϕ�(ϕ)]2, (22)

one derives that ϕ∗ is obtained from∫ ϕ∗

0
dϕ′∂ϕ′�(ϕ′)w(ϕ′) = 0. (23)

Note that ϕ∗ and the solution �(ϕ) are parametrized by the
initial value w0.

Because of the monotonic relation between � and w, the
solution for w(ϕ) is also a periodic function of half-period
ϕ∗ that oscillates between a minimum value w0 and a maxi-
mum one w∗ = w(ϕ∗), the two values being uniquely related.
Clearly, this solution cannot be that of the full problem [which
is not periodic: see Fig. 1(b)] when ϕ is close to and larger than
ϕ∗. As alluded to above, a boundary-layer type of solution
must then replace the solution of the ε̃ = 0 equation. Since
w(ϕ) is very large in the close vicinity of the (exact) minimum
of the potential, ϕm, a potential matching between the two
types of solution must take place for ϕ < ϕm � ϕ∗, which
requires that w(ϕ∗) is very large. In this limit, it can be shown
from the properties of the ε̃ = 0 solution (see Appendix D)
that

ϕ∗ ∼
√

ln w∗. (24)

The matching requirement and the constraint it puts on the
value of w(ϕ0) = w0 will be considered in more detail below.

C. The inner solution within the layer

The ε̃ = 0 equation ceases to be the proper description
when the second term of Eq. (18) becomes of the same order
as the other terms, and a new solution must be found. Guided
by the numerical solution and by physical intuition, we argue
that a new solution takes place within a boundary layer around
the minimum ϕm of the potential. In this region, w 
 1, lead-
ing to a considerable simplification of the threshold function
l (d )
0 and reducing Eq. (18) to

0 = −w(ϕ) + ε̃ϕw′(ϕ) + 2vd

d
αAd∂

2
ϕ

[
1

w(ϕ)

]
, (25)

where we have used that for a large square mass w, Eq. (10)
gives

�
(d )
0 (w; 2 − d ) ∼ αAd

w
+ O

(
1

w2

)
, (26)

with

Ad = d
∫ ∞

0
dyy

d
2

[
r(y)

α

]
. (27)

More details are given in Appendix B. It is then convenient to
rescale the field ϕ by a multiplicative factor

√
d/(2αvd Ad ), so

that Eq. (25) reads

0 = −w(ϕ) + ε̃ϕw′(ϕ) + ∂2
ϕ

[
1

w(ϕ)

]
, (28)

with no explicit dependence on d (which we recall should be
taken as dlc in the limit ε̃ → 0 that we consider).

In the vicinity of ϕm we introduce a rescaled variable x =
(ϕ − ϕm )/δ(ε̃) with x = O(1) as ε̃ → 0. Requiring that the
first two terms of Eq. (28) be of the same order of magnitude
in δ(ε̃) (“principle of dominant balance” [38]), one obtains
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that δ(ε̃) = ε̃ϕm, i.e.,

x = ϕ − ϕm

ε̃ϕm
, (29)

where we assume for now, and check later on, that ε̃ϕm → 0
when ε̃ → 0. By also requiring that the third term is of the
same order of magnitude in δ(ε̃) as the first two, one is further
led to introduce a function g(x) which is defined by

w(ϕ) = g(x)

ε̃ϕm
(30)

and which is of O(1) when x is of O(1). The LPA′ equation in
the boundary layer can then be expressed as

−g(x) + g′(x) + ∂2
x

[
1

g(x)

]
= 0. (31)

This is complemented by the equation for the minimum,
Eq. (11), which leads to

g′(0) = g(0)3. (32)

The boundary layer equation can be solved in an implicit
form by first introducing the auxiliary function

X (x) = g(x) + ∂x

[
1

g(x)

]
(33)

which satisfies X (0) = 0 because of Eq. (32). Then, one has
that

g(x) = X ′(x), (34)

which can be restated as an equation for a function of X ,
a(X ) := g(x), as

a′(X ) = a(X )(a(X ) − X ). (35)

Solving Eq. (35) gives

g(x) = g(0)
e− X (x)2

2[
1 − √

π
2 g(0) + g(0)

∫ +∞
X (x) dt e− t2

2
] . (36)

The interest of the above expression is that it allows us to
study the limit x → +∞ and use matching with the outer
solution at large field, w(ϕ → ∞) ∼ ϕ1/ε̃ → +∞, already
derived. (This is the standard method of matched asymptotic
expansions used in singular perturbation problems.) Choosing
the matching region such that 1/ε̃ 
 x 
 1, the latter then
imposes that g(x) diverges as exp(x) at large positive x. From
Eqs. (36) and (33) it is straightforward to see that one must
have

1 −
√

π

2
g(0) = 0, (37)

which fixes g(0) and via Eq. (32) g′(0).
We plot in Fig. 3 the inverse of g(x), as obtained from

the solution of the above equations. It is a monotonically
decreasing function. When x is negative and |x| very large,
it behaves as

1

g(x)
∼

√
2|x|

√
ln |x|

[
1 + O

(
ln(ln |x|)

ln |x|
)]

, (38)

FIG. 3. Inverse of the inner solution g(x) giving the square-mass
function within the layer around the minimum of the potential. The
latter corresponds to x = 0.

an expression which will be useful when considering match-
ing with the outer solution obtained from the equation with
ε̃ = 0 (see Sec. III B).

D. Matching the inner solution with that of the ε̃ = 0 equation

At least at the present LPA′ level of approximation the
solution g(x) within the layer around ϕm is fully determined
by matching with the outer solution obtained at large field.
However, the relation between ϕm and ε̃ is yet to be de-
termined. It is also crucial to check that matching with the
outer solution corresponding to fields less than ϕm (and to
the ε̃ = 0 equation) can be enforced, so that a solution can
be constructed for all field values.

In Sec. III B we have argued that matching should take
place for fields ϕ < ϕm � ϕ∗, where furthermore the outer
solution associated with the ε̃ = 0 equation should be such
that 1 � w(ϕ) � w(ϕm ),w∗. We can choose the matching
region where the two solutions overlap such that

ϕm − ϕ = O((ε̃ϕm )a) with 0 < a < 1, (39)

and, as a result, x ∼ −(ε̃ϕm )1−a is negative and very large.
The asymptotic limit of the inner solution is then given by
Eq. (38), which implies that

w∗ 
 w(ϕ) = O
(
ε̃ϕm )−a| ln(ε̃ϕm )|− 1

2
) → +∞. (40)

From Eq. (23) one can obtain the relation between w∗ and
w0 as

0 =
∫ w∗

w0

dw′w′∂w′�(w′)

= w∗�(w∗) − w0�(w0) −
∫ w∗

w0

dw′�(w′), (41)

where, we recall, �(w) = �
(d )
0 (w; 2 − d ) with the latter given

in Eq. (10). To evaluate the quantities in the above equation we
split the integral by introducing an intermediate value wc,
which we choose positive and of O(1). Taking into account
that w∗ diverges and using the property that the function �(w)
is monotonically decreasing and asymptotically goes to zero
as αAd/w + O(1/w2), we transform Eq. (41) into

αAd ln w∗ = −w0�(w0) −
∫ wc

w0

dw′�(w′), (42)

054107-6



APPROACH TO THE LOWER CRITICAL DIMENSION OF … PHYSICAL REVIEW E 108, 054107 (2023)

up to O(1) terms. Since w0 and wc are both of O(1), this
implies that �(w0) diverges. This can only occur if w0 ap-
proaches the pole of the propagator, which we call wP and can
be either −1, −α, or −(1 + ln α) depending on the IR cutoff
function and on α [see Eq. (16) and below]. Notwithstand-
ing the precise asymptotic behavior of �(w) ≡ �

(d )
0 (w; 2 − d )

when the pole is approached (this depends on the IR cutoff
function, see Appendix B), the second term of the right-hand
side is subdominant compared to the first one and one has

�(w0) ∼ αAd

|wP| ln w∗ → +∞. (43)

Matching thus entails that the square mass in zero field w0 →
w+

P , which, as argued above, is one of the expected hallmarks
of the approach to the lower critical dimension. Note that in
the limit process w0 must remain strictly larger than the pole
wP by a quantity that goes to zero with ε̃: this again illustrates
the highly singular and nonuniform approach to the lower
critical dimension.

To complete the proof, we note that in the chosen matching
region, the leading behavior of w(ϕ) in the boundary layer
and that corresponding to the ε̃ = 0 solution obey the same
equation, −w(ϕ) + ∂2

ϕ[1/w(ϕ)] = 0. The difference is in the
boundary condition at large field: The ε̃ = 0 is limited by ϕ∗
while it is convenient to consider the boundary-layer one up to
ϕm. Taking this into account, the solution can then be obtained
either as

ϕm − ϕ(w) = ε̃ϕm|x| ≈
√

2

2

1

w
√

ln
(

1
ε̃ϕmw

) (44)

or as

ϕ∗ − ϕ(w) ≈
√

2

2

1

w

√
ln

(
w∗
w

) . (45)

Matching between the two solutions is then enforced at lead-
ing order if

ϕ∗ ∼ ϕm,

w∗ ∼ 1

ε̃ϕm
∼ wm,

(46)

which, since ϕ∗ diverges as
√

ln w∗ [see Eq. (24) and Ap-
pendix D], immediately leads to

wm ∼ w∗ ∼ 1

ε̃

√
ln( 1

ε̃
)
,

ϕm ∼ ϕ∗ ∼
√

ln

(
1

ε̃

)
+ O

(
ln ln

(
1

ε̃

))
. (47)

So, as anticipated the location of the minimum of the potential
ϕm diverges when ε̃ → 0 but the width of the boundary layer
ε̃ϕm goes to 0. This is supported by the numerical resolution
of the LPA′ flow equation for values of d approaching as close
as possible the lower critical dimension: see Fig. 4. This result
is different than the prediction of the previous FRG analysis
of the approach to the lower critical dimension within the
truncated derivative expansion in Ref. [29]. The latter missed
the emergence of the boundary layer near the minimum of the

(a)

(b)

FIG. 4. (a) Location of the minimum of the potential ϕm divided
by

√
ln(1/ε̃) as a function of ε̃ from numerical calculation for

d > dlc. (b) Same but for the square mass wm ≡ u′′(ϕm ) multiplied
by δ(ε̃) = ε̃

√
ln(1/ε̃). Both plots are consistent with the analytically

obtained predictions given in Eq. (47). However, the prediction from
Ref. [29] [dashed black line in panel (a)] clearly does not fit the data.
The data points in panels (a) and (b) are obtained from the numeri-
cal resolution of the LPA′ fixed-point equations for the exponential
cutoff functions with several values of the prefactor α.

potential, which led to the scaling ϕm ∼ 1/
√

ε̃ that does not
fit the data as shown in Fig. 4(a).

Collecting all of the above results allows one to build a
fixed-point solution w(ϕ) ≡ u′′(ϕ) that is valid over the whole
range of field values when ε̃ → 0. One can note the peculiar
form of the present singular perturbation problem in which
neither the initial condition for w(ϕ) in ϕ = 0 nor the loca-
tion of the layer in ϕm are determined a priori and must be
determined through the matching procedure.

We now discuss the consequences for the LPA′ prediction
of the lower critical dimension dlc, the behavior of the critical
temperature Tc, and the critical exponents as ε̃ → 0.

IV. RESULTS

A. Determination of the lower critical dimension

To determine the value of the lower critical dimension dlc

we consider the last of the LPA′ equations that we have not yet
used, i.e., Eq. (12) for the anomalous dimension of the field.
This equation involves the square mass w(ϕ) in the boundary
layer only since we fix the renormalization point for z(ϕ) at
the minimum of the effective potential (see above). At the
LPA′ level, the choice of renormalization point determines the
value of η, while at the next order of the derivative expansion
all choices are equivalent. Choosing the minimum was shown
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FIG. 5. Lower critical dimension dlc(α) predicted by the solution
of the LPA′ with the � (upper blue curve) and exponential (lower red
curve) IR cutoff functions. The horizontal (gray) dashed line denotes
d = 1, the exact result.

to be best for convergence within the LPA′ [42,43] because it
corresponds to the statistically most preferred configuration of
the system. When ε̃ → 0, w(ϕm ) → ∞, η → 2 − d , and the
threshold function m(d )

4,0(w; η) can be replaced in Eq. (12) by
its asymptotic form,

m(d )
4,0(w; 2 − d ) ∼ αdAd − α2Bd

w4
, (48)

where Ad is given in Eq. (27) and, as derived in Appendix B,

Bd = 3d − 2

2

∫ ∞

0
dyy

d
2

[(
y

r(y)

α

)′]2

. (49)

As before a prime indicates a derivative with respect to the
argument of the function and the IR cutoff functions that we
use are defined in Eq. (14).

With the rescaling of the field and the notations introduced
in Sec. III C, one can then rewrite Eq. (12) as

2 − d = 2

(
d − α

Bd

Ad

)
g′(0)2

g(0)4
= 4

π

(
d − α

Bd

Ad

)
, (50)

where we have used that the solution within the layer around
the minimum satisfies Eqs. (32) and (37). The solution of the
above equation gives d = dlc.

For the � cutoff function, Bd/Ad = (3d − 2)/4 (see Ap-
pendix B), so that we obtain an explicit analytical expression
for the lower critical dimension:

dlc(α) = 2
π − α

π + 4 − 3α
, (51)

which for instance predicts dlc = 1.03419 · · · for α = 1. Note
that the solution derived in the previous section required d <

2. This entails that α < 2, so that the pole in α = (π + 4)/3
is not attained. The variation of dlc with α is shown in Fig. 5.

For the exponential cutoff function, one finds that Bd/Ad =
2−(1+d/2)(3d − 2)/4 (see Appendix B), so that dlc is solution
of the implicit equation

dlc(α) = 2
π − α∗(d )

π + 4 − 3α∗(d )
, (52)

with α∗(d ) = 2−(1+d/2)α. The outcome is plotted in Fig. 5 for
a large range of α (dlc = 2 is reached for α = 8).

We therefore obtain that for a reasonable range of the
variational parameter α the predicted lower critical dimension

is indeed close to the exact result, dlc = 1 (within 10% for the
exponential cutoff function with α between 0.5 and 3.5, the re-
sult found with the � regulator appearing less well-behaved).
A spurious dependence of the results on the choice of the
IR cutoff function is expected when making approximations
to the FRG. As mentioned in Sec. II, one may optimize the
choice at a given level of the truncated derivative expansion
by various procedures, one of them being the “principle of
minimum sensitivity” (PMS) which amounts to choosing the
parameters of the IR regulator that lead to an extremum in
some computed output such as a critical exponent [11,31,32].
It is clear from Fig. 5 that dlc(α) computed at the LPA′ level
with the � and the exponential cutoff functions does not
display any local minimum, so that one cannot optimize α

through a PMS procedure. However, one can require that α

stays in a range where dlc does not vary too rapidly, which
implies staying away from the pole in Eq. (51) or Eq. (52). An
alternative criterion to the PMS could be to require that there
is no transition in d = 1 [44]. Requiring that dlc = 1 leads to
α ≈ 0.85 for the � regulator and α ≈ 2.43 for the exponential
regulator. However, this imposes using an exact result known
by other means than the FRG, which weakens the significance
of the optimization procedure [45].

B. Critical temperature Tc as ε̃ → 0

One of the many defining properties of the lower critical
dimension is that the critical temperature Tc goes to zero. This
is a bare quantity which is not easily retrieved from the RG
flow. However, when it goes to zero, a simple reasoning based
on comparing the Boltzmann form of the distribution and the
Wilsonian action where the field is rescaled by its value at the
minimum of the effective potential suggests that the field at
which the effective potential is minimum scales as the square
root of the inverse temperature. As the dimension of the field
at criticality goes to zero at the lower critical dimension, one
therefore expects that Tc ∼ 1/ϕ2

m. This is indeed what is found
in the correspondence between the Wilsonian dimensionless
action of the O(N > 2) model and the nonlinear sigma model
near the lower critical dimension d = 2 [11]. Together with
Eq. (47), this scaling leads to

Tc ∼ 1

ln
(

1
ε̃

) → 0, (53)

when ε̃ → 0.
Recast in terms of the field dimension Dφ = (d − 2 + η)/2

the above expression is equivalent to

Tc ∝ 1

ln
(

1
Dφ

) . (54)

This relation is similar to that obtained by Bruce and Wallace
from a detailed droplet theory [21,22]. In the latter, the expan-
sion is performed in ε = d − dlc with dlc = 1. The outcome is
that Tc has a simple expansion in powers of ε, Tc ∝ ε + O(ε2),
but Dφ has instead a singular behavior, with Dφ ∼ e−2/ε/ε.
Combining the two gives Eq. (54). Note that this relation is
not verified by the prediction of Ref. [29].
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C. Stability of the fixed point, essential scaling, and
correlation-length critical exponent as ε̃ → 0

The stability of the fixed point can be studied by look-
ing at perturbations around it and the resulting eigenvalue
equation equation obtained in linear order of the perturba-
tion. For the present LPA′ approximation, after introducing
small perturbations around the fixed point as wk (ϕ) = w(ϕ) +
kλδw(ϕ), ηk = η + kλδη, ϕmk = ϕm + kλδϕm, etc., with λ

an eigenvalue to be determined, the linearized equation for
δw(ϕ) reads

λδw(ϕ) = − (2 − η)δw(ϕ) + (2 − η)ε̃ϕδw′(ϕ)

+ 2vd∂
2
ϕ

[
∂w�

(d )
0 (w(ϕ); η)δw(ϕ)

]
+

(
w(ϕ) + 1

2
ϕw′(ϕ)

+ 2vd∂
2
ϕ

[
∂η�

(d )
0 (w(ϕ); η)

])
δη, (55)

and the expressions for δη and δϕm are given in Appendix E.
We are especially interested in finding the relevant eigenvalue
that gives the correlation length exponent ν which is known to
diverge at the lower critical dimension in an exact treatment.

As we did for the fixed point, one can attempt a singular
perturbation analysis when ε̃ → 0 (and η → 2 − d) by look-
ing separately at the ε̃ = 0 equation for ϕ of O(1) and at an
equation in terms of the scaled variable x = (ϕ − ϕm )/(ε̃ϕm )
near the minimum ϕm. However, one immediately sees that if
λ = O(ε̃) or more generally goes to zero when ε̃ → 0, which
is the expected behavior of the relevant eigenvalue(s), working
at the leading order in ε̃ does not allow the determination of λ

beyond the fact that it starts as 0.
This can be illustrated by considering one eigenvalue that

can be exactly obtained together with its eigenfunction. One
easily finds that λ = −(2 − η)ε̃ is a solution of Eq. (55) (and
of the additional equations given in Appendix E) with

δw(ϕ) = δK w′(ϕ),

δη = 0 = δε̃,

δϕm = −δK, (56)

with δK a constant that can be taken as infinitesimal to lin-
earize the RG flow equations. Note that despite the fact that
it corresponds to a relevant direction around the fixed point
this eigenvalue is not the one we are interested in because
it is associated with an odd (Z2 antisymmetric) perturbation.
We would instead like to determine the relevant eigenvalue
associated with an even (Z2 symmetric) perturbation which
gives the correlation-length exponent ν through 1/ν = −λ.
It is nonetheless instructive to study how the exact result for
λ = −(2 − η)ε̃ translates into the leading order of the singular
perturbation analysis and we trivially find that only λ = 0 can
be obtained by working at the leading order of the ε̃ = 0 and
of the boundary-layer equations.

This example confirms that eigenvalues going to zero as
ε̃ → 0 cannot be determined from the singular perturbation
analysis at the leading order. One needs to go to the next order.
In the present case this seems a formidable task that we will
not undertake. We instead perform a numerical investigation

(a)

(b)

FIG. 6. The relevant eigenvalue 1/ν obtained from the numerical
resolution of the LPA′ equations with the exponential IR cutoff
function and several values of the parameter α. It is plotted as a func-
tion of ε̃ in panel (a) and ε̃

√
ln(1/ε̃) ∼ δ(ε̃) in panel (b). Symbols

represent every 30th data point.

by solving the LPA′ eigenvalue equation, Eq. (55), together
with the fixed-point equation at fixed d , trying to reach as
low as possible values near the lower critical dimension. As
it should, we find that the critical fixed point has two relevant
eigendirections: one corresponds to an even eigenfunction
and gives the critical exponent ν and the other is equal to
−(2 − η)ε̃ = −Dφ and is associated with an odd eigenfunc-
tion related to the magnetic field (the scaling dimension of
the magnetic field is then d − Dϕ). All the other eigenvalues
are positive, i.e., irrelevant, and of O(1) when ε̃ → 0, as it
should for a critical fixed point. We show 1/ν as obtained for
the exponential IR cutoff function and several values of the
parameter α in Fig. 6. It is plotted both versus ε̃ and versus
the boundary-layer width δ(ε̃) ∼ ε̃

√
ln(1/ε̃). We observe that

1/ν seems to be heading toward 0 when ε̃ → 0, which is the
expected behavior for an essential scaling of the correlation
length as one approaches the lower critical dimension. Over
the accessible range of dimensions, it appears to do so slower
than linearly in ε̃, possibly like ε̃

√
ln(1/ε̃). However, the

behavior is not compatible with the prediction of the droplet
theory which would be 1/ ln(1/ε̃) [21–23]. However, our nu-
merical results may not yet be in the asymptotic regime near
dlc and the conclusion should therefore be taken with a grain
of salt.

V. CONCLUSION

We have presented a functional renormalization group
(FRG) description of the approach to the lower critical
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dimension dlc in a scalar ϕ4 theory by using one of the
simplest nonperturbative approximation level obtained as a
truncation of the derivative expansion, the so-called LPA′.
Our purpose is to test how a generic approximation scheme
that works across dimensions in a continuous way and has
been shown to be accurate in dimensions d � 2, for instance
[11], is able to describe dimensions close to the lower critical
dimension in a system with a discrete symmetry where it is
known that the long-distance physics is controlled by the pro-
liferation of localized excitations (in the present case, droplets
that become point-like kinks and antikinks at the lower critical
dimension dlc = 1 [21–23]). We show that the limit of d going
to dlc for the fixed-point effective action is nonuniform in
the (average) field, with the emergence of a boundary layer
around the minimum of the dimensionless potential. The min-
imum goes to infinity and the width of the layer goes to zero
as d → dlc, at odds with the outcome of an earlier FRG study
[29]. The behavior of the critical temperature Tc is compatible
with the expected exact results and, although the prediction
of dlc is dependent on the infrared regulator used in the FRG,
we find it rather close to the exact value dlc = 1 for several
reasonable choices of IR regulators.

One may wonder whether the description of the approach
to the lower critical dimension dlc improves as one considers
higher orders of the derivative expansion. The anomalous
dimension of the field η is indeed large (it approaches 1),
and it seems already quite remarkable that the LPA′ is able
to semi-quantitatively capture the critical behavior under such
a condition. A first step forward is to check if the scenario
found at the LPA′ level is valid at all orders of the truncated
derivative expansion. Work is now in progress to investigate
the next order, which includes a field-renormalization func-
tion in addition to the effective potential. Preliminary results
appear to indicate that the same mechanism of a nonuni-
form convergence to the lower critical dimension with the
emergence of a boundary layer around the minimum of the
dimensionless potential is also at play. The next order of
the derivative expansion also seems to more properly describe
the form of divergence of the correlation length exponent ν:
see the preliminary results in Appendix C.

As already stressed, our goal is not to provide yet another
theoretical description of the approach to the lower critical
dimension for systems in the universality class of the Ising
model, a question which has been quite well understood for
several decades. It is to benchmark a generic nonperturbative
but approximate FRG approach to later tackle problems that
are still open such as the value of the lower critical dimension
of the athermally driven random-field Ising model (RFIM)
[48]. The lower critical dimension of the RFIM in equilibrium
has been rigorously shown to be dlc = 2 [49], but that for the
far-from-equilibrium driven RFIM is debated [50–52]. Finally
one might also hope that the present solution near the lower
critical dimension can suggest new approximation schemes of
the FRG that are not necessarily based on the truncation of the
derivative expansion.
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APPENDIX A: FRG FLOW EQUATIONS

The β function(al) describing the FRG flow of the dimen-
sionless effective potential uk (ϕ) is given by [10]

βu(ϕ; η) = 2vd�
(d )
0 (u′′(ϕ); η, z(ϕ)), (A1)

where v−1
d = 2d+1πd/2�(d/2); �(d )

n is a (strictly positive) di-
mensionless threshold function defined by

�(d )
n (w; η, z)=−

(
n + δn,0

2

) ∫ ∞

0
dyy

d
2

ηr(y) + 2yr′(y)

(y[z + r(y)] + w)n+1
,

(A2)

where the dimensionless infrared cutoff function (or IR reg-
ulator) r(y) is obtained from the dimensionful one, Rk (q2),
introduced in Eq. (2) through

Rk (q2) = Zkk2y r(y) with y = q2

k2
, (A3)

with k the running IR cutoff and Zk the dimensionful field
renormalization (such that the running anomalous dimension
is defined by ηk = −k∂kZk).

From the exact FRG equation for the two-point 1-PI cor-
relation function evaluated for a uniform field configuration
one can extract the β functional for the dimensionless field
renormalization function zk (ϕ) [10]

βz(ϕ; η) = − 4vd

d
u′′′(ϕ)2m(d )

4,0(u′′(ϕ); η, z(ϕ))

− 8vd

d
u′′′(ϕ)z′(ϕ)m(d+2)

4,0 (u′′(ϕ); η, z(ϕ))

− 4vd

d
z′(ϕ)2m(d+4)

4,0 (u′′(ϕ); η, z(ϕ)) − 2vd z′′(ϕ)

× �
(d )
1 (u′′(ϕ); η, z(ϕ))

+ 4vd u′′′(ϕ)z′(ϕ)�(d )
2 (u′′(ϕ); η, z(ϕ))

+ 2vd
1 + 2d

d
z′(ϕ)2�

(d+2)
2 (u′′(ϕ); η, z(ϕ)), (A4)

where m(d )
n,0 is another (strictly positive) threshold function

defined as

m(d )
n,0(w; η, z) = 1

2

∫ ∞

0
dyy

d
2

z + (yr(y))′

(y[z + r(y)] + w)n

[
2η(yr(y))′

+ 4(y2r′(y))′ − n
y[z + (yr(y))′][ηr(y) + 2yr′(y)]

y[z + r(y)] + w

]
.

(A5)

To derive Eq. (A4) we have neglected the higher-order terms
in Eq. (6) which involve four spatial derivatives: It therefore
represents the second order of the derivative expansion which
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is fully characterized by the two functions Uk (φ) and Zk (φ).
Three more functions are required at the order O(∂4), etc.

APPENDIX B: PROPERTIES OF THE THRESHOLD
FUNCTIONS

The threshold functions introduced in the main text and
in Appendix A are strictly positive dimensionless func-
tions that enforce the decoupling of the low-momentum and
high-momentum modes [10]. We only consider the LPA′ ap-
proximation so that the dimensionless field renormalization
function z(ϕ) ≡ 1, but this is easily generalizable.

Before discussing some of their generic properties it is il-
lustrative to give their explicit expression for a specific choice
of IR cutoff function, r(y) = �(1 − y)(1 − y)/y, which is the
� cutoff function with α = 1 (also called Litim or optimized
regulator [30]):

�(d )
n (w; η) = 2(d + 2 − η)

d (d + 2)

n + δn,0

(1 + w)n+1
,

m(d )
n,0(w; η) = 1

(1 + w)n
. (B1)

One can see that the threshold functions monotonically de-
crease as w increases, blow up near the pole of the propagator
wP (here wP = −1), and go to zero as power laws when
w → +∞. They are defined for w > wP.

We analyze the behavior of the threshold functions for a
generic IR cutoff function r(y) in two limiting cases, when
the mass w is large and when it approaches the pole of the
propagator, i.e., when w + miny {y(1 + r(y))} → 0.

When the mass w → ∞ and z = 1 one easily finds from
Eq. (A2) that

�(d )
n (w; η) ∼ A(d )

n (η)

wn+1
+ O

(
1

wn+2

)
, (B2)

where

A(d )
n (η) = −

(
n + δn,0

2

) ∫ ∞

0
dyy

d
2 [ηr(y) + 2yr′(y)]

= (n + δn,0)A(d )
0 (η), (B3)

and A(d )
0 (η) can be rewritten as

A(d )
0 (η) = d + 2 − η

2

∫ ∞

0
dyy

d
2 r(y). (B4)

The choices of r(y) that we use in this work are given in
Eq. (14) so that A(d )

0 (η) is proportional to α. When η = 2 − d
this leads to the expression of Ad in Eq. (27).

Similarly, from Eq. (A5) one finds

m(d )
n,0(w; η) ∼ −B(d )(η) + dA(d )

0 (η)

wn
+ O

(
1

wn+1

)
, (B5)

with

B(d )(η) = −
∫ ∞

0
dyy

d
2 (yr(y))′[η(yr(y))′ + 2(y2r′(y))′]

= d + 2 − 2η

2

∫ ∞

0
dyy

d
2 [(yr(y))′]2. (B6)

When η = 2 − d one immediately obtains Eq. (49).
All of the above results of course match with the expansion

of the expressions in Eq. (B1).
We now turn to the expression of the threshold func-

tions near the pole of the propagator, when w → wP =
− miny {y(1 + r(y))}. Note that the FRG equations are well
behaved for w + miny {y(1 + r(y))} > 0. The approach to the
pole is what controls the return to convexity of the effective
potential in the ordered phase [10,13,14] and is therefore
important in the vicinity of the lower critical dimension where
the critical fixed and the fixed point describing the ordered
phase merge.

For the � cutoff function and for z = 1,

�(d )
n (w; η) = α

n + δn,0

2

∫ 1

0
dyy

d
2 −1 [(2 − η) + ηy]

[w + α + (1 − α)y]n+1
,

(B7)

m(d )
n,0(w; η)

= α
2 − α

[w + 1]n
− αη(1−α)

∫ 1

0
dyy

d
2

1

[w + α + (1 − α)y]n

+ α
n

2
(1 − α)2

∫ 1

0
dyy

d
2

[(2 − η) + ηy]

[w + α + (1 − α)y]n+1
. (B8)

The pole of the propagator 1/[w + α + (1 − α)y] is wP =
−α and is reached in y = 0 if α < 1; it is wP = −1 and is
reached in y = 1 if α > 1. The case α = 1 corresponds to
the expressions in Eq. (B1) and the approach to the pole in
wP = −1 can be read off directly. The threshold functions
generically diverge as inverse power laws of (w + wP ) when
w approaches the pole wP which is either −α or −1. An
exception is �

(d )
0 (w; η) which behaves as − ln(w + 1) when

α > 1.
For the exponential cutoff function (and for z = 1), a sim-

ilar behavior is encountered except that the pole is attained
either in y = 0 and is equal to wP = −α when α < 1 or
in y = ln α and is equal to w = −(1 + ln α) when α > 1.
The divergence of the threshold function as w + wP → 0+ is
generically power-law-like.

APPENDIX C: PRELIMINARY RESULTS AT THE SECOND
ORDER OF THE DERIVATIVE EXPANSION

We have started to investigate higher orders of the deriva-
tive expansion. The next one, i.e., the second order, consists
in keeping terms in the effective average action up to the
second derivative of the field. At this O(∂2) order one ends
up with coupled flow equations for the two functions uk (ϕ)
and zk (ϕ) given by Eqs. (8) with the β function(al)s given
by Eqs. (A1) and (A4). The fixed-point equations simply
follow. We have obtained some preliminary numerical results
showing the behavior of the effective potential as a function
of the dimensionless field for low dimensions: see Fig. 7(a).
One observes the development of sharper and sharper
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(a)

(b)

FIG. 7. Dimensionless effective potential u(ϕ) (a) and field scal-
ing dimension Dφ = (d − 2 + η)/2 (b) at the fixed point obtained at
the second order of the derivative expansion for several dimensions
d between 1.8 and 1.11. We have used the exponential IR cutoff
function with α = 1 in panel (a) and several values of α in panel
(b). In panel (b) symbols represent every 100th data point.

minima as d decreases, similar to what is found for the LPA′
(see Fig. 1) and suggestive of the emergence of a boundary
layer in the close vicinity of the minima. Accordingly, the
scaling dimension of the field Dφ decreases and appears to
be heading toward 0 as d approaches some lower critical
dimension close to 1. This illustrates that the behavior found
at the LPA′ is not singular and may be (qualitatively at least)
representative of the truncated derivative expansion. We have
also computed the relevant eigenvalue 1/ν for dimensions ap-
proaching as much as possible (for the numerical resolution)
the lower critical dimension. One can see from Fig. 8 that the

FIG. 8. The relevant eigenvalue 1/ν obtained from the numerical
resolution of the ∂2 equations with the exponential IR cutoff function
and several values of the parameter α. It is plotted as a function of
1/ ln(1/ε̃). The red dashed line is the LPA′ behavior in ε̃

√
ln(1/ε̃)

which obviously does not fit the ∂2 data. Symbols represent every
100th data point.

behavior of 1/ν seems to be compatible with a dependence on
1/ ln(1/ε̃) as ε̃ → 0 and is different than what is obtained at
the LPA′ level. It is more in line with the anticipated exact
behavior predicted by the droplet theory, 1/ν ∝ 1/ ln(1/ε̃)
[21–23]. Work is now in progress to analytically solve the
fixed-point equation via singular perturbation theory along the
lines already used for the LPA′. However, the existence of two
coupled differential equations makes the problem much more
difficult.

APPENDIX D: FURTHER ANALYSIS OF THE ε̃ = 0
SOLUTION

To prove Eq. (24) we start from Eq. (22) where we re-
call that F (�) ≡ w(�) and �(w) = �

(d )
0 (w; 2 − d ). From the

analysis of the threshold functions in the preceding section,
one can infer that w(�) is a monotonically decreasing func-
tion that starts from +∞ when � = 0 and asymptotically goes
to the pole wP < 0 when � → +∞. In the regime of interest
where w0 = w(0) → w+

P and w∗ = w(ϕ∗) → +∞, the rele-
vant range of � is from �∗ ∼ αAd/w∗ → 0 [see Eq. (26)] to
�0 ∼ α(Ad/|wP|) ln w∗ → +∞ [see Eq. (43)].

Equation (22) can be rewritten as

∂�

∂ϕ
= −

√
d

vd

√
−

∫ �0

�

d�′w(�′), (D1)

with �(ϕ) a monotonically decreasing function between 0 and
ϕ∗. (Note that by definition

∫ �0

�∗
d�w(�) = 0.) This leads to

ϕ(�) =
√

vd

d

∫ �0

�

d�′√
− ∫ �0

�′ d�′′w(�′′)
. (D2)

We define �i and the associated field ϕi such that w(�i ) =
w(ϕi ) = 0. Then,

ϕi =
√

vd

d

∫ �0

�i

d�√
− ∫ �0

�
d�′w(�′)

, (D3)

where �i = �
(d )
0 (w = 0) is of O(1) and w(�) is monotoni-

cally decreasing and negative in the interval between �i and
�0. From the properties of the threshold functions it is easily
checked that that w(�) is concave: indeed, its second deriva-
tive is w′′(�) = −∂2

w�
(d )
0 (w)/[∂w�

(d )
0 (w)]3 with ∂w�

(d )
0 (w) =

−�
(d )
1 (w) < 0 and ∂2

w�
(d )
0 (w) = �

(d )
2 (w) > 0. In consequence,

when �i � � � �0,

|w0| � −w(�) � |w0| � − �i

�0 − �i
. (D4)

When inserted in Eq. (D3), after some elementary algebra
and using the asymptotic behavior of �0 when w∗ → ∞, this
implies that

√
2

2
π

√
αvd Ad

d w2
P

√
ln w∗ � ϕi � 2

√
αvd Ad

d w2
P

√
ln w∗, (D5)

which proves that ϕi ∼ √
ln w∗.
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To complete the demonstration for all ϕ’s between ϕi and
ϕ∗ we can rewrite Eqs. (D2) and (D3) as

ϕ∗ − ϕi =
√

vd

d

∫ �i

�∗

d�√∫ �

�∗
d�′w(�′)

. (D6)

By using the properties of the function w(�) we find that∫ �

�∗
d�′w(�′) is a monotonically increasing and concave

function of � for � � �i, which implies that

∫ �

�∗
d�′w(�′) �

∫ �i

�∗
d�w(�)

(
� − �∗
�i − �∗

)
. (D7)

Then,

ϕ∗ − ϕi �
√

vd

d

√
�i − �∗∫ �i

�∗
d�w(�)

∫ �i

�∗

d�√
� − �∗

� 2

√
vd

d

�i − �∗√∫ �i

�∗
d�w(�)

, (D8)

where we recall that �i = �
(d )
0 (w = 0) = O(1) and

�∗ ∼ αAd/w∗ → 0. After rewriting
∫ �i

�∗
d�w(�) =

− ∫ w∗
0 dww∂w�

(d )
0 (w), integrating by part and using the

properties of the threshold function �
(d )
0 , one obtains that

the integral behaves as αAd ln w∗ when w∗ 
 1. This finally

leads to

ϕ∗ − ϕi � 2
√

vd

αdAd

�
(d )
0 (w = 0)√

ln w∗
, (D9)

so that ϕ∗ ∼ ϕi ∼ √
ln w∗, as announced.

APPENDIX E: EIGENVALUE EQUATIONS

The linearized equation for the perturbation of the square-
mass function kλδw(ϕ) in Eq. (55) should be complemented
by linearized equations for the perturbation of the anomalous
dimension δη and of the minimum of the potential δϕm. That
for δη follows directly from the generalization of Eq. (12) to
all scales k where the derivatives of the potential are evaluated
at its running minimum ϕmk . It reads

δη =4vd

d

(
2w′(ϕm )m(d )

4,0(w(ϕm ); η)[δw′(ϕm ) + w′′(ϕm )δϕm]

+ w′(ϕm )2∂wm(d )
4,0(w(ϕm ); η)[δw(ϕm ) + w′(ϕm )δϕm]

+ w′(ϕm )2∂ηm(d )
4,0(w(ϕm ); η)δη

)
(E1)

and does not involve λ explicitly.
The flow equation for the k-dependent minimum which is

obtained from that of u′
k (ϕ) as

∂tϕmk = − (d − 2 + ηk )

2
ϕm,k − 2vd

w′
k (ϕmk )

wk (ϕmk )

× ∂w�
(d )
0 (w; ηk )|w=wk (ϕmk ). (E2)

Linearizing then leads to

λδϕm = −
[

(d − 2 + η)

2
+ 2vd�

(d )
1 (w(ϕm ); η)

(
w′(ϕm )2

w(ϕm )2
− w′′(ϕm )

w(ϕm )

)
− 4vd�

(d )
2 (w(ϕm ); η)

w′(ϕm )2

w(ϕm )

]
δϕm

+ 2vd

[
�

(d )
1 (w(ϕm ); η)

(
δw′(ϕm )

w(ϕm )
− w′(ϕm )δw(ϕm )

w(ϕm )2

)
+ 2�

(d )
2 (w(ϕm ); η)

w′(ϕm )δw(ϕm )

w(ϕm )

]
− δη

[
ϕm

2

+ 2vd∂η�
(d )
1 (w(ϕm ); η)

w′(ϕm )

w(ϕm )

]
, (E3)

where we have used the property of the threshold functions that ∂w�(d )
n (w; η) = −(n + 1)�(d )

n+1(w; η)

.
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