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Partisan voter model: Stochastic description and noise-induced transitions
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We give a comprehensive mean-field analysis of the partisan voter model (PVM) and report analytical results
for exit probabilities, fixation times, and the quasistationary distribution. In addition, and similarly to the noisy
voter model, we introduce a noisy version of the PVM, named the noisy partisan voter model (NPVM), which
accounts for the preferences of each agent for the two possible states, as well as for idiosyncratic spontaneous
changes of state. We find that the finite-size noise-induced transition of the noisy voter model is modified in the
NPVM leading to the emergence of intermediate phases that were absent in the standard version of the noisy
voter model, as well as to both continuous and discontinuous transitions.
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I. INTRODUCTION

The paradigmatic voter model [1,2] is a stochastic binary
state model of opinion formation in a population of interact-
ing agents that imitate each other at random. The imitation
mechanism accounts for the herding phenomena observed in
many social systems; indeed, not only has this model found
wide applicability in the analysis of electoral processes [3]
and language competition [4], among other phenomena, but
also similar herding mechanisms have been identified in other
distant fields such as biology, ecology, etc. [5]. The model ex-
hibits two absorbing states, known as consensus states, which
represent situations in which all agents have adopted the same
opinion. The standard voter model is characterized by the
absence of free parameters and therefore lacks the capacity
to describe the macroscopic transitions that occur in other
models of collective social behavior for critical values of the
parameters.

A variation of the model, known as the noisy voter model
[6–8], accounts for imperfect imitation in which agents can
change their state spontaneously, independent of the state
of the other agents. This idiosyncratic behavior prevents the
existence of absorbing states and competes with the herding
behavior. For a critical value of the parameter that measures
the relative strengths of herding and idiosyncratic behaviors,
there is a finite-size noise-induced transition from a state
dominated by herding to a state dominated by idiosyncratic
behavior. This transition shows up as a change in the relative
maxima of the stationary probability distribution [9,10]. Sim-
ilar transitions also appear in related models [11–13].

There are numerous other variants of the voter model,
including those with nonlinear interactions [14–17], effects of
aging [18,19], the presence of zealots [20,21], multiple states
[22], different preferences for the two possible states of agents
[23–25], and other modifications [2]. In this paper we focus
on the partisan voter model (PVM) [24,25], in which every
agent has a fixed preference for one of the two states. We also
introduce a noisy partisan voter model (NPVM), in which
agents, in addition to a preferred state, exhibit idiosyncratic
behavior with spontaneous change of state.

While in the voter model the ensemble average of the
proportion of agents in each state is a dynamically conserved
quantity, in the partisan voter model the dynamics selects a
state of the system which is not determined by the initial
proportion of agents in each state. The main question that we
address is how the noise-induced transition of the noisy voter
model is affected by the PVM’s dynamically selected solution.
We find that in the symmetric case, where half of the agents
prefer each state, the system undergoes a discontinuous transi-
tion where the probability distribution of the number of agents
in one state changes from unimodal to trimodal. For a general
proportion of agents preferring each state, we observe a rich
phase diagram with continuous and discontinuous finite-size
noise-induced transitions.

The paper is structured as follows: In Sec. II A we review
previous work of the partisan voter model [24,25] providing a
comprehensive mean-field theory. Additionally, in Sec. II B
we introduce a stochastic analysis of the model presenting
analytical results for the stationary probability distribution,
exit probabilities, fixation times, and quasistationary proba-
bility distribution. In Sec. III, we introduce the noisy partisan
voter model and study it in the mean-field case, discussing the
different noise-induced transitions. Finally, we conclude with
some general remarks in Sec. IV.

II. PARTISAN VOTER MODEL

We present the partisan voter model introduced in
Refs. [24,25]. The system consists of N agents, “voters,”
connected by links. Throughout this paper we limit ourselves
to the all-to-all connected topology, or complete graph where
each agent is connected to every other one. Voter i ∈ [1, N]
holds a binary state variable si ∈ {−1,+1}. This variable
might have different meanings depending on the context, such
as the language used by the speakers of a bilingual society
or the voter’s left or right political option, but its precise inter-
pretation does not concern us in this paper. Agents can change
their state by adopting the state of a randomly chosen neighbor
but, at variance with the standard voter model, independently
of its current state, every agent has an innate preference for
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one of the two states. Therefore we can have four different
types of agents, which we label as follows: i++, i+−, i−+, and
i−−, where the superscript indicates the preference and the
subscript indicates the state. The strength of the preference
is quantified with the parameter ε ∈ [0, 1], and although one
can be more general [25], we limit ourselves to the case in
which the strength ε is the same for all the voters. We denote
by q the fraction of agents that prefer to be in state +1.

The dynamics of the model is governed by the following
rules: With a constant rate h an agent, say, i, randomly selects
another agent, say, j, from the set of all its neighbors. Once
selected, there are two possible situations. If both agents are
in the same state (si = s j), nothing happens. If they are in
different states, the agent i changes state with a probability
that depends on its preference, according to the following
scenario:

i++ ⇒ i+− with probability
1 − ε

2
,

i+− ⇒ i++ with probability
1 + ε

2
,

i−− ⇒ i−+ with probability
1 − ε

2
,

i−+ ⇒ i−− with probability
1 + ε

2
.

If ε = 0, we recover the updating rules of the voter model,
in which the agent copies a neighbor with probability 1/2.
On the other hand, for ε = 1, the agent is a zealot that does
not change its state when it is aligned with its preference.
This latter extreme case will not be covered in this paper, and
instead, we have focused on small values of ε > 0. The system
also bears some similarities with the biased voter model,
where only a fraction of the population is biased towards
one of the two options while the rest of the population is
neutral [23]. As in the standard voter model, the system may
enter into an absorbing configuration from which no further
evolution is possible. The PVM presents two absorbing states
corresponding to the two configurations in which all agents
are in the same state, either +1 or −1. These are also known
as consensus states.

A. Rate equations and dynamical system

We first perform a deterministic analysis of the rate equa-
tions and the dynamical system in the mean-field limit,
suitable to the all-to-all connected topology in the thermo-
dynamic limit N → ∞. Let xa

b = na
b/N be the density of

ia
b-type agents. Considering the different possible interactions

between agents in opposite states, the rate equation for the
density of agents x+

+ reads [24]

dx+
+

dt
= x+

−x+
+ (1 + ε) + x+

−x−
+ (1 + ε)

− x+
+x−

− (1 − ε) − x+
+x+

− (1 − ε), (1)

where, without loss of generality, we have rescaled time to
dimensionless units as t → h

2 t . In the same way, one can
write down the rate equations for the densities x−

+ , x+
− , and

x−
− . The conservation of the number of agents, i.e., x+

+ + x−
+ +

x+
− + x−

− = 1, and the fact that the preference is fixed, i.e.,
x+
+ + x+

− = q and x−
− + x−

+ = 1 − q, allow us to describe the

system with just two independent variables. For convenience,
they have been chosen to be the difference � ≡ x+

+ − x−
− and

the sum � ≡ x+
+ + x−

− of the densities of the voters that are in
their preferred state. � can then be interpreted as the density
of “satisfied” agents, those whose state coincides with their
preference, while � is directly related with the magnetization
m = x+

+ + x−
+ − x+

− − x−
− as m = 1 − 2q + 2�. Due to their

definition, it is easy to see that not all the locations in the
(�,�) plane are allowed and that the values of these variables
are bounded to the rectangular area defined by

0 � � � 1,

� − 2(1 − q) � � � 2q − �,

−� � � � �,

q − 1 � � � q, (2)

as shown in Fig. 1.
Using the evolution equation (1) and similar ones for x−

+ ,
x+
− , and x−

− , one can derive the rate equations of � and �

[24,25]:

�̇ = ε� − 2ε�� + ε�(2q − 1), (3)

�̇ = 2q(1 + ε)(1 − q)

+�(1 + 2ε)(2q − 1) − � − 2ε�2. (4)

Note that for ε = 0, only one variable is needed to describe
the system as � is a constant given by the initial conditions.

For general 0 < ε < 1, the two consensus absorbing states
are fixed points of the dynamical equations.

Consensus−. The “consensus−” state (C−) is as follows:

(�,�) = (q − 1, 1 − q).

All the voters are in the state −1.
Consensus+. The “consensus+” state (C+) is as follows:

(�,�) = (q, q).

All the voters are in the state +1.
Note that once one of these two absorbing fixed points has

been reached, the stochastic dynamics is not able to exit from
it.

A third fixed-point solution is possible.
Self-centered. The self-centered state (S) is as follows:

(�,�) = (�∗, �∗) ≡
(

(1 + ε)(2q − 1)

2ε
,

1 + ε

2

)
.

However, this solution only fulfills the boundary conditions
given by Eqs. (2) when q satisfies

1 − ε

2
≡ q−

c � q � q+
c ≡ 1 + ε

2
. (5)

The self-centered solution represents a coexistence situation
in which agents in both states are present and a majority
of voters hold a state that agrees with their preference. At
variance with the consensus solutions C±, the stochastic rules
allow the system to exit the self-centered solution, as it is
nonabsorbing. For q = q−

c (q = q+
c ), the self-centered state

coincides with the C− (C+) consensus state.
The stability of the fixed points can be found by means of

a linear stability analysis. If q−
c � q � q+

c , the self-centered
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FIG. 1. Flow diagram in the phase space (�, �) for ε = 0.05 and q = 0.5, 0.51, 0.6 as indicated. The critical density of agents is q+
c =

0.525. The rectangle shows the allowed locations in the plane defined by Eqs. (2). Magenta arrows indicate the direction of the velocity
field. The larger the arrow, the greater the velocity. Solid (open) circles correspond to stable (saddle) fixed points. The blue lines indicate the
nullclines given by Eqs. (6) and (7). The black dashed lines and arrows display deterministic trajectories, starting from different locations at the
boundaries of the allowed region, obtained by a numerical integration of Eqs. (3) and (4) using the forward Euler method with an appropriate
time step.

solution is stable, while the consensus solutions are unstable
saddle points. If q � q−

c (q � q+
c ), the fixed point C− (C+)

becomes stable.
The nullclines of Eqs. (3) and (4), �̇ = 0 and �̇ = 0, are

[25]

� = �

1 + 2� − 2q
, (6)

� = −2ε�2 + 2q(1 + ε)(1 − q)

+�(1 + 2ε)(2q − 1), (7)

respectively. In Fig. 1, we display the phase space (�,�) for
three different values of q together with some deterministic
trajectories. The fact that the time derivative �̇ is proportional
to the preference ε, making it a slow variable in the small-ε
limit, has interesting consequences. As can be observed from
the numerical integration, trajectories tend toward the only
stable solution (either the self-centered point for q−

c � q � q+
c

or one of the consensus points otherwise) in two steps: First,
the variable �(t ) quickly evolves while �(t ) remains practi-
cally constant, until the nullcline �̇ = 0, Eq. (7), is reached.
Afterwards the trajectory follows closely that nullcline until
the fixed point is reached asymptotically. In this second stage,
one can obtain an accurate description by slaving the evolution
of �(t ) to that of �(t ) and write down a rate equation for the
slow variable �(t ) after substituting Eq. (7) into Eq. (3) as

�̇ = 2ε(� − q)(1 + � − q)((1 + ε)(1 − 2q) + 2ε�). (8)

The accuracy of this adiabatic elimination increases as the
strength of the preference ε decreases.

Although we can reach an understanding of the dynamics
of the model from the deterministic analysis, we must em-
phasize that from the stochastic point of view the behavior
will be rather different. Despite the existence of the stable
self-centered fixed point, the stochastic dynamics of the sys-
tem will inevitably reach one of the absorbing states. In the
next section, we will describe several relevant features of the
stochastic dynamics.

B. Stochastic analysis

Let W ±± ≡ W (� → � ± 1/N ; � → � ± 1/N ) be the
rates at which the global variables � and � evolve. Taking
into account the possible interactions between agents in the
all-to-all connected topology, those global rates are given by

W ++ = Nh

2
(1 − q + �)(2q − � − �)

(
1 + ε

2

)
,

W +− = Nh

2
(1 − q + �)(� − �)

(
1 − ε

2

)
,

W −+ = Nh

2
(q − �)(2 − 2q + � − �)

(
1 + ε

2

)
,

W −− = Nh

2
(q − �)(� + �)

(
1 − ε

2

)
. (9)

In Fig. 2 we plot one stochastic trajectory in the symmetric
case q = 1

2 and ε = 0.1. Despite the stochastic behavior, we
can identify similarities with the deterministic trajectories of
Fig. 1. Although the trajectory is attracted toward the self-
centered fixed point (�∗, �∗), it fluctuates along the nullcline
�̇ = 0 until it eventually falls into the absorbing state C+.
Note that the fast variable � fluctuates slightly around �∗,
while the slow variable � performs much larger fluctuations
before both of them reach the absorbing state C+.

Using standard techniques [27,28], one can write down the
corresponding master equation of the process for the probabil-
ity P(�,�; t ) of the values � and � at a time t using the rates
of Eq. (9). However, the resulting equation is too complicated,
and we have not been able to find its solution even in the
stationary situation. In order to make progress, we will use the
adiabatic elimination technique [29], which applies when the
variables of a dynamical system present different time scales,
as is the case here, for sufficiently small preference ε. The
aim is to describe approximately the behavior of the system at
long time scales by eliminating the fast variable that quickly
reaches a stationary value associated with a given value of the
slow variable.
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FIG. 2. Plot of a typical trajectory of the stochastic partisan voter model defined by the rate equation (9). The starting point is (�,�) =
(0, 0). Left: Time evolution of both � and �. The dashed black line indicates the value of the self-centered solution, (�∗, �∗) = (0, 0.55).
Right: Stochastic trajectory in the phase space (�,�). Darker areas indicate where the system stays for longer time. The magenta line represents
the nullcline �̇ = 0 of Eq. (7). Parameter values: N = 1000, ε = 0.10, q = 0.50. All the computer simulations whose results are shown in this
paper have been performed using the Gillespie algorithm [26,27].

Here, the adiabatic elimination is implemented using a
reduction method proposed in Ref. [30]. Let us write the joint
probability density function of the system taking values � and
� at time t as

P(�,�; t ) = P(�; t )P(� |�; t ), (10)

where P(� |�; t ) is the conditional probability density to
obtain � given � at a time t and P(�; t ) is the probability
density to obtain � at the same time. Due to the dynamics
of the fast variable, the conditional probability distribution
quickly tends to a narrow and sharp curve centered on the
value given by the nullcline �̇ = 0. Therefore � is directly
determined from �, and one can write down an effective
stochastic dynamics only taking into consideration the vari-
able �. Substituting Eq. (7) into Eqs. (9), one can write down
the effective global rates of this stochastic dynamics as

W +(�) ≡W ++ + W +−

= N

2
(q − �)(1 − q + �)

× (1 − ε − 2ε2(1 + �) + 2εq(1 + ε)),

W −(�) ≡W −+ + W −−

= N

2
(q − �)(1 − q + �)

× (1 + ε + 2�ε2 − 2εq(1 + ε)). (11)

Starting from those rates, one can write down the Fokker-
Planck equation of the reduced model using a standard
approach [27,28],

∂P(�; t )

∂t
= HP(�; t ), (12)

where the operator H is defined as

H = − ∂

∂�
F (�) + ∂2

∂�2
D(�). (13)

The functions F (�) = (W +(�) − W −(�))/N and D(�) =
(W +(�) + W −(�))/N2 are commonly called drift and diffu-
sion, respectively, and, for this model, are given by

F (�) = −ε(q − �)(1 − q + �)(2�ε − (1 − 2q)(1 + ε)),

D(�) = 1

2N
(1 − ε2)(q − �)(1 − q + �). (14)

We limit ourselves to analyzing the stationary distribution
Pst (�), which can be expressed, after setting the left-hand side
to 0 in Eq. (12), as an exponential function,

Pst (�) = Z−1 · exp [−V (�)], (15)

where Z is the normalization constant and V (�) is a “poten-
tial function” given by

V (�) =
∫ � −F (z) + D′(z)

D(z)
dz. (16)

In our particular case, the stationary distribution reads

Pst (�) = Z−1 exp
[− β

2 �2 − γ�
]

(q − �)(1 − q + �)
, (17)

where the parameters β and γ are given by

β = 4Nε2

1 − ε2
,

γ = 2Nε

1 − ε
(1 − 2q), (18)

and where the normalization constant Z has to be determined
with the condition

∫ q
q−1 Pst (�)d� = 1. However, this integral

diverges in both the limit � = q − 1 and the limit � = q, and
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FIG. 3. Left: Probability Pq(�) to reach the consensus state +1, as a function of the initial condition � for different fractions of agents
q = 0.5, 0.51, 0.52, 0.55, 0.6 as indicated for a system size N = 1000. Right: Pq(� = q − 1

2 ) vs the system size for different fractions of
agents q = 0.5, 0.51, 0.525, 0.53, 0.55 as indicated. In both panels the preference is ε = 0.05. Solid lines correspond to the analytical result
given by Eq. (24), while symbols indicate the results of computer simulations of the complete model.

therefore the stationary distribution cannot be normalized. We
interpret this result as follows: Consensus configurations are
the only absorbing states, and they are reached with probabil-
ity 1 in a finite-size system. The probability of reaching one
or the other consensus state depends on the initial condition
�0. Hence the stationary probability distribution must include
a sum of Dirac delta functions in the two absorbing states
weighted with the probability of reaching each one of them,

Pst (�|�0) = Pq(�0)δ(� − q)

+ (1 − Pq(�0))δ(� − q + 1), (19)

where Pq(�0) is the exit (or fixation) probability, defined as
the probability that a finite system with an initial configuration
�0 reaches a consensus to the absorbing state � = q. In the
following, we study the exit probability in order to determine
the weights of each Dirac delta of Eq. (19).

1. Exit probability

The probability Pq(�) of reaching a consensus on the ab-
sorbing state +1 starting from an initial condition �0 = � can
be shown to satisfy the recurrence relation [31]

(W +(�) + W −(�))Pq(�)

= W +(�)Pq(� + 1/N ) + W −(�)Pq(� − 1/N ) (20)

with boundary conditions Pq(q − 1) = 0 and Pq(q) = 1. Al-
though a rigorous treatment of this recursion relation is rather
complicated, an approximate solution can be obtained by ex-
panding Eq. (20) up to second order in 1/N , leading to

d2Pq

d�2
= (β� + γ )

dPq

d�
, (21)

with the same boundary conditions. Note that this equa-
tion can also be written as

H+Pq = 0, (22)

where H+ is the adjoint operator of the Fokker-Planck equa-
tion, Eqs. (12) and (13),

H+ = F (�)
∂

∂�
+ D(�)

∂2

∂�2
. (23)

The solution of Eq. (21) for the aforementioned boundary
conditions is given by

Pq(�) =
erfi
(√

β

2

(
� + γ

β

))− erfi
(√

β

2

(
q − 1 + γ

β

))
erfi
(√

β

2

(
q + γ

β

))− erfi
(√

β

2

(
q − 1 + γ

β

)) , (24)

where erfi(·) is the imaginary error function defined as
erfi(z) = −i erf (iz) in terms of the standard error function
erf (·). Specifically, in the symmetric case q = 1

2 , Eq. (24)
takes the following form:

P1/2(�) = 1

2

⎡
⎢⎣1 +

erfi
(√

β

2 �
)

erfi
(

1
2

√
β

2

)
⎤
⎥⎦. (25)

Note that for β = 0 (ε = 0) we recover the expression of the
standard voter model, P1/2(�) = 1

2 + � = σ , with σ being
the density of voters in the state +1.

In the left panel of Fig. 3 we display the exit probability
Pq(�) as a function of the initial condition �. The results
of the numerical simulations of the model agree very well
with the analytical solution given by Eq. (24). This indi-
cates that the adiabatic elimination technique is a reliable
approximation for the small value ε = 0.05 taken in the fig-
ure. Furthermore, in Appendix A we show that the adiabatic
approximation matches well the results coming from a numer-
ical solution of the master equation of the complete model
without the adiabatic elimination. Regarding the asymmetric
case q 	= 1

2 , a slight increase in q (q = 0.51 or q = 0.52)
significantly increases the exit probability. When q = 0.60,
the system predominantly converges to the consensus state
+1 for a vast majority of the initial conditions. In fact, in this
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case, the dependence of the fixation probability on the initial
magnetization is very similar to the one found in the biased
voter model [23]. Focusing on the symmetric case (q = 1

2 , or
γ = 0), we notice that the slope of Pq(�) is higher near the
absorbing states than in the rest of the interval. At the center
of the interval � = 0, the exit probability is 1

2 . In the right
panel of Fig. 3, we plot the exit probability versus the system
size N while the preference ε is fixed for the initial condition
� = q − 1

2 . In the symmetric case, the fixation probability
remains at 1

2 , while in the asymmetric case the exit probability
tends to 1. In principle, substitution of Eq. (24) into Eq. (19)
leads to the determination of the stationary distribution. How-
ever, a word of caution is required concerning the situation in
the thermodynamic limit N → ∞. As, in this limit, Eq. (24)
becomes independent of the initial condition,

lim
N→∞

Pq(�) =

⎧⎪⎪⎨
⎪⎪⎩

0 if q < 1
2

1
2 if q = 1

2

1 if q > 1
2 ,

(26)

we obtain

lim
N→∞

lim
t→∞ P(�; t )

=

⎧⎪⎪⎨
⎪⎪⎩

δ(� + 1 − q) if q < 1
2

1
2

(
δ
(
� − 1

2

)+ δ
(
� + 1

2

))
if q = 1

2

δ(� − q) if q > 1
2 .

(27)

This result implies that the system will surely reach the
most favored absorbing state, while in the symmetric case,
it is equiprobable to end up in any of the absorbing states.
This seems to be in contradiction with the mean-field analysis,
which states that the final state of the system is the only
stable fixed point, including the self-centered solution when
available, and the fact that the mean-field description is valid
in the thermodynamic limit. The answer to this contradiction
lies in the fact that the stationary distribution in the mean-field
description is obtained taking first the N → ∞ limit and then
the t → ∞ limit, and that these two limits do not commute.
Taking the infinite-time limit first, we obtain Eq. (27), while
taking the thermodynamic limit first, the stationary probability
distribution reads

lim
t→∞ lim

N→∞
P(�; t )

=

⎧⎪⎪⎨
⎪⎪⎩

δ(� + 1 − q) if q � q−
c

δ(� − �∗) if q−
c � q � q+

c

δ(� − q) if q � q+
c .

(28)

We then recover the mean-field result: The system always
ends up in the stable fixed point. The location of the fixed
point depends on the value of q: Self-centered if q−

c � q �
q+

c , or the corresponding consensus state otherwise.
In the following, we determine the average time a finite

system needs to reach one of the absorbing states.

2. Time to reach consensus

Given an initial condition �0 = �, τ (�) is defined as the
average time to reach any of the two possible consensus states.

−0.4 −0.2 0.0 0.2 0.4 0.6
Δ

0

500

1000

1500

2000

τ (Δ)

q

0.5

0.51

0.52

0.55

0.6

FIG. 4. Plot of the average time τ to reach an absorbing state,
in units of Monte Carlo steps (MCS), as a function of the initial
condition � for different fractions of agents q = 0.50, 0.51, 0.52,

0.55, 0.6 as indicated. Solid lines correspond to the analytical result
given by Eq. (B3), while symbols indicate the results of computer
simulations of the complete model. Parameter values: N = 1000,
ε = 0.05.

This time can be obtained from the transition rates by means
of the relation [31]

W +(�)τ (� + 1/N ) + W −(�)τ (� − 1/N )

− [W +(�) + W −(�)]τ (�) = −1, (29)

with boundary conditions τ (q − 1) = τ (q) = 0.
As before, an approximate solution of this recurrence rela-

tion can be obtained by expanding it up to the second order in
1/N , arriving at

d2τ

d�2
=(β� + γ )

dτ

d�
− 2N

1 − ε2

1

(q − �)(� − (q − 1))
,

(30)

with the same boundary conditions. This equation can also
be obtained using the adjoint operator of the Fokker-Planck
equation H+ [Eq. (13)] [32]

H+τ = −1. (31)

We relegate the complicated expression for the solution of
this differential equation to Appendix B; see Eq. (B3). In
addition, in Appendix C we check the reliability of the adia-
batic approximation by comparing its results with a numerical
solution of the exact equation of the complete model without
the adiabatic elimination. In Fig. 4, we plot the time to reach
consensus τ versus the initial condition � for several values
of q, as obtained in Appendixes B and C. For q > 1

2 , the
absorbing states are no longer equivalent, and therefore τ is
no longer symmetric with respect to its value for � = 0. As
q increases, the time to reach consensus decreases, and the
maximum of the distribution moves toward the disfavored
absorbing state � = q − 1.
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FIG. 5. Left: Plot of the logarithm of the average time τ to reach an absorbing state, in units of MCS, vs the system size N for q =
0.5, 0.51, 0.525 (= q+

c ) as indicated. Short dashed lines correspond to the exponential dependence of τ with N given by Eq. (32). Right: Plot
of the average time τ to reach an absorbing state, in units of MCS, vs the logarithm of the system size N for q = 0.525 (= q+

c ), 0.53, 0.55 as
indicated. Short dashed lines indicate the best linear fit to the last points of the curve. Inset: Log-log plot of τ vs N for q = q+

c = 0.525. The
dashed line corresponds to a straight line with slope 1

2 . In both panels, solid lines correspond to the solution of Eq. (30) explicitly given by
Eqs. (B1) and (B3), while symbols indicate the results of computer simulations of the complete model. Parameter values: ε = 0.05, � = q − 1

2 .

Taking the limit N → ∞ and considering q−
c < q < q+

c ,
the analytical expression given by Eq. (B3) simplifies to

lim
N→∞

τ (�) ∼ exp

[
β

8

(
1 − |1 − 2q|

ε

)2
]
, (32)

which means that the initial condition does not matter for
large systems, and it implies that the time to reach the absorb-
ing state depends exponentially on the system size N , since
β = 4Nε2

1−ε2 as shown in the left panel of Fig. 5. Note that the
exponent becomes zero for q = q±

c . Equation (32) agrees with
the result obtained by the Wentzel-Kramers-Brillouin (WKB)
theory [33]. In fact, this behavior can be understood as writing
the dynamical equation in terms of a gradient in a potential
function [34] �̇ = − ∂V

∂�
. For q−

c < q < q+
c , the self-centered

solution is stable, while the consensus absorbing fixed points
are unstable. For any initial condition different from the
consensus states, the system will approach the self-centered
solution and stay around it until a large fluctuation, enough
to cross the potential barrier, takes it to the absorbing state.
The time required for this to happen follows an exponential
Arrhenius law in which the inverse of the system size is a
measure of the noise intensity [32]. On the other hand, for
q > q+

c (q < q−
c ) the consensus solution � = q (� = q − 1)

becomes stable and the self-centered fixed point disappears, so
that the system approaches the favored absorbing solution in a
deterministic way. Based on general arguments, a monotonous
decay in the potential yields a logarithmic dependence of the
time to reach consensus on the system size, as shown in the
right panel of Fig. 5. This is the same dependence found in
the biased voter model [23]. The transition between the expo-
nential and logarithmic regimes occurs through a power-law
behavior for q = q+

c . As evidenced in the inset in the right
panel of Fig. 5, we find numerically that this power law is
consistent with an exponent 1

2 .

3. Quasistationary probability distribution

In this section, we study the behavior of a finite sys-
tem in which the self-centered solution exists, i.e., for q−

c �
q � q+

c , and is assumed to survive for a long time, before
reaching the absorbing state. The quasistationary distribution,
formally defined as the conditioned probability Pqst(�) =
limt→∞ P(�, t |� 	= q,� 	= 1 − q), captures the long-term
behavior of a process that has not yet reached the absorbing
state [35]. The quasistationary distribution can be analyzed
using the method proposed in Ref. [36], whose details are
given in Appendix D. From a numerical point of view, the
quasistationary distribution is obtained by averaging over time
(after an initial transient) and including only those trajectories
that have not reached any of the absorbing states.

In Fig. 6, we compare the exact solution and the sim-
ulations of the complete model. In both symmetric and
asymmetric cases the obtained results agree well with the
exact solution. In the case q = 0.5, the quasistationary dis-
tribution is symmetric around its maximum located at the
self-centered fixed point � = 0. In the asymmetric case
q = 0.55, the distribution is asymmetric around a maximum
located at � ≈ 0.393, a value near, but larger than, the
self-centered solution �∗ = 1+ε

2ε
(2q − 1) = 0.383 . . . . This is

consistent with what we observe in stochastic trajectories: The
system tends to the deterministic solution S and remains in its
vicinity until a finite-size fluctuation takes it to one of the two
absorbing states.

III. NOISY PARTISAN VOTER MODEL

We here introduce the noisy partisan voter model including
what is known as idiosyncratic changes of state or “noise.”
These changes mimic the mechanism of imperfect imitation
by which an agent can, spontaneously and independently from
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FIG. 6. Quasistationary distribution of �. Symbols correspond
to computer simulations of the complete model, while lines
correspond to the solution explained in Appendix D. Vertical
dashed lines correspond to the value of the self-centered solution
�∗ = 1+ε

2ε
(2q − 1). Parameter values: N = 1000, ε = 0.15.

the state of its neighbors, change state at a constant rate a. This
mechanism has been previously implemented in the standard
voter model without preference, resulting in the so-called Kir-
man’s model [6–8,37], also known as the noisy voter model.
The main result of the noisy voter model is that it displays a
finite-size noise-induced transition between polarization and
consensus for a critical value of the ratio of herding to idiosyn-
cratic rate a

h . This critical value depends on the system size N
such that it tends to zero as N tends to infinity. The noiseless
partisan voter model (a = 0) studied in Sec. II depends on
the strength of the preference ε, but it does not present such
a transition between polarization and consensus. Our aim in
this section is to extend the previous study including noise in
the form of idiosyncratic changes of opinion and analyze the
role of both the preference of the voters ε and the fraction q
of agents that prefer to be in each state in the aforementioned
transition.

The stochastic dynamics of the model is modified in the
following way: An agent, say, i, changes its state indepen-
dently from its neighbors at a constant rate a and selects one
of its neighbors at a rate h. After selection, agent i follows the
dynamic rules explained in Sec. II. Depending on the ratio a

h ,
an agent will be more likely to change its state spontaneously
or by copying its neighbors. The most relevant change caused
by the addition of noise is the disappearance of absorbing
states in the system. As in Sec. II, we first make a deterministic
analysis of the rate equations and the dynamical system in the
mean-field limit before studying the model from the stochastic
point of view.

A. Rate equations and dynamical system

The same set of independent variables, � and �, is used for
the analysis. By adding idiosyncratic updates at rate a, Eqs. (3)
and (4) become

d�

dt
= ε� − 2ε�� + ε�(2q − 1) + 2a

h
(2q − 1 − 2�),

(33)

d�

dt
= 2(1 + ε)(1 − q)q + �(1 + 2ε)(2q − 1)

−� − 2ε�2 + 2a

h
(1 − 2�), (34)

where again we have rescaled time conveniently, t → h
2 t . The

determination of the fixed points of this dynamical system
leads to a third-degree algebraic equation that can be solved
using standard methods. The main feature is that when a > 0,
there is only one single fixed point which is always stable. For
a particular value of q, the fixed point for a > 0 corresponds
to a shift of the stable fixed point that was present at a = 0. As
the noise intensity a increases, the fixed point moves toward
the middle point (�0, �0) ≡ (q − 1

2 , 1
2 ) corresponding to a

situation in which there are the same number of agents in each
state.

For future reference, we write here the nullclines of
Eqs. (33) and (34), �̇ = 0 and �̇ = 0, which are

� = �

1 − 2q + 2�
+ 2a

hε
, (35)

� = −2�2ε + 2q(1 + ε)(1 − q)−�(1 + 2ε)(1 − 2q) + 2a
h

1 + 4a
h

,

(36)

respectively.

B. Stochastic model

Taking into account the possible interactions between
agents in the all-to-all connected topology, the global transi-
tion rates in terms of � and � are given by

W ++ = Nh

2

[
a

h
+ (1 − q + �)

(
1 + ε

2

)]
(2q − � − �),

W +− = Nh

2

[
a

h
+ (1 − q + �)

(
1 − ε

2

)]
(� − �),

W −+ = Nh

2

[
a

h
+ (q − �)

(
1 + ε

2

)]
(2 − 2q + � − �),

W −− = Nh

2

[
a

h
+ (q − �)

(
1 − ε

2

)]
(� + �), (37)

from which a master equation for the time evolution of the
two-variable probability P(�,�; t ) can be obtained. Again,
this master equation is too complicated, and we have not
been able to extract from it any useful analytical information.
However, as we can see in Fig. 7, despite the noise contribu-
tion, the stochastic trajectories still stay around the nullcline
�̇ = 0, Eq. (36). Hence we use the adiabatic elimination
technique and simplify the description using only the slow
variable �. The resulting drift and diffusion coefficients of
the Fokker-Planck equation for P(�, t ), Eq. (12), are given in
Appendix E. The main difference between this model and the
PVM without noise is that, due to the absence of absorbing
states, the stationary distribution Pst(�) can be obtained di-
rectly as it does not contain any singularities. Pst(�) depends
on the system size N , the fraction q of agents that prefer to
be in state +1, the preference ε, and the noise intensity a

h .
In the following, we will analyze the stationary distribution
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FIG. 7. Stochastic trajectory in the phase space (�, �). Darker
areas indicate where the system stays for longer time. The circles
with white centers are the consensus absorbing states. The circle
with a black center represents the self-centered solution given by
Eqs. (33) and (34). The magenta line displays the nullcline �̇ = 0
given by Eq. (36). Parameter values: N = 1000, ε = 0.05, q = 0.5,
a = 0.000 35, h = 1.

Pst(�) as the noise increases, fixing N and using different
combinations of q and ε, treating separately the symmetric,
q = 1

2 , and nonsymmetric, q > 1/2, cases.

1. Symmetric case

The stationary distribution Pst(�) of the Fokker-Planck
equation (12) obtained from Eqs. (15) and (16) using the drift
and diffusion coefficients of Eq. (E2) in the case q = 1/2
reads

Pst (�) =Z−1exp

[
−2N�2ε2

4a
h + 1 − ε2

]

×
[(a

h

)(4a

h
+ 1

)
+
(

4a

h
+1 − ε2

)(
1

4
−�2

)]λ

,

λ = a

h

2N(
4a
h + 1 − ε2

)2
(

4a

h
+ 1

)(
4a

h
+ 1 − 2ε2

)
− 1,

(38)

where the normalization constant Z cannot be expressed in
terms of elementary functions and has to be determined nu-
merically. In the limiting case of vanishing preference, ε = 0,
we recover the known stationary distribution of the noisy voter
model which displays a finite-size transition from a bimodal
to a unimodal distribution passing through a flat distribution
for a

h = 1
2N [6]. For general ε > 0, the system exhibits in the

(ε, a
h ) parameter space three distinct regimes characterized by

a different shape of the stationary distribution. These regimes
are separated by two transition lines as shown in Fig. 8.

Region I. For a
h > 0, the distribution is trimodal in region

I. The condition for three maxima to exist is that the exponent
that appears in Eq. (38) is negative, λ < 0. The maxima, at
the boundaries � = ± 1

2 and the center � = 0, are located at
the three fixed points of the noiseless dynamics. As a

h or ε

increases, the central peak becomes progressively larger until
all three maxima of Pst (�) are of equal value.

Transition line ( a
h )c. The ( a

h )c transition line separates re-
gions I and II, and it describes a discontinuous noise-induced
transition. When the system crosses ( a

h )c, there is an abrupt
shift of the absolute maximum of the stationary distribution
from � = ±1/2 to � = 0. The transition line intercepts the
horizontal axis ( a

h )c = 0 at a critical value εc, such that for
ε > εc the system avoids region I altogether. This transition
line has to be determined numerically, and we just plot it in
Fig. 8.

Region II. Although the stationary distribution remains tri-
modal in region II, the central maximum is now larger than the
two maxima at the borders. Still it is λ < 0, but as the ratio a

h
increases, the lateral maxima decrease until they disappear at
the critical value ( a

h )∗c .
Transition line ( a

h )∗c . The ( a
h )∗c transition line, defined by

the condition λ = 0, corresponds to the boundary between
regions II and III, indicating the values at which the lateral
maxima disappear. When crossing this line from region II,
the stationary probability distribution becomes unimodal. The
transition line ( a

h )∗c has a complicated analytical expression
that can be obtained by standard methods solving the equation
λ = 0. Instead we plot the location of the line in Fig. 8.

Region III. The stationary probability distribution in region
III is unimodal. As the ratio a

h increases, the maximum at
� = 0 increases its value, such that Pst(�) becomes a sharper
function of its argument.

The inset in Fig. 8 demonstrates that both transition lines
decrease their values as the system size increases, indicating
that they are finite-size transitions. In fact, we have found
empirically that the two transition lines can be fitted to the
scaling forms

(a

h

)
c
= N−1�(Nαε),(a

h

)∗

c
= N−1�∗(ε), (39)

with an exponent α = 0.439 determined numerically. To show
the validity of this scaling relation, we show in Fig. 9 a col-
lapse of the data for different values of the system size N . In
the thermodynamic limit N → ∞, regions I and II disappear,
and the system only presents a unimodal distribution located
at the center of the interval � = 0. Additionally, the stationary
probability distribution in each region together with represen-
tative trajectories of the dynamics is displayed in Fig. 10.

2. Asymmetric case

The explicit solution for the stationary distribution Pst(�)
obtained from Eqs. (15) and (16) using the drift and diffu-
sion coefficients of Eq. (E2) for a general value of q is too
cumbersome and will not be presented here. In Fig. 11, we
display the different regions of the parameter diagram ( a

h , ε)
for fixed q according to the different shapes that Pst(�) might
take. All of our subsequent discussion will consider only the
case q > 1/2, and for concreteness, in Fig. 11 we have used
q = 0.6. Let us now describe in detail the different regions
and possible transitions among them.
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FIG. 8. Left: Parameter diagram (ε, a
h ) for the different regimes of the stationary probability distribution Pst (�) in the symmetric case q = 1

2
for a system size N = 1000. Golden-colored circles indicate the transition points between different phases along the path of the dashed line
with arrows. Inset: Comparison of the parameter diagram (ε, a

h ) for system sizes N = 1000, 2000 as indicated. Right: Location of the maximum
or maxima of the stationary probability distribution as a function of the ratio a

h corresponding to the vertical dashed line of the left panel. Light
lines indicate the existence of the maximum or maxima, while dark lines indicate the absolute maximum or maxima. Golden-colored circles
indicate where the three maxima are equal. Parameter values: N = 1000, ε = 0.05.

Region IV. The stationary probability distribution in region
IV is bimodal. The maximum corresponding to consensus in
the preferred state, � = q, is much larger than the maximum
at the nonpreferred state, � = −1 + q. As a

h or ε increases,
the smaller maximum decreases even further until it disap-
pears at the transition line ( a

h )∗s into region V. Although not
visible at the scale of the figure, except when moving along
the line ε = 0, there is no intersection between regions IV and
III, and a path leading from region IV to region III must pass
necessarily through region V.

Region V. The stationary distribution in region V is uni-
modal. The maximum is located at the preferred state � = q.
For fixed ε, an increase of a

h beyond the value ( a
h )∗c leads

to the transition to region III. Alternatively, for fixed a
h , an

increase of ε beyond the transition line labeled ( a
h )s, and that

corresponds to the vertical line determined by ε = 2q − 1,
leads to region I.

Region I. The stationary probability distribution in region
I is bimodal. The absolute maximum is still located at the
boundary � = q. When crossing from region V the transition
line labeled ( a

h )s, a second maximum begins to appear starting
at the same value � = q. As ε or a

h increases, this second
maximum moves to the center of the � interval and grows
until both maxima become equal in height when the system
crosses the transition line ( a

h )c towards region II. Except when
moving along the line ε = 2q − 1, there is no path leading
directly from region I to region III.

Region II. The stationary probability distribution is still
bimodal. The larger maximum is located close to the self-
centered value � = �∗(a), while the smaller maximum is in
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FIG. 9. Critical lines ( a
h )c (left) and ( a

h )∗c (right) rescaled by the factor N vs the preference ε rescaled by Nα (left) and without rescaling
(right) for several values of the system size N . The best fit has been obtained with an exponent α = 0.439.
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FIG. 10. Stationary probability distribution Pst (�) for a
h =

0.000 35, 0.000 45, 0.001, as indicated, in the symmetric case q =
1/2. Symbols correspond to computer simulations of the complete
model, while solid lines display the solution given by Eq. (38). Insets:
Typical trajectories in each region. The range of values of � in the
insets is always [− 1

2 , 1
2 ]. Parameter values: N = 1000, ε = 0.05.

the preferred state � = q. As a
h or ε increases, the second

maximum disappears when crossing the line ( a
h )∗c towards

region III.
Region III. The probability distribution in region III is

unimodal. This region can be reached directly from regions V
and II when crossing the respective transition lines. As a

h or ε

increases within region III, the maximum grows and moves
toward the center, � = �0, of the interval of the allowed
values for � ∈ (−1 + q, q).
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FIG. 11. Parameter diagram (ε, a
h ) indicating the different regimes of the stationary probability distribution Pst (�). The vertical and

horizontal dashed lines with arrows display the two paths, one of increasing a
h and the other of increasing ε, that have been used in Figs. 12

and 13. Golden-colored circles indicate the transition points along the paths of the dashed lines. Parameter values: N = 1000, q = 0.6. Inset:
Comparison of the transition lines for system sizes N = 1000, 2000 as indicated.

Regions I, II, and III have a correspondence with the re-
gions of the same name in the symmetric case, but the shape
of the probability distribution is modified under the presence
of the symmetry-breaking condition q 	= 1/2. Regardless of
the value of q, regions I and II are regions in which the
probability distribution is bimodal. The relative maximum that
is not at the extreme of the interval reflects the existence
of the self-centered solution for a = 0. Region III displays
a single-maximum, noise-dominated probability distribution.
In regions IV and V, there is no self-centered solution, and
the dominance of the maximum at the consensus solution
�= q arises from the symmetry-breaking condition q > 1

2 .
As shown in the inset in Fig. 11, regions IV, V, I, and II
become smaller as the system size increases. In the thermody-
namic limit, only region III persists, and the maximum of the
stationary probability distribution is located at the correspond-
ing position of the stable fixed point of the rate equations.

In the left panel of Fig. 12, we fix ε < 2q − 1 and plot
the stationary probability distribution, together with represen-
tative trajectories, for several values of a

h , which correspond
to points along the vertical dashed line in Fig. 11. As shown
in the right panel of Fig. 12, when crossing the line ( a

h )∗c ,
the system undergoes a continuous noise-induced transition,
as indicated by a continuous decrease of the location of the
absolute maximum of the probability distribution. The value
of transition point ( a

h )∗c decreases as the system size N in-
creases, indicating that this transition will disappear in the
thermodynamic limit. Note that the location of the maximum
of the probability distribution of region III does not corre-
spond to the stable deterministic solution, but they approach
each other as the system size increases.

In the left panel of Fig. 13, we fix a
h < ( a

h )c(ε = 0)
and plot the stationary probability distribution, together with
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FIG. 12. Left: Stationary probability distributions as a function of � along the vertical dashed line in Fig. 11. Symbols correspond to
computer simulations of the complete model, while lines are the stationary solution of the Fokker-Planck equation given by Eqs. (15) and (16)
with the drift and diffusion coefficients of Eq. (E2). Parameter values: N = 1000, a

h = 0.0005, 0.000 55, 0.0008, 0.005, 0.1. Insets: Typical
trajectories of the dynamics. The range of values of � in the insets is always [−1 + q, q]. Right: Location of the maximum of the stationary
probability distribution vs a

h along the vertical dashed line Fig. 11 for different system sizes N = 1000, 2500, 10 000 as indicated. The solid
black line indicates the position of the stable fixed point solution of Eqs. (33) and (34). Common parameter values: q = 0.6, ε = 0.1.

representative trajectories, for several values of ε, which cor-
respond to points along the horizontal dashed line in Fig. 11,
passing through regions IV → V → I → II. In the right panel
of Fig. 13, we plot the maxima of the probability distribution
as a function of ε when moving along this line. Most notice-
ably, the transition from regions I and II, when crossing the
line ( a

h )c, is discontinuous as there is an abrupt shift of the
absolute maximum of the probability distribution, while in the
transitions from region IV to region V and from region V to
region I the location of the absolute maximum does not vary.

IV. SUMMARY AND CONCLUSIONS

In this paper we have studied the impact of including the
agent’s preference for one of the two states in both the voter
model and the noisy voter model. Regarding the partisan voter
model, we have revisited the model from the deterministic
point of view, and we present a thorough stochastic anal-
ysis of the model. We have used an adiabatic elimination
technique by taking advantage of the different time scales
of the variables. The results of both the exit probability
and fixation time derived using the adiabatic approximation
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FIG. 13. Left: Stationary probability distributions as a function of � along the horizontal dashed line in Fig. 11. Symbols correspond to
computer simulations of the complete model, while lines are the stationary solution of the Fokker-Planck equation given by Eqs. (15) and (16)
with the drift and diffusion coefficients of Eq. (E2). Parameter values: ε = 0.003, 0.05, 0.215, 0.23, 0.35. Insets: Typical trajectories of the
dynamics. The range of values of � in the insets is always [−1 + q, q]. Right: Location of the maxima of the stationary probability distribution
vs ε along the vertical dashed line in Fig. 11. Light circles correspond to the existence of a relative maximum, while dark circles indicate the
absolute maximum. Common parameter values: N = 1000, q = 0.6, a

h = 0.0004.
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have been compared with those obtained with the complete
model substantiating the validity of this approximation for
ε � 1. For a finite system, the stationary probability dis-
tribution Pst (�) has two delta functions in the absorbing
states � = q, 1 − q weighted with the probability of reach-
ing one of them. We have found an analytical expression
for the exit probability. For large N , the system ends up in
any absorbing state with equiprobability if q 	= 1

2 or in the
favored state otherwise. For a finite system, one of the two
absorbing states is reached in a finite time τ . In addition, for
large enough systems we demonstrate that the fixation time
exponentially depends on the system size. Finally, the sys-
tem exhibits constant probability distribution before reaching
an absorbing state, i.e., a quasistationary distribution, whose
maximum is located at the self-centered fixed point, if it exists,
i.e., q−

c < q < q+
c .

Regarding the noisy partisan voter model, the description
of the system has been simplified again with the adiabatic
elimination technique. Using this approximation, we have
found the transition lines for the noise-induced transitions that
occur in this model and that differ in nontrivial ways from
those that appear in the ordinary noisy voter model. On the
one hand, in the symmetric case, we have found three different
regions separated by two transition lines in the parameter
space (ε, a

h ) based on the shape of the stationary probability
distribution Pst (�). The steady distribution presents a max-
imum located at the self-centered fixed point. There is a
discontinuous transition from a trimodal to a unimodal dis-
tribution. The transition is finite sized, and it disappears in the
thermodynamic limit. On the other hand, the asymmetric case
enriches the parameter diagram by adding two more regions
and modifying the three previous ones. If the self-centered
solution does not exist in the limit a = 0, the system exhibits
a bimodal distribution wherein the relative maximum dimin-
ishes while the absolute maximum undergoes a continuous
transition from the favored absorbing state towards the center

of the � space. If the self-centered solution exists in the limit
a = 0, the steady distribution is also bimodal. In this case the
lower maximum is located close to the self-centered solution.
The system undergoes a discontinuous noise-induced transi-
tion by increasing either a

h or ε. After the disappearance of the
lateral maximum, the absolute maximum moves continuously
towards the center of the interval. In the thermodynamic limit,
all transitions disappear, and the system presents a unimodal
distribution centered at the stable fixed point of the rate equa-
tions, Eqs. (33) and (34).

Future work includes the study of the model on regular
and random networks, as well as the inclusion of nonlinear
interactions which are known to transform a finite-size noise-
induced transition into a bona fide phase transition present in
the thermodynamic limit [17,37].
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APPENDIX A: CALCULATION
OF THE EXIT PROBABILITY

Let Pq(�,�) be the probability of reaching the absorb-
ing state (� = q, � = q) starting from an initial condition
(�0 = �,�0 = �). This probability is related to the possible
transitions as [31]

Pq(�,�) = L[Pq(�,�)], (A1)
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FIG. 14. Left: Exit probability Pq vs the initial condition �. Parameter value: q = 0.50. Right: Time to reach an absorbing state τ as a
function of the initial condition �. Parameter value: q = 0.60. In both panels, the system size is N = 100. Solid lines represent the solution
given by the adiabatic approximation, Eqs. (24) and (B3), respectively, while symbols correspond to computer simulations of the complete
model and dashed lines display the solution of the recursion relation equations (A5) and (C3), respectively. In the latter two cases we have
taken the value of � at the nullcline, Eq. (7).
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where we have defined the linear operator

L[Pq(�,�)] = w++(�,�)Pq(� + 1/N, � + 1/N )

+ w+−(�,�)Pq(� + 1/N, � − 1/N )

+ w−+(�,�)Pq(� − 1/N, � + 1/N )

+ w−−(�,�)Pq(� − 1/N, � − 1/N ),
(A2)

with

w±,±(�,�) = W ±,±(�,�)

�(�,�)
,

�(�,�) = W ++(�,�) + W +−(�,�)

+ W −+(�,�) + W −−(�,�), (A3)

and the global rates W ±(�,�) are given by Eqs. (9). The
recurrence relation of Eq. (A1) has to be implemented with
the boundary conditions

Pq(� = −1 + q, � = 1 − q) = 0,

Pq(� = q, � = q) = 1. (A4)

Unfortunately, we have not been able to find the solution of
Eq. (A1) in a closed form. Instead, we have used a simple iter-
ation procedure in which an initial guess for the probabilities
P(0)

q (�,�) is iterated

P(k+1)
q (�,�) = L

[
P(k)

q (�,�)
]
, k = 0, 1, . . . , (A5)

until convergence to the solution Pq(�,�). Note that the
boundary conditions (A4) need to be imposed at every it-
eration. We consider that convergence has been reached
when |∑�,�[P(k+1)(�,�) − P(k)(�,�)]| < 10−8. This sim-
ple procedure works well for small values of N , but it becomes
prohibitive for large N , as it turns out that the CPU time
needed to reach convergence scales roughly as N4. Otherwise,

the obtained values are precise within the numerical accuracy
of the iteration procedure.

In left panel of Fig. 14 we compare the adiabatic ap-
proximation solution equation (24) and the result obtained
with this numerical method for Pq(�,�) as a function of �

taking for � the value at the nullcline, Eq. (7). However, it
should be noted that the discrete grid points (�,�) do not,
in general, lie exactly on the nullcline. Therefore each value is
computed based on a weighted average of the four closest grid
locations. The weight assigned to each point is the inverse of
its Euclidean distance to the coordinates (�,�). As shown in
the figure, the agreement between theory and simulations is
very good for the displayed values of ε, and in fact, we have
observed that the agreement is satisfactory for ε � 0.5.

APPENDIX B: SOLUTION OF EQUATION (30)

Due to the linearity of Eq. (30) and the symmetry under
the change � → −� and q → 1 − q, the solution of the
differential equation can be expressed as

τ (�) = 2N

1 − ε2
[T (�; q) + T (−�; 1 − q)], (B1)

where T (�; q) fulfills

d2T

d�2
= (β� + γ )

dT

d�
− 1

(q − �)
, (B2)

with boundary conditions T (� = q) = T (� = q − 1) = 0.
The general solution of this linear differential equa-

tion can be found by standard methods in terms of two
integration constants that are determined using the bound-
ary conditions. Unfortunately, in this case, the integrals
required by the solution to the equation cannot be ex-
pressed using elementary functions. Instead, we present the
solution as

T (�) =
√

π

2β

(
C(β, γ )

[
erfi

(√
β

2

(
� + γ

β

))
− erfi

(√
β

2

(
q − 1 + γ

β

))]

−
∫ �

q−1
dx

exp
[− β

2

(
x + γ

β

)2]
q − x

[
erfi

(√
β

2

(
� + γ

β

))
− erfi

(√
β

2

(
x + γ

β

))]⎞⎠,

C(β, γ ) =
∫ q

q−1 dx
exp
[
− β

2

(
x+ γ

β

)2]
q−x

[
erfi
(√

β

2

(
q + γ

β

))− erfi
(√

β

2

(
x + γ

β

))]
erfi
(√

β

2

(
q + γ

β

))− erfi
(√

β

2

(
q − 1 + γ

β

)) , (B3)

which requires the numerical determination of two integrals.

APPENDIX C: CALCULATION OF THE TIME
TO REACH CONSENSUS

Let τ (�,�) be the average time to reach any absorbing
state starting from an initial condition (�0 = �,�0 = �).
This time is related to the possible transitions as [31]

τ (�,�) = 1

�(�,�)
+ L[τ (�,�)], (C1)

where the operator L is defined in Eq. (A2) and �(�,�) is
defined in Eq. (A3), together with the boundary conditions

τ (� = −1 + q, � = 1 − q) = 0,

τ (� = q, � = q) = 0. (C2)

Again we solve numerically Eq. (C1) using an iteration
scheme

τ (k+1)(�,�) = 1

�(�,�)
+ L[τ (k)(�,�)], (C3)
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starting from an initial guess τ (0)(�,�) and iterating un-
til convergence, imposing the boundary conditions (C2) at
each iteration. Convergence is determined by the condition
|∑�,�[τ (k+1)(�,�) − τ (k)(�,�)]| < 10−8. As in the case
of the exit probability, this numerical procedure is very pre-
cise, but it is only feasible for relatively small values of N
because of the large CPU time needed for convergence.

In the right panel of Fig. 14 we compare the solution
obtained with this method and the solution given by Eq. (C3),
which includes the adiabatic approximation. Note that unlike
the exit probability, the adiabatic approximation performs
better for small values of ε, while there are systematic dis-
crepancies for larger values.

APPENDIX D: CALCULATION OF THE
QUASISTATIONARY PROBABILITY DISTRIBUTION

We here calculate numerically the quasistationary prob-
ability distribution of �, along the lines of the method
presented in Ref. [36].

For practical purposes we introduce the index j = N (� +
1 − q), which takes integer values in the interval 0 � j � N ,
and we write Pj (t ) ≡ P(� = j

N + q − 1, t ). The master equa-
tion of the process in the adiabatic approximation regime is
given by [27]

∂Pj (t )

∂t
= (E−1 − 1)[W +

j Pj (t )] + (E − 1)[W −
j Pj (t )], (D1)

where E is the step operator acting on any function f ( j) as
E �[ f ( j)] = f ( j + �). The global rates can be derived from
those of Eqs. (11) as

W +
j = j

2

(
1 − j

N

)(
1 − 2ε2 j

N
− ε(1 − 2q)

)
,

W −
j = j

2

(
1 − j

N

)(
1 − 2ε2

(
1 − j

N

)
+ ε(1 − 2q)

)
. (D2)

Note that both vanish at the absorbing states j = 0 and j = N .
We now define the probability Qj (t ) of the system to be in

the state j at time t , conditioned on not having reached the

absorbing state, i.e., Qj (t ) = Prob( j| j 	= 0, N ; t ), as

Qj (t ) = Pj (t )

1 − P0(t ) − PN (t )
, j = 1, . . . , N − 1. (D3)

Differentiating this relation and using

∂P0(t )

∂t
= W −

1 P1(t ),

∂PN (t )

∂t
= W +

N−1PN−1(t ), (D4)

obtained from Eq. (D1), we can write down the master equa-
tion of the process conditioned on not having reached the
absorbing state as

∂Qj (t )

∂t
= (E−1 − 1)[W +

j Q j (t )] + (E − 1)[W −
j Q j (t )]

+ Qj (t )(W −
1 Q1(t ) + W +

N−1QN−1(t )) (D5)

with the convention W +
0 Q0 = W −

N QN = 0. The quasistation-
ary distribution Qj is defined as the stationary solution of
this master equation obtained by setting the time derivative
equal to zero. Alternatively, we can also consider the long-
time solution Qj = limt→∞ Qj (t ). This has been obtained by
integrating numerically the evolution equation (D5) using the
Euler method:

Qj (t + �t ) = Qj (t ) + �t
∂Qj (t )

∂t
, j = 1, . . . , N − 1,

(D6)

with an initial condition Qj (t = 0) = 1
N−1 , ∀ j. The procedure

is iterated until there is no significant change in the value of
Qj (t ). Note that the normalization condition

∑N−1
j=1 Qj (t ) = 1

is exactly satisfied by the Euler method at all times and no
special requirement is needed for the time step �t , other
than that it does not lead to a numerical instability. We have
found that �t = 0.001 is a convenient value. In Fig. 6 we
compare this numerical solution with the results of computer
simulations, showing a good agreement between the two.

APPENDIX E: FOKKER-PLANCK EQUATION FOR THE NPVM

The effective rates for this variable can be derived from those of Eq. (37) as

W +(�) = Nh

2

[
2a

h
(q − �) + 1 − q + �

1 + 4a
h

(
(� − q)(ε(1 − 2q) − 1 + 2ε2(1 − q + �)) − 2a

h
(2� + ε − 2q(1 + ε))

)]
,

W −(�) = Nh

2

[
2a

h
(1 − q + �) − � − q

1 + 4a
h

(
(1 + � − q)((1 + ε)(1 − 2εq) + 2�ε2) + 2a

h
(1 + 2� + (1 + ε)(1 − 2q))

)]
.

(E1)

These global rates lead us to the Fokker-Planck equation (12) of the noisy version of the partisan voter model where the drift
and diffusion terms are given by

F (�) = h

1 + 4a
h

[
ε(� − q)(1 + � − q)(2�ε + (1 − 2q)(1 + ε)) − a

h
(2� + (1 − 2q)(1 + ε)) − 4

(a

h

)2
(2� + 1 − 2q)

]
,

D(�) = h

2N

1

1 + 4a
h

[
−�2

(
1 − ε2 + 4a

h

)
+
(

1 − ε + 4a

h

)(a

h
+ q(1 − q)(1 + ε)

)
− �(1 − 2q)

(
1 − ε2 + (2 + ε)

2a

h

)]
,

(E2)
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respectively. The stationary probability distribution Pst (�) can be obtained with Eqs. (15) and (16); although the integrals can be
performed analytically using symbolic manipulation programs such as MATHEMATICA [38], the resulting expression is too long
and will not be reproduced here.
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