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Algebraic area of cubic lattice walks
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We obtain an explicit formula to enumerate closed random walks on a cubic lattice with a specified length
and algebraic area. The algebraic area of a closed cubic lattice walk is defined as the sum of the algebraic areas
obtained from the walk’s projection onto the three Cartesian planes. This enumeration formula can be mapped
onto the cluster coefficients of three types of particles that obey quantum exclusion statistics with statistical
parameters g = 1, g = 1, and g = 2, respectively, subject to the constraint that the numbers of g = 1 (fermions)
exclusion particles of two types are equal.
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I. INTRODUCTION

The algebraic area of a planar closed random walk is de-
fined as the area swept by the walk, weighted by the winding
number in each winding sector. The area is considered positive
if the walk moves around the sector in a counterclockwise
direction. In the continuous case, the probability distribution
of the algebraic area A enclosed by closed Brownian curves
after a time t is given by Lévy’s stochastic area formula (also
known as Lévy’s law) [1]

P(A) = π

2t

1

cosh2(πA/t )
. (1)

In the discrete case, a series of explicit algebraic area enu-
meration formulas [2–4] for closed random walks on various
lattices have recently been obtained from the Kreft coef-
ficients [5] encoding the Schrödinger equation of quantum
Hofstadter-like models [6] that describe a charged particle
hopping on planar lattices coupled to a perpendicular mag-
netic field. Essentially the enumeration amounts to calculating
the trace of the power of the Hofstadter-like Hamiltonian and
has an interpretation in terms of the statistical mechanics of
particles that obey exclusion statistics with an integer exclu-
sion parameter g (g = 0 for bosons, g = 1 for fermions, g � 2
for stronger exclusion than fermions). Figure 1 shows three
examples of two-dimensional (2D) lattice random walks: the
square lattice walk corresponds to the g = 2 exclusion, the
Kreweras-like chiral walk on a triangular lattice corresponds
to the g = 3 exclusion, and the honeycomb lattice walk cor-
responds to a mixture of the g = 1 and g = 2 exclusions,
with an appropriate spectrum. Note that, in the context of
Hofstadter-like model, the algebraic area can be expressed as
1
2

∮
(r × dr) · B, where B = (0, 0, 1) and the integral is along

the closed walk in the xy plane.
In this article, we extend the concept of algebraic area to

closed cubic lattice walks by defining it as the sum of the
algebraic areas of the walk projected onto the xy, yz, zx planes
along the −z,−x,−y directions. To count closed random
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walks on a cubic lattice with a given length and algebraic
area, we begin by introducing three lattice hopping operators
U,V,W along the x, y, z directions, as well as U −1,V −1,W −1

along the −x,−y,−z directions. These operators satisfy the
noncommutative three-tori algebra [7]

V U = Q U V, W V = Q V W, U W = Q W U, (2)

with Q a central element (that is, Q commutes with all
operators). It amounts to saying that the planar walks that
go around the unit lattice cell on the Cartesian planes in a
counterclockwise direction enclose an algebraic area 1, i.e.,
V −1U −1VU = Q, W −1V −1WV = Q, and U −1W −1UW = Q.
The algebraic area A enclosed by a cubic lattice walk can thus
be computed by reducing the corresponding hopping opera-
tors to QA using the commutation relations (2). See Fig. 2 for
the closed six-step cubic lattice walk UW −1V −1U −1WV = Q
as an example. Another example involves enumerating closed
four-step walks. By taking the trace of (U + V + W + U −1 +
V −1 + W −1)4 = 6(11 + 2Q + 2Q−1) + · · · , only terms with
an equal number of U and U −1, V and V −1, W and W −1 sur-
vive, yielding the count of algebraic area1: 66 walks enclose
an algebraic area A = 0, 12 walks enclose an algebraic area
A = 1, and 12 walks enclose an algebraic area A = −1.

By expressing the phase Q = exp (2π iφ/φ0) in terms of
the flux φ through the unit lattice cell on each of the three
Cartesian planes in unit of the flux quantum φ0, the Hermitian
operator

H = U + V + W + U −1 + V −1 + W −1 (3)

represents a Hamiltonian that describes a charged particle
hopping on a cubic lattice coupled to a magnetic field B =
(1, 1, 1), as indicated in the definition of the algebraic area for
a cubic lattice walk. The energy spectrum with B = (1, 1, 1)

1By symmetry, we can focus on the walks that start with a step
along the x direction (i.e., U ). There are 11 walks that enclose an al-
gebraic area 0: U −1UU −1U , UU −1U −1U , V −1VU −1U , VV −1U −1U ,
W −1WU −1U , WW −1U −1U , U −1U −1UU , U −1V −1VU , U −1VV −1U ,
U −1W −1WU , and U −1WW −1U , two walks that enclose an algebraic
area 1: V −1U −1VU and WU −1W −1U , and two walks that enclose an
algebraic area −1: VU −1V −1U and W −1U −1WU .
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FIG. 1. A closed square lattice walk, chiral triangular lattice walk, and honeycomb lattice walk of length 18, starting and ending at the
bullet point, with algebraic area −1, −14, and 2, respectively. The region inside the walk, i.e., the winding sector, is colored green if its area
is positive, otherwise it is colored red. In the chiral triangular lattice walk, only three of the possible six directions are allowed at each step,
namely, in directions with angles 0, 2π/3 and 4π/3 with respect to the horizontal axis.

on a cubic lattice was initially investigated in [8]. The three-
dimensional (3D) Hofstadter model was studied earlier in
[9], and the general case of the uniform magnetic field was
explored in [10], with an experimental scheme proposed in
[11]. Hofstadter models have also been studied on other 3D
lattices, such as the tetragonal monoatomic and double-atomic
lattice [12], and in four dimensions [13] as well.

As with the case of a planar lattice, the trace of H2n

provides the generating function for the number C2n(A) of
closed random walks of length 2n (necessarily even) on a
cubic lattice enclosing an algebraic area A. Specifically,∑

A

C2n(A)QA = Tr H2n, (4)

with the normalization Tr I = 1, where I denotes the identity
operator.

The article is organized as follows. Assuming that the flux
is rational, we use the finite-dimensional representation of the
algebra (2) to derive the trace of H2n, establish its connection
with quantum exclusion statistics (g = 1, g = 1, g = 2), and
provide a combinatorial interpretation based on the combi-
natorial coefficients c1,1,2(l̃1, . . . , l̃ j+1; l̃ ′

1, . . . , l̃ ′
j+1; l1, . . . , l j )

labeled by the (1,1,2)-compositions. In Sec. III, we present
the explicit formula for C2n(A), as well as its asymptotics as
n → ∞, and discuss potential generalizations and applica-
tions.

II. ALGEBRAIC AREA ENUMERATION
OF CUBIC LATTICE WALKS

A. Hamiltonian

From now on, we assume that the magnetic flux on each
Cartesian plane is rational, i.e., φ/φ0 = p/q with p and q
being coprime, thus Q = exp (2π ip/q). To obtain the finite-
dimensional representation of U,V,W , we introduce the
q × q “clock” and “shift” matrices

u = eikx

⎛
⎜⎜⎜⎜⎜⎜⎝

Q 0 0 · · · 0 0
0 Q2 0 · · · 0 0
0 0 Q3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Qq−1 0
0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

v = eiky

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1
1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which satisfy v u = Q u v and contribute to the Hofstadter
Hamiltonian u + v + u−1 + v−1 for square lattice walks.

FIG. 2. (left) Three-dimensional Cartesian coordinate system; (middle) six lattice hopping operators in a cubic lattice; (right) closed
6-step cubic lattice walk UW −1V −1U −1WV whose algebraic area is given by A = 1 + 1 + (−1) = 1. Using the commutation relations (2),
UW −1V −1U −1WV is simplified to Q1 as expected.
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Here, kx and ky denote the quasimomenta in the x and y
directions. In the quantum trace, integration over kx and ky

eliminates the unwanted terms containing uq and vq which
correspond to open walks but can be closed by q periodicity.
Another way to achieve this is by setting kx = ky = 0 and
considering walks of length less than q.

Because of the open walk UVW �= I , it is not possible to
represent the operators U,V,W as u, v, v−1u−1, respectively,
even though they satisfy the algebra (2). To address this, we
introduce an additional vector space with dimension q′, in
which U and V act as identity operators, while W does not.
Consequently, we obtain the representation of (2) as qq′ × qq′
matrices

U = u ⊗ Iq′ , V = v ⊗ Iq′ , W = (v−1u−1) ⊗ u′,

where u′ is an arbitrary q′ × q′ matrix that is not proportional
to Iq′ . Again, the quasimomenta are set to be zero. The sought-
after quantum trace of the qq′ × qq′ Hamiltonian matrix (3)
reduces to the usual trace up to a normalization factor, that is,

Tr H2n = 1

qq′ tr H2n.

Let u′ be diagonal and equal to u|q→q′ [therefore Q → Q′ =
exp(2π ip/q′) in u′]. Performing the algebra-preserving trans-
formation u → −u−1v, v → v−1, u′ → −u′ leads to the new
Hamiltonian that describes walks on a deformed cubic lattice

H ′ = H2 ⊗ Iq′ + u ⊗ u′ + u−1 ⊗ u′−1,

where the Hofstadter Hamiltonian associated to the usual
square lattice walks is

H2 = −u−1v − v−1u + v + v−1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 f̄1 0 · · · 0 0
f1 0 f̄2 · · · 0 0
0 f2 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 f̄q−1

0 0 0 · · · fq−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with fk = 1 − Qk . Note that H2 is a g = 2 matrix in
the sense that its secular determinant det(Iq − zH2) =∑�q/2�

n=0 (−1)nZnz2n captures the Kreft coefficient [5]

Zn =
q−2n+1∑

k1=1

k1∑
k2=1

· · ·
kn−1∑
kn=1

sk1+2n−2sk2+2n−4 · · · skn−1+2skn ,

Z0 = 1,

as a trigonometric multiple nested sum with +2 shifts
among the spectral functions sk := fk f̄k = 4 sin2(kπ p/q). In
statistical mechanics, Zn can be interpreted as the n-body
partition function for n particles in a one-body spec-
trum εk (k = 1, 2, . . . , q − 1) with Boltzmann factor e−βεk =
sk . The +2 shifts indicate that these particles obey g =
2 exclusion statistics, i.e., no two particles can occupy
adjacent quantum states. By introducing cluster coefficients

bn via log (
∑�q/2�

n=0 Znxn) = ∑∞
n=1 bnxn with fugacity x = −z2,

and using the identity log det(Iq − zH2) = tr log(Iq − zH2) =
−∑∞

n=1
zn

n tr Hn
2 we establish a connection between the gener-

ating function for algebraic area enumeration of square lattice

walks and the cluster coefficients with g = 2 exclusion statis-
tics, that is,

Tr H2n
2 = 1

q
tr H2n

2 = 2n(−1)n+1 1

q
bn

= 2n
∑

l1,l2,...,l j
composition of n

c2(l1, l2, . . . , l j )
1

q

q− j∑
k=1

sl1
k sl2

k+1 · · · s
l j

k+ j−1,

(5)

where c2(l1, l2, . . . , l j ) = 1
l1

∏ j
i=2

(li−1+li−1
li

)
. As we will see

in Sec. II B, the algebraic area enumeration for cubic lattice
walks can also be mapped onto cluster coefficients with ap-
propriate exclusion parameters and spectral functions.

Now come back to the Hamiltonian H ′. Introduce
s̃k,k′ = QkQ′k′ + Q−kQ′−k′

and q′ × q′ diagonal matrices s̃k =
diag(s̃k,1, s̃k,2, . . . , s̃k,q′ ), fk = fkIq′ , f̄k = f̄kIq′ , 0 = 0Iq′ . H ′
can be expressed as a qq′ × qq′ block tridiagonal matrix

H ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

s̃1 f̄1 0 · · · 0 0
f1 s̃2 f̄2 · · · 0 0
0 f2 s̃3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · s̃q−1 f̄q−1

0 0 0 · · · fq−1 s̃q

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Applying the trace computation techniques described in [14]
we obtain

1

qq′ tr H ′2n = 2n
∑

l̃1,...,l̃ j+1;l1,...,l j
(1,2)-composition of 2n

c1,2(l̃1, . . . , l̃ j+1; l1, . . . , l j )

× 1

q

q− j∑
k=1

sl1
k sl2

k+1 . . . s
l j

k+ j−1

× 1

q′

q′∑
k′=1

s̃l̃1
k,k′ s̃

l̃2
k+1,k′ · · · s̃

l̃ j+1

k+ j,k′ , (6)

with

c1,2(l̃1, . . . , l̃ j+1; l1, . . . , l j )

= (l̃1 + l1 − 1)!

l̃1!l1!

j+1∏
k=2

(
lk−1 + l̃k + lk − 1

lk−1 − 1, l̃k, lk

)
.

By convention lk = 0 for k > j. We define the sequence of
integers l̃1, . . . , l̃ j+1; l1, . . . , l j, j � 0, as a (1,2)-composition
of 2n if they satisfy the conditions

2n = (l̃1 + · · · + l̃ j+1) + 2(l1 + · · · + l j ), l̃i � 0, li > 0,

i.e., li’s are the usual compositions of 1, 2, . . . , n and l̃i’s are
additional nonnegative integers. For j = 0 we have the trivial
composition l̃1 = 2n.

As q′ is arbitrary, for simplicity of calculation we set q′ = q
in the sequel. The second trigonometric sum in (6) is expanded
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to be

1

q

q∑
k′=1

s̃l̃1
k,k′ s̃

l̃2
k+1,k′ · · · s̃

l̃ j+1

k+ j,k′ = 1

q

∑
l̃ ′i +l̃ ′′i =l̃i

Q(l̃ ′2−l̃ ′′2 )+2(l̃ ′3−l̃ ′′3 )+···+ j(l̃ ′j+1−l̃ ′′j+1 )+k[(l̃ ′1+···+l̃ ′j+1 )−(l̃ ′′1 +···+l̃ ′′j+1 )]

×
q∑

k′=1

Qk′[(l̃ ′1+···+l̃ ′j+1 )−(l̃ ′′1 +···+l̃ ′′j+1 )]

(
l̃1
l̃ ′
1

)(
l̃2
l̃ ′
2

)
· · ·

(
l̃ j+1

l̃ ′
j+1

)
,

with l̃ ′
i , l̃ ′′

i � 0, i = 1, . . . , j + 1. Since
∑q

k′=1 Qk′[(l̃ ′1+···+l̃ ′j+1 )−(l̃ ′′1 +···+l̃ ′′j+1 )] is nonvanishing only when l̃ ′
1 + · · · + l̃ ′

j+1 = l̃ ′′
1 + · · · +

l̃ ′′
j+1 we obtain

1

q

q∑
k′=1

s̃l̃1
k,k′ s̃

l̃2
k+1,k′ · · · s̃

l̃ j+1

k+ j,k′ =
∑

l̃ ′i +l̃ ′′i =l̃i

Q(l̃ ′2−l̃ ′′2 )+2(l̃ ′3−l̃ ′′3 )+···+ j(l̃ ′j+1−l̃ ′′j+1 )

(
l̃1
l̃ ′
1

)(
l̃2
l̃ ′
2

)
· · ·

(
l̃ j+1

l̃ ′
j+1

)
.

Finally, by recognizing that the binomial product

(
l̃1
l̃ ′
1

)(
l̃2
l̃ ′
2

)
· · ·

(
l̃ j+1

l̃ ′
j+1

)
can be absorbed into c1,2, as well as changing the notation

l̃ ′
i → l̃i, l̃ ′′

i → l̃ ′
i , we arrive at

1

q2
tr H ′2n = 2n

∑
l̃1,...,l̃ j+1;l̃ ′1,...,l̃

′
j+1;l1,...,l j

(1,1,2)-composition of 2n
l̃1+···+l̃ j+1=l̃ ′1+···+l̃ ′j+1

c1,1,2(l̃1, . . . , l̃ j+1; l̃ ′
1, . . . , l̃ ′

j+1; l1, . . . , l j )Q
(l̃2−l̃ ′2 )+2(l̃3−l̃ ′3 )+···+ j(l̃ j+1−l̃ ′j+1 ) 1

q

q− j∑
k=1

sl1
k sl2

k+1 . . . s
l j

k+ j−1,

(7)

with the combinatorial coefficients

c1,1,2(l̃1, . . . , l̃ j+1; l̃ ′
1, . . . , l̃ ′

j+1; l1, . . . , l j ) = (l̃1 + l̃ ′
1 + l1 − 1)!

l̃1!l̃ ′
1!l1!

j+1∏
k=2

(
lk−1 + l̃k + l̃ ′

k + lk − 1

lk−1 − 1, l̃k, l̃ ′
k, lk

)
.

By convention lk = 0 for k > j. We define the sequence of integers l̃1, . . . , l̃ j+1; l̃ ′
1, . . . , l̃ ′

j+1; l1, . . . , l j as a (1,1,2)-composition
of 2n if they satisfy the conditions

2n = (l̃1 + · · · + l̃ j+1) + (l̃ ′
1 + · · · + l̃ ′

j+1) + 2(l1 + · · · + l j ), l̃i, l̃ ′
i � 0, li > 0,

i.e., li’s are the usual compositions of 1, 2, . . . , n and l̃i, l̃ ′
i ’s are nonnegative integers. We also include, with constraint l̃1 = l̃ ′

1, the
trivial composition (n; n; 0). A combinatorial interpretation of the (1,1,2)-composition and c1,1,2 will be discussed in Sec. II C.

B. (1,1,2)-exclusion statistics

Now we take a step further by defining tk = Qk . Given that for l̃1 + · · · + l̃ j+1 = l̃ ′
1 + · · · + l̃ ′

j+1

1

q

q− j∑
k=1

t l̃1
k t̄

l̃ ′1
k sl1

k t l̃2
k+1t̄

l̃ ′2
k+1sl2

k+1 . . . = Q(l̃2−l̃ ′2 )+2(l̃3−l̃ ′3 )+···+ j(l̃ j+1−l̃ ′j+1 ) 1

q

q− j∑
k=1

sl1
k sl2

k+1 . . . s
l j

k+ j−1,

we rewrite (7) in its standard form that consists solely of compositions, a combinatorial coefficient, and a trigonometric sum, as
follows:

1

q2
tr H ′2n = 2n

∑
l̃1,...,l̃ j+1;l̃ ′1,...,l̃

′
j+1;l1,...,l j

(1,1,2)-composition of 2n
l̃1+···+l̃ j+1=l̃ ′1+···+l̃ ′j+1

c1,1,2(l̃1, . . . , l̃ j+1; l̃ ′
1, . . . , l̃ ′

j+1; l1, . . . , l j )
1

q

q− j∑
k=1

t l̃1
k t̄

l̃ ′1
k sl1

k t l̃2
k+1t̄

l̃ ′2
k+1sl2

k+1 . . . , (8)

which indicates a mixture of g = 1, g = 1, and g = 2 exclu-
sion. We call it (1,1,2)-exclusion statistics. Therefore,

Tr H2n = 1

q2
tr H2n = 1

q2
tr H ′2n = −2n

q
b′

2n. (9)

That is, Tr H2n is equivalent, up to a trivial factor, to
the cluster coefficient b′

2n associated with the 2n-body

partition function for particles in a one-body spectrum εk (k =
1, . . . , q) obeying a mixture of three statistics: fermions with
Boltzmann factor e−βεk = tk , fermions of another type with
Boltzmann factor e−βεk = t̄k , and two-fermion bound states
occupying one-body energy levels k and k + 1 with Boltz-
mann factor e−βεk,k+1 = −sk behaving effectively as g = 2
exclusion particles. b′

2n is constrained by the requirement that
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FIG. 3. Seven (1,1,2)-compositions of 4 with l̃1 + · · · + l̃ j+1 = l̃ ′
1 + · · · + l̃ ′

j+1: (2; 2; 0), (1, 0; 1, 0; 1), (1, 0; 0, 1; 1), (0, 1; 1, 0; 1),
(0, 1; 0, 1; 1), (0, 0; 0, 0; 2), (0, 0, 0; 0, 0, 0; 1, 1), illustrated by two types of fermions (red, black) and two-fermion bound states (blue).

the numbers of the two types of fermions are equal, implying
Tr H2n+1 = 0 as expected. Note that setting tk = t̄k = 0 in (8)
eliminates all terms with nonzero l̃i, l̃ ′

i ’s and (9) effectively
reduces to (5).

C. Combinatorial interpretation

The (1,1,2)-compositions with the constraint l̃1 + · · · +
l̃ j+1 = l̃ ′

1 + · · · + l̃ ′
j+1 have a combinatorial interpretation,

which can be derived from their relation to cluster coef-
ficients of (1,1,2)-exclusion statistics. Specifically, (1,1,2)-
compositions of 2n with constraints correspond to all distinct
connected arrangements of 2n particles on a one-body spec-
trum, consisting of two types of fermions (with equal
numbers) and two-fermion bound states. In other words,
they represent all the possible ways to place two types of
particles and bound states on the spectrum such that they
cannot be separated into two or more mutually nonoverlap-
ping groups. For example, as shown in Fig. 3, there are seven
(1,1,2)-compositions of 4 with l̃1 + · · · + l̃ j+1 = l̃ ′

1 + · · · +
l̃ ′

j+1, which contribute to

−b′
4 = 1

4q
tr H ′4 = 3

2

q∑
k=1

t2
k t̄2

k + 2
q−1∑
k=1

tkt̄ksk

+
q−1∑
k=1

tkskt̄k+1 +
q−1∑
k=1

t̄ksktk+1

+ 2
q−1∑
k=1

sktk+1t̄k+1 + 1

2

q−1∑
k=1

s2
k +

q−2∑
k=1

sksk+1.

Following the argument in [14], 2n c1,1,2(l̃1, . . . ,
l̃ j+1; l̃ ′

1, . . . , l̃ ′
j+1; l1, . . . , l j ) admits an interpretation as

the number of periodic generalized Motzkin paths of length
2n with l̃i horizontal steps (1,0), l̃ ′

i horizontal steps (1,0) of
another type, and li up steps (1,1) originating from the ith
floor (see Fig. 4 for an example). By “periodic generalized
Motzkin paths” we refer to generalized Motzkin bridges (and
excursions) that start and end on the same floor.

III. CONCLUSION

Based on (4), (7), (9), and the fact that the trigonometric
sum 1

q

∑q− j
k=1 sl1

k sl2
k+1 . . . s

l j

k+ j−1 can be computed [2,3], we de-
duce the desired counting for closed random walks on a cubic
lattice with given length 2n and algebraic area A

C2n(A) = 2n
∑

l̃1,...,l̃ j+1;l̃ ′1,...,l̃
′
j+1;l1,...,l j

(1,1,2)-composition of 2n
l̃1+···+l̃ j+1=l̃ ′1+···+l̃ ′j+1

(l̃1 + l̃ ′
1 + l1 − 1)!

l̃1!l̃ ′
1!l1!

j+1∏
k=2

(
lk−1 + l̃k + l̃ ′

k + lk − 1

lk−1 − 1, l̃k, l̃ ′
k, lk

) l3∑
k3=−l3

l4∑
k4=−l4

· · ·
l j∑

k j=−l j

(
2l1

l1 + A − ∑ j+1
i=2 (i − 1)(l̃i − l̃ ′

i ) + ∑ j
i=3(i − 2)ki

)(
2l2

l2 − A + ∑ j+1
i=2 (i − 1)(l̃i − l̃ ′

i ) − ∑ j
i=3(i − 1)ki

) j∏
i=3

(
2li

li + ki

)
.

(10)

Note that the enumeration can be computed recursively as
well. See Appendix A for further details and several examples
of C2n(A). In Appendix B, we present some combinatorial
results for (1,1,2)-compositions and c1,1,2, where the overall
counting of closed 2n-step cubic lattice walks is recovered to
be

(2n
n

) ∑n
k=0

(n
k

)2(2k
k

)
.

In the continuum limit, in which the lattice spacing
a → 0, closed cubic lattice walks become 3D closed Brow-
nian curves. The probability distribution of the enclosing an
algebraic area A for a closed Brownian curve after a time t is

given by

P′(A) = π

2
√

3t

1

cosh2[πA/(
√

3t )]
. (11)

Note that this distribution is simply the Fourier transform
of the partition function of a charged particle moving in
continuous 3D space coupled to a uniform magnetic field
B = (1, 1, 1). By aligning the magnetic field with the z
direction through a change of coordinates, we obtain the stan-
dard Landau levels plus free motion in the z direction. This
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FIG. 4. All the 4c1,1,2(1, 0; 1, 0; 1) = 8 periodic generalized Motzkin paths of length 2n = 4 with l̃1 = 1 horizontal step (red), l̃ ′
1 = 1

horizontal step of another type (black), and l1 = 1 up step (blue) originating from the first floor.

explains why (11) coincides with Lévy’s law (1) for 2D closed
Brownian curves, up to a rescaling of A due to the normaliza-
tion of B. With the scaling na2 = 3t , we infer from (11) the
asymptotics for (10) as the walk length n = 2n → ∞

Cn(A) ∼
√

3π

2n cosh2(
√

3πA/n)

(
n

n/2

) n/2∑
k=0

(
n/2

k

)2(2k

k

)
,

(12)

where A = 0,±1,±2, . . . is dimensionless. The asymptotics
(12) has been checked numerically for n up to 50. However,
deriving (12) directly from (10) is nontrivial and remains an
open problem.

It is natural to extend the definition of the algebraic area
for a cubic lattice walk to the sum of projection areas with
arbitrary weights, which is equivalent to specifying an arbi-
trary magnetic field B. For instance, when B = (0, 0, 1), the
algebraic area is defined as the area of the walk projected
onto the xy plane. The counting for closed n-step cubic lattice
walks enclosing an algebraic area A under this definition turns
out to be

C′
n(A) =

n/2∑
l=0

(
n

2l, n/2 − l, n/2 − l

)
C2l,sq(A),

where C2l,sq(A) is the number of closed 2l-step square lattice
walks enclosing an algebraic area A. Similarly, as n → ∞,

C′
n(A) ∼ 3π

2n cosh2(3πA/n)

(
n

n/2

) n/2∑
k=0

(
n/2

k

)2(2k

k

)
.

The methodology used to define an algebraic area for a cu-
bic lattice walk can be extended to other 3D lattices, such
as deformed triangular and honeycomb lattices (see Fig. 5).
However, the associated enumeration formulas and their con-
nection with quantum exclusion statistics remain unresolved

FIG. 5. Deformed triangular and honeycomb lattices in three
dimensions.

issues that require further study. Additionally, exploring the
algebraic area enumeration for open random walks on various
3D lattices would also be of interest (see [15,16] for open
walks on a square lattice).

In addition to the algebraic area enumeration, the explicit
expression for tr H2n can also be regarded as a term, up to
a factor, in the expansion of the partition function tr (e−βH )
for the 3D Hofstadter model, which provides a reference from
a different perspective for investigating the spectrum and its
intriguing fractal properties. Furthermore, our results have po-
tential implications for the study of spin models with complex
frustration graphs. In a frustration graph, each vertex corre-
sponds to a Hamiltonian term. The edges connect all the terms
that do not commute. Unconnected terms mutually commute.
Analyzing the 3D Hofstadter Hamiltonian (3) offers insights
into solving the spectrum of spin models whose frustration
graphs contain even holes (see [17] for free-fermionic sys-
tems, each with an even-hole-free and claw-free frustration
graph).
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APPENDIX A: RECURRENCE RELATION FOR
ENUMERATION OF CUBIC LATTICE WALKS

Consider an n-step cubic lattice walk that consists of
m1 steps in the direction (1, 0, 0), m2 steps in the

TABLE I. C2n(A) up to 2n = 10 for cubic lattice walks of
length 2n.

2n = 2 4 6 8 10

A = 0 6 66 948 16 626 338 616
± 1 24 756 19 392 483 420
± 2 144 6744 230 340
± 3 12 1584 82 980
± 4 336 27 000
± 5 48 7740
± 6 1980
± 7 420
± 8 60

Total counting 6 90 1860 44 730 1 172 556
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direction (−1, 0, 0), l1 steps in the direction (0,1,0), l2 steps
in the direction (0,−1, 0), r1 steps in the direction (0,0,1),
r2 steps in the direction (0, 0,−1), where m1 + m2 + l1 +
l2 + r1 + r2 = n. If the walk is open, we can close it by
adding a straight line that connects the endpoint to the
starting point. Let Cm1,m2,l1,l2,r1,r2 (A) denote the number of
such walks that enclose an algebraic area A. The generating
function Zm1,m2,l1,l2,r1,r2 (Q) = ∑

A Cm1,m2,l1,l2,r1,r2 (A)QA can be
computed by the recursion

Zm1,m2,l1,l2,r1,r2 (Q) = Q(l2−l1+r1−r2 )/2Zm1−1,m2,l1,l2,r1,r2 (Q)

+ Q(l1−l2+r2−r1 )/2Zm1,m2−1,l1,l2,r1,r2 (Q)

+ Q(m1−m2+r2−r1 )/2Zm1,m2,l1−1,l2,r1,r2 (Q)

+ Q(m2−m1+r1−r2 )/2Zm1,m2,l1,l2−1,r1,r2 (Q)

+ Q(m2−m1+l1−l2 )/2Zm1,m2,l1,l2,r1−1,r2 (Q)

+ Q(m1−m2+l2−l1 )/2Zm1,m2,l1,l2,r1,r2−1(Q),

with Z0,0,0,0,0,0(Q) = 1 and Zm1,m2,l1,l2,r1,r2 (Q) = 0 whenever
min(m1, m2, l1, l2, r1, r2) < 0.

For closed walks of length n = 2n, we have

∑
A

C2n(A)QA =
n∑

m=0

n−m∑
l=0

Zm,m,l,l,n−m−l,n−m−l (Q). (A1)

Table I lists some examples of C2n(A).

APPENDIX B: COMBINATIORIAL RESULTS FOR (1,1,2)-COMPOSITIONS AND c1,1,2

By considering the combinatorial interpretation of cluster coefficient b′
2n as fermions of two types and two-fermion bound

states, we can derive the counting of (1,1,2)-compositions of 2n with l̃1 + · · · + l̃ j+1 = l̃ ′
1 + · · · + l̃ ′

j+1 to be

N1,1,2(n) = 1 +
n−1∑
k=0

k∑
m=0

(
k

m

)(
n + m − k

m + 1

)2

= 1, 2, 7, 27, 108, 443, . . . ,

with the convention N1,1,2(0) = 1. Equivalently, the generating function of the N1,1,2(n)’s is
∞∑

n=0

xnN1,1,2(n) = 1 − x√
x4 − 2x3 + 7x2 − 6x + 1

.

We have

2n
∑

l̃1,...,l̃ j+1;l̃ ′1,...,l̃
′
j+1;l1,...,l j

(1,1,2)-composition of 2n
l̃1+···+l̃ j+1=l̃ ′1+···+l̃ ′j+1

l1+···+l j=k

c1,1,2(l̃1, . . . , l̃ j+1; l̃ ′
1, . . . , l̃ ′

j+1; l1, . . . , l j ) =
(

2n

n

)(
n

k

)2

,

from which we infer

2n
∑

l̃1,...,l̃ j+1;l̃ ′1,...,l̃
′
j+1;l1,...,l j

(1,1,2)-composition of 2n
l̃1+···+l̃ j+1=l̃ ′1+···+l̃ ′j+1

c1,1,2(l̃1, . . . , l̃ j+1; l̃ ′
1, . . . , l̃ ′

j+1; l1, . . . , l j ) =
n∑

k=0

(
2n

n

)(
n

k

)2

=
(

2n

n

)2

.

In the limit q → ∞, i.e., Q → 1 [2,3]

1

q

q− j∑
k=1

t l̃1
k t̄

l̃ ′1
k sl1

k t l̃2
k+1t̄

l̃ ′2
k+1sl2

k+1 . . . →
(

2(l1 + · · · + l j )

l1 + · · · + l j

)
,

we recover the overall counting to be

2n
∑

l̃1,...,l̃ j+1;l̃ ′1,...,l̃
′
j+1;l1,...,l j

(1,1,2)-composition of 2n
l̃1+···+l̃ j+1=l̃ ′1+···+l̃ ′j+1

c1,1,2(l̃1, . . . , l̃ j+1; l̃ ′
1, . . . , l̃ ′

j+1; l1, . . . , l j )

(
2(l1 + · · · + l j )

l1 + · · · + l j

)

=
n∑

k=0

∑
l̃1,...,l̃ j+1;l̃ ′1,...,l̃

′
j+1;l1,...,l j

(1,1,2)-composition of 2n
l̃1+···+l̃ j+1=l̃ ′1+···+l̃ ′j+1

l1+···+l j=k

2n c1,1,2(l̃1, . . . , l̃ j+1; l̃ ′
1, . . . , l̃ ′

j+1; l1, . . . , l j )

(
2k

k

)
=

(
2n

n

) n∑
k=0

(
n

k

)2(2k

k

)
,

which is indeed [x0y0z0](x + y + z + x−1 + y−1 + z−1)2n = 6, 90, 1860, 44730, 1172556, . . . (see the OEIS sequence
A002896).
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