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Powering quantum Otto engines only with q-deformation of the working substance
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We consider a quantum Otto cycle with a q-deformed quantum oscillator working substance and classical
thermal baths. We investigate the influence of the quantum statistical deformation parameter q on the work and
efficiency of the cycle. In usual quantum Otto cycle, a Hamiltonian parameter is varied during the quantum
adiabatic stages while the quantum statistical character of the working substance remains fixed. We point out
that even if the Hamiltonian parameters are not changing, work can be harvested by quantum statistical changes
of the working substance. Work extraction from thermal resources using quantum statistical mutations of the
working substance makes a quantum Otto cycle without any classical analog.
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I. INTRODUCTION

Quantum heat engines (QHEs) are devices that can harvest
work using a quantum working substance between hot and
cold reservoirs [1,2]. After the foundations of the quantum
engines have been established, many researchers have devoted
intense theoretical and experimental efforts to find new break-
throughs [3–17]. Enhancement of work and efficiency of such
quantum machines, together with exploring their fundamen-
tal bounds, are among the significant goals of the emerging
field of quantum thermodynamics. For that aim, nonlinear,
many-body, fermionic or bosonic working systems have been
studied to reveal their differences and relative advantages [3].
Here, we contribute to these research endeavors by address-
ing two questions. First, how does the engine performance
depend on quantum statistics in general if we mutate the
particle statistics? Second, can we consider quantum statis-
tics as another control parameter such that if all the system
parameters remain the same, we can harvest work from a heat
bath by only changing the quantum statistics of the working
substance?

In the 1970s, the concept of deformed algebras was
first initiated as a generalization of Weyl-Heisenberg al-
gebra [18,19]. The theory of the q-oscillators was stated
previously by Mcfarlane and Biedenharn [20,21]. Since then,
q-deformation has been considered in various research areas
including statistical physics and quantum information [22],
nuclear and atomic physics [23], thermodynamics [24], and
open quantum systems and optomechanical systems [25].
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It is pointed out that there is a correspondence between
q-deformed Heisenberg algebra and effective nonlinear inter-
action of the cavity mode [26] and an isomorphism between
the q-deformed harmonic oscillator and an anharmonic os-
cillator model was discovered [27]. Physical realization of
the deformation parameter q has been searched for heavily,
among which are the quantum Yang-Baxter equation [28],
deformed Jaynes-Cummings model [29], quantum phase
problem [30–32], relativistic q-oscillator [33,34], Morse oscil-
lator [35], and Kepler problem [36]. Deformed algebras have
been explored by subjecting the nondeformed ones to non-
linear invertible transformations [37–39]. The q-deformation
parameter was considered for deriving generalized uncertainty
and information relations [40], Tsallis entropy, and other rel-
ative entropy measures [41–43].

In atomic and nuclear physics, q-deformation was consid-
ered from theoretical and experimental perspectives [23,44–
49]. It was considered for obtaining generalizations of quan-
tum spin chains with exact valence-bond ground states [50]
and self-localized solitons of q-deformed quantum systems
have been recently explored [51]. Deformed algebra is also
used in open quantum systems to show the relationship
between the efficiency of QHEs and the degree of the non-
Markovianity cycle processes [24]. One of the recent works
showed that two linearly coupled q-deformed cavities could
be tuned to provide enhancement of nonclassical phenom-
ena [25].

In one of the earliest works on q-deformed quantum
information, entanglement and noise reduction techniques
were studied between q-deformed harmonic oscillators [52].
Nonclassical properties of noncommutative states [53,54],
coherent and cat states in Fock representation [55,56],
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FIG. 1. Entropy-temperature (S-T) diagram of the quantum Otto
cycle. In the isochoric processes, the system is in contact with hot
and cold baths, while during the quantum adiabatic stages, quantum
statistical character of the oscillator changes. Populations, therefore
the entropies, remain the same during the quantum adiabatic stages,
differentiating the quantum Otto cycle from its classical counterpart.

and entanglement in nonlinear quantum systems were an-
alyzed in q-deformed settings [57]. Quantum states and
logic gates were defined for two- and three-level q-deformed
systems [22,58,59] and q-deformed relative entropies were
studied in quantum metrology [60].

Our work presents a unique perspective on the quantum-
ness of heat engines, which reflects the genuine quantum
statistical character of the working system in harvesting work
from classical thermal resources. The usual method to char-
acterize the quantum nature of a heat engine is to look for
quantum-enhanced performance over its classical analog. Our
case is another yet more direct reflection of the quantumness
of a heat engine as the cycle mechanism, which is based upon
harvesting work by changing the quantum statistical character
of its working substance, has no classical analog.

This paper is organized as follows. Section II introduces
the q-deformed quantum oscillator as the working system of
the quantum Otto cycle. Section III presents the necessary
tools to construct a q-deformed heat engine by discussing the
fundamental thermodynamic quantities such as entropy and
internal energy. Then, equipped with the theoretical tools pre-
sented in previous sections, we present our results in Sec. IV,
where we explicitly show how work harvesting from thermal
resources can be achieved by varying the particle statistics. We
compare our results with previous investigations and discuss
the effectiveness of our approach in Sec. V. We conclude in
Sec. VI.

II. WORKING SYSTEM: q-DEFORMED OSCILLATOR

We consider a q-deformed harmonic oscillator as the work-
ing substance of the Otto cycle as illustrated in Fig. 1. The
usual commutation relation of the Weyl-Heisenberg algebra
of the quantum harmonic oscillator is deformed in the case of
a q-deformed quantum oscillator according to [24,61]

[â, â†]q = ââ† − q−1â†â = qN̂ , (1)

FIG. 2. Energy eigenvalues as a function of the deformation pa-
rameter q for energy eigenindex n = 1, 2, 3, 4.

where N̂ is a number operator with eigenstates |n〉 such that
N̂ |n〉 = n|n〉, a and a† are lowering and raising operators in
the spectrum of N̂ such that a†a|n〉 = [n]|n〉, and q is the
deformation parameter.

In terms of â and â†, the Hamiltonian of the q-deformed
quantum oscillator with natural frequency ω is written as

Ĥ = h̄ω

2
(âa† + â†â). (2)

Using the q-number notation

[n] = qn − q−n

q − q−1
, (3)

the eigenenergies of the Hamiltonian (2) can be expressed in
the form

En = h̄ω

2
([n] + [n + 1]). (4)

These eigenenergies are associated with the deformed Fock
number eigenstates

|n〉 = (a+)n

√
[n]!

|0〉, (5)

where the q-factorial is defined to be [n]! = [n][n − 1] · · · [1].
With a real valued r, the deformation parameter can be

considered to be a pure phase factor as q = exp(ir) or to be
a real number as q = exp(r) [62].

Here we focus on the nonlinear characteristics of the
quantum oscillator associated with q-deformation and the de-
formation of the bosonics system; hence we consider only real
values with 0 < q < 1 [61,62]. The usual quantum harmonic
oscillator relations can be recovered by substituting q = 1
corresponding to the nondeformed case,

En = h̄ω

2

sinh
[
r
(
n + 1

2

)]

sinh
(

r
2

) , (6)

where r = ln (q) and n = 0, 1, . . . < ∞ is the energy eigenin-
dex. En is plotted in Fig. 2 as a function of q for n = 1, 2, 3, 4.

Deformation parameter q gives strong nonlinear character
to the quantum oscillator, reflected in the anharmonicity of
the energy spectrum. Without the deformation (q = 1), the
quantum Otto cycle can only be implemented by changing
ω in the quantum adiabatic stages. When ω is increased,
the uniform energy gaps (h̄ω) between the eigenenergies in-
crease, which can be compared to the case of compressing
the volume of the oscillator. In contrast, if ω is decreased,
the energy gaps shrink as if the volume of the oscillator is
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increasing. Accordingly, an effective pistonlike behavior can
be translated to the quantum oscillator by ω variation. For the
case of a deformed quantum oscillator (q �= 1), the oscillator
has nonuniform energy gaps and their splitting can be further
controlled by q. By keeping ω constant, we can induce a
pistonlike behavior to a deformed oscillator by changing its
quantum statistics per se. Such a q-deformed oscillator uses q
as the quantum adiabatic control (expansion and compression)
parameter and it can exploit the anharmonic energy spectrum
(for more expansion and compression effects) to enhance the
work harvesting and efficiency. Furthermore, alternatively we
can still keep the q parameter constant and vary ω as usual, but
determine a critical quantum statistics (critical q) for which
the work harvesting and (or) efficiency would be maximum.

III. QUANTUM OTTO CYCLE

The canonical partition function of the working system
with Hamiltonian Ĥ in Eq. (2) at temperature T is given by

Z = Tr[exp(−Ĥ/T )] =
∑

n

e−En/T , (7)

where we take the Boltzmann constant kB as unity. Such
a nondeformed structure of the partition function relies on
the assumption of the nondeformed Gibbsian form of the
thermal equilibrium state ρ ∼ exp(−βĤ ) with β = 1/T and
the expectation value 〈Â〉 = Tr(ρÂ); it is associated with the
assumption that the Boltzmann-Gibbs form of the entropy
function S = ∑

pilnpi is preserved [63], where pis are the
associated probabilities.

The quantum version of the classical Otto cycle [64] has
been experimentally realized with quantum working sub-
stances [17,65]. As illustrated in Fig. 1, it consists of two
quantum adiabatic and two isochoric heating and cooling
stages. We can describe the cycle in energy-population space
for a quantum number n. At point A, the system is given
with energy levels En(A) and their populations Pn(A). Under
isochoric heating, the system is transformed (A → B) to a
thermal state at point B such that En(B) = En(A) and the
population is changed to Pn(B). Subsequently, the bath is
removed and the system is quantum adiabatically transformed
(B → C) obeying the conditions Pn(C) = Pn(B), while the
energy eigenvalues are adiabatically changed to En(C). In the
third stage, the system is isochorically cooled (C → D) to
point D such that En(D) = En(C), while the population is
modified to Pn(D). Finally, the system is reset to its starting
point A, (D → A), by closing the cycle with another quantum
adiabatic transformation under the condition Pn(A) = Pn(D).

In classical Otto cycles, the control parameter in the isen-
tropic steps is typically the physical volume of the system.
Here, we consider two types of quantum Otto cycles. (i)
We keep the frequency of the quantum oscillator ω constant
and vary the deformation parameter q during the quantum
adiabatic steps. (ii) We keep q constant and change ω in the
quantum adiabatic stages. During these steps, the system is
uncoupled from the thermal baths and the system is quantum
adiabatically transformed such that occupation probabilities
Pn of the eigenenergies En do not change.

For a classical heat engine, it is sufficient to make the
transformation faster than the rate of heat exchange, instead

of physically uncoupling the system from the environment,
to ensure the adiabatic condition. In the quantum case, the
transformation needs to be slower than the characteristic time
scale for the transitions between the energy levels to ensure
Pn remains the same. The quantum case is also an isentropic
process, while the classical case does not necessarily satisfy
the constant population condition. During the other two steps,
isochoric heating and cooling, thermal baths are coupled to
the oscillator system while the parameters of the Hamiltonian
and the quantum statistical parameter q are kept constant.

Using the energy eigenvalues En in Eq. (4) and associated
populations

Pn = exp(−En/T )/Z, (8)

we evaluate the work output (W ) of the quantum Otto cycle
according to the formula [3]

W =
∑

n

[En(A) − En(C)][Pn(B) − Pn(A)]. (9)

Pn(A) is the population of nth energy level at the beginning
of the isochoric heating. We can use the quantum adiabatic
condition Pn(A) = Pn(D) to evaluate it by using the thermal
distribution as the system is in thermal equilibrium at point D.
Pn(B) is calculated from a thermal distribution as well, as it is
the level population at the end of isochoric heating. The factor
En(A) − En(C) is the net variation of the energy eigenvalue
during the quantum adiabatic transformations.

Thermal efficiency of the engine is defined by

η = W

Qin
. (10)

Here, the injected heat into the system is given by

Qin =
∑

n

En(A)[Pn(B) − Pn(A)], (11)

where again we can use Pn(A) = Pn(D) to evaluate it using
thermal population distribution at point D.

IV. RESULTS

A. Work harvesting by statistical mutation

Let us start by changing the deformation parameter in the
quantum adiabatic stages of the cycle. For a q-deformed quan-
tum oscillator, a decrease in q yields an exponential increase
in the energy gaps at higher energy levels. Thus we take a
smaller q value (qA) for hot isochore (Th) and a higher q
value (qC) for cold isochore (Tc). During the isentropic stages,
q varies between the values used in hot and cold isochores.
Hamiltonian parameters remain fixed at ω = 1 and only the
q-deformation parameter of the working substance is varied
in the cycle.

Population differences Pn(B) − Pn(A), the factor En(A) −
En(C), and their multiplication in Eq. (9) for the nth energy
level and qA at Th = 0.5 are presented in Figs. 3–5, respec-
tively, for qC = 1 at Tc = 0.1. Here, qC = 1 corresponds to
a nondeformed case showing that positive work can also be
extracted by changing the statistics of the substance only for
the hot isochore. Efficiency is meaningful and well defined
only when this positive work condition is satisfied. Analytical
expression for the positive work condition could be possible
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FIG. 3. Population differences Pn(B) − Pn(A) for n and qA at
Th = 0.5 with qC = 1 at Tc = 0.1.

if the energy gaps would change uniformly with q [3], which
is not the case for our deformed oscillator. Accordingly, we
resort to the numerical calculations of the work for a range of
temperature and q to determine the positive work domains.

Summing the work values over n in Fig. 5, the extractable
work (W) with respect to qA is presented in Fig. 6 at Th = 0.5
for three choices of qC at Tc = 0.1. Figure 7 presents the effi-
ciency as a function of qA with the same choices of qC and bath
temperatures. Quantum Otto engine’s efficiency approaches
the Carnot limit only by q deformation as qA gets smaller
within the positive work domain, which is numerically found
and shown in the inset of Fig. 6. Note that it is straightforward
to check numerically for any choice of q and bath tempera-

FIG. 4. Net variation of energy eigenvalue En(A) − En(C) during
the adiabatic transformations for n and qA at Th = 0.5 with qC = 1 at
Tc = 0.1.

FIG. 5. Extractable work for n and qA at Th = 0.5 with qC = 1 at
Tc = 0.1.

tures that, in the positive work condition, the Carnot limit is
satisfied. For example, setting the hot isochore Th = 1 with
the same choices as in Fig. 6, the positive work condition is
satisfied until qA ≈ 0.05, at which the quantum Otto efficiency
approaches the Carnot limit ηCarnot = 0.9.

B. Critical quantum statistics for optimal work harvesting

For a given temperature difference between hot and cold
reservoirs as a classical resource, we can point out a critical
quantum statistics of a deformed quantum oscillator to max-
imize the harvested work or efficiency. Reference [66] has
shown that a bosonic system has higher engine performance
than a fermionic system and stated that the performance
difference occurs due to the difference in internal energies
arising from the Pauli exclusion principle. In the same spirit,

FIG. 6. Work (W ) by only changing the quantum statistics of
the working substance (qA) for the hot isochore (Th = 0.5) for three
choices of qC for the cold isochore (Tc = 0.1) with fixed oscillator
frequency ω = 1. Global maxima for W are at qA = 0.379, qA =
0.369, and qA = 0.338, respectively, for the first three choices in
descending order of qC . The inset shows the domain that the positive
work condition is not satisfied, i.e., qA < 0.101, qA < 0.0984, and
qA < 0.0887, respectively, for qC = 1, qC = 0.8, and qC = 0.6.
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FIG. 7. Efficiency of quantum Otto cycle as a function of qA (at
Tc = 0.1) with three choices of qC (at Th = 0.5). The functions are
plotted not for the entire range of qA but only in the positive work
domain as presented in the inset of Fig. 6. As qA approaches its min-
imum within the positive work domain, the quantum Otto engine’s
efficiency η approaches the Carnot limit ηCarnot = 1 − Tc/Th = 0.8.

we find out that one can optimize the engine performance for
a given thermal resource in terms of the quantum statistical
character of the working substance. As shown in Fig. 6, qA ≈
0.4 is the optimal value for the working substance for the hot
isochore. We now keep qA = 0.4 for various qC and induce
the cycle for different ω. As shown in Fig. 8, for ω < 0.2,
there is an optimal qC that achieves maximum extractable
work.

Lastly, for the second type of quantum Otto engine, we
keep q constant (i.e., qA = qC) and change ω in the quantum
adiabatic steps, i.e., we choose different ωA and ωC . As can be
seen in Fig. 9, greater q implies greater extractable work and
maximum in the nondeformed case (qA = qC = 1). This result
shows that the advantage of q-deformation with no classical
analog is due not to a simply deformed working substance,
but rather to utilizing the working substance with differ-
ent deformation levels at the adiabatic stages even with the
same ω.

V. DISCUSSION

We have presented a general formalism showing the advan-
tages of q-deformed oscillators in harvesting work efficiently

FIG. 8. Extractable work as a function of ω with qA = 0.4 at
Th = 1 and qC at Tc = 0.1. For small ω, an optimal choice of qC

yields maximum extractable work.

FIG. 9. Extractable work as a function of ωA with ωC = 0.5 with
Tc = 0.1 and Th = 0.5 with the substance deformed at the same level
in adiabatic steps (qA = qC).

from thermal resources in a quantum Otto cycle. Our results
are independent of different physical embodiments of the
q-deformed working substance. On the other hand, here we
can suggest that the q-deformation method can be used to
study specific nonlinear systems [67–70] and hence we can
use such nonlinear systems to simulate our quantum Otto
cycle via tailored nonlinear interactions. Possible examples
could be s-wave scattering in atomic BEC [71,72] and Kerr
nonlinearity in cavity-QED [73,74].

We remark that we do not include explicitly the work
reservoir into the engine model as it is a common treat-
ment in quantum heat engines. It was shown in [75] that,
in a thermodynamic cycle using particles with nonlinear in-
teractions as the working substance, adjusting the Feshbach
resonances [76] can tune the nonlinear interaction strength to
produce work by modifying the volume of the gas. Similarly
in our model, it should be understood that the work of the
engine will be done against the magnetic field used to modify
Feshbach resonances to change the q-parameter associated
with the nonlinearity of the working substance.

It is found in accordance with previous works [4,77–80]
that the extractable work and efficiency are not monotonic
with respect to the interaction parameter, but rather exhibit
optimum values as presented in Fig. 6. The effect of q-
deformation due to nonlinearity on the nonmonotonicity of
the extractable work and efficiency becomes more visible with
greater temperature difference between the cold and the hot
bath as presented in Figs. 10 and 11, respectively.

Algebras corresponding to both q-deformed fermions and
q-deformed bosons, as well as their transformations and
unification, are widely studied [23,62,81–83]. Considering
potential realizations in atomic BEC systems, also in accor-
dance with the findings of Ref. [66] that the bosonic working
system achieves a higher performance than fermionic sys-
tems in the nondeformed setting (q = 1), in this work we
focused on a q-deformed bosonic system as the working sub-
stance. Nevertheless, it would be interesting as future research
to study different performance characteristics of complex
deformations, and q-deformed fermionic systems as well, es-
pecially following the unified representation by Lavagno and
Swamy [83].

In another work, the effect of q-deformation was studied
to show a relationship between the efficiency of QHE and the
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FIG. 10. Work with respect to qA with a greater temperature dif-
ference between hot isochore (Th = 5) and cold isochore (Tc = 0.1).

non-Markovianity in the engine cycle [24]. It states that the
q-parameter, which causes nonequilibrium dynamics, helps
to build a relationship between theoretical and experimental
results. Here, we did not examine finite time engine cycles;
the q-parameter, in our case, plays a more active and direct
role as the engine cycle’s control parameter.

VI. CONCLUSION

Classical heat engines harvest work from a thermal re-
source by converting a heat flow between a hot and cold bath
to an ordered work. To realize this task, parameters of their
classical working system, for example, the volume of working
gas, are varied in an engine cycle. Quantum heat engines use a
quantum working material and, in addition to external degrees
of freedom, Hamiltonian parameters and internal degrees of
freedom can also be utilized for work extraction. Profound
quantum effects, particularly improving engine performance
over its classical counterpart, such as via quantum correla-
tions [14], are possible with quantum heat engines.

Here, we show that the quantum statistical character of the
working substance can be used as another control parameter
of a quantum heat engine. Specifically, we consider a quantum

FIG. 11. Efficiency of quantum Otto cycle as a function of qA at
Tc = 0.1 and three choices of qC at Th = 100 with ω = 1.

oscillator with a fixed frequency ω but deformed quantum
statistics characterized by the q-deformation parameter and
verify that such a q-deformed oscillator can harvest work
from a thermal resource by variation of the q-parameter. Al-
ternatively, we can optimize the harvested work or efficiency
for a given thermal resource by choosing a critical quantum
statistics of the deformed oscillator.

While we consider the Otto cycle as a paradigmatic model,
we expect that our fundamental conclusion holds for other
engine cycles as well. Variation of particle statistics can be
experimentally challenging relative to the traditional way of
variation of Hamiltonian parameters. However, q-deformation
can be envisioned and mapped to nonlinear terms in Hamil-
tonians and effective engineered deformed oscillator models
ranging from semiconductor cavity QED [74] to atomic Bose-
Einstein condensates [72] could be explored for physical
embodiment of the statistical mutation route of work extrac-
tion.
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