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Jamming, relaxation, and memory in a minimally structured glass former
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Structural glasses form through various out-of-equilibrium processes, including temperature quenches, rapid
compression (crunches), and shear. Although each of these processes should be formally understandable within
the recently formulated dynamical mean-field theory (DMFT) of glasses, the numerical tools needed to solve the
DMFT equations up to the relevant physical regime do not yet exist. In this context, numerical simulations of
minimally structured (and therefore mean-field-like) model glass formers can aid the search for and understand-
ing of such solutions, thanks to their ability to disentangle structural from dimensional effects. We study here
the infinite-range Mari-Kurchan model under simple out-of-equilibrium processes, and we compare results with
the random Lorentz gas [J. Phys. A 55, 334001 (2022)]. Because both models are mean-field-like and formally
equivalent in the limit of infinite spatial dimensions, robust features are expected to appear in the DMFT as well.
The comparison provides insight into temperature and density onsets, memory, as well as anomalous relaxation.
This work also further enriches the algorithmic understanding of the jamming density.
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I. INTRODUCTION

The free-energy landscape analogy has long been used
to conceptually unify the structure, dynamics, and ther-
modynamics of supercooled liquids and glasses [1–4]. A
roughening terrain, for instance, suggests why liquids should
become sluggish upon cooling and then rigidify as one of
many disordered metastable states. The intuitive nature of this
representation has further found broad uses in fields rang-
ing from ecology [5,6] to general relativity [7]. For certain
abstract models, the metaphor has even been shown to be
exact [8,9]. The equilibrium and out-of-equilibrium dynamics
of fully connected p-spin glass models, in particular, can be
understood in terms of specific landscape features [10–17].
The extension of the analogy to finite-size systems is also still
actively pursued [18–20].

Following the success of this approach, a similar the-
oretical program has been initiated for models that are
conceptually closer to structural glasses. After theoretically
solving for a number of static features of simple glasses in the
high-dimensional, d → ∞ limit [21,22], a formal dynamical
mean-field theory (DMFT) description of these models has
been formulated [23–27]. While symmetries of the result-
ing equations have been exploited to show the equivalence
of response to various perturbations in both mean-field the-
ory [28] and low dimensions [29], actual solutions of these
equations are currently only available over relatively nar-
row equilibrium [30,31] and low density [32] conditions.
The physical robustness of various finite-d features of the
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landscape thus remains unclear. In particular, although the
theoretical description of jammed hard spheres captures the
remarkable criticality of systems as low as d = 2 [33–35],
key features of the out-of-equilibrium processes that bring
systems to jamming remain somewhat murky.

From a landscape perspective, one of the simplest out-of-
equilibrium processes to consider is to instantaneously quench
a liquid (or crunch hard spheres) equilibrated at a given
temperature (or density) to its inherent state (IS), sometimes
called the inherent structure [36]. However, the dynamics
of that relaxation [16,37–41], the IS algorithmic robustness
[39,42], and its memory of the initial density [43–47] or tem-
perature [3,17,48–51] are incompletely described. For hard
spheres, even the lowest density at which jammed (disordered)
states can be obtained remains unclear. Finite-d results have
been obtained [47,52–54], and for some of these features, a
reasonably robust phenomenology has been observed. Yet the
significant influence of liquid structure in low-d systems over
the accessible dimensional range [55,56] obfuscates what the
DMFT description might be. A different way to extrapolate to
d → ∞—and therefore to assess the robustness of the mean-
field description as well as to extract physical insight from
it—is to consider the d convergence of models that exhibit a
markedly simpler structure.

In this spirit, Manacorda and Zamponi have recently con-
sidered the jamming behavior of the simple random Lorentz
gas (RLG) [40], which is defined by the dynamics of an
individual tracer particle moving in a system of fixed obsta-
cles, distributed uniformly at random. By construction, the
RLG model is formally equivalent to simple glasses in the
limit d → ∞, up to a trivial scaling factor (described below)
[57,58]. Given the single-particle nature of this model, its
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relaxation dynamics can be cleanly integrated, which cur-
rently enables numerical simulations up to d = 22. Interest-
ingly, this analysis has revealed unexpected features of the
gradient dynamics. While unjammed systems reach an IS in a
fairly short time, jammed systems appear to drift sublogarith-
mically with time toward an IS, thus calling into question the
traditional algorithmic approach to jamming, which relies on
fixing cutoffs for determining convergence. Surprisingly, the
study obtained a significantly lower jamming density than had
been previously reported for an analogous system (Ref. [22],
Fig. 9.2).

To assess the robustness of these findings, we consider a
natural complement to the single-particle RLG, namely the
many-body Mari-Kurchan (MK) model [59], which consists
of N particles interacting via uncorrelated shifts chosen uni-
formly at random. By construction, this model also exhibits a
trivial structure in all d and is described by the same DMFT
equations as the RLG in the limit d → ∞. It should there-
fore have the same jamming properties as the RLG in that
limit. Although preliminary work has been done to address
the jamming behavior of the MK model [22,59], a com-
prehensive finite-size and finite-dimensional analysis is still
lacking. In addition, the jamming algorithms used thus far are
not straightforwardly amenable to theoretical analysis as they
mix quenching with equilibrating. In this work, we provide
such analysis and undertake a comparison to the relaxation
dynamics of the RLG. While we validate many of the RLG
findings, we find its estimate of the jamming density to be
much lower than what any standard jamming algorithm can
produce for the MK model. This effort additionally allows us
to characterize the IS memory and to conclusively determine
that its onset transition, at which the IS starts depending on
the initial condition, does not coincide with the dynamical
transition, as it does in the pure p-spin model [14].

The rest of this article is structured as follows. Section II re-
views relevant definitions for the various quantities associated
with jamming considered in this work. Section III presents
the numerical MK planting techniques, gradient descent, and
jamming algorithms. Section IV summarizes known results
about the threshold and dynamical transition in MK systems.
Section V A reports the relaxation dynamics in harmonic MK
systems across spatial dimension and compares those results
with RLG results. Section V B then discusses jamming in both
soft and hard sphere MK models. For the former, we specif-
ically relate the findings to the RLG and to prior theoretical
predictions. The existence of IS memory in both soft and
hard sphere MK models is considered in Sec. V C. Section VI
concludes by discussing the implications of these results for
generic solutions of the DMFT and for more physical models
of glasses in finite d .

II. DEFINITIONS

In this section, operative definitions for several of the terms
and quantities used throughout this work are provided. Each
system contains N spheres in dimension d with a packing
fraction ϕ, which will in some cases be varied.

Rattler: A particle whose motion is not fully constrained
by other particles in an otherwise jammed system. A standard
method for identifying a rattler is determining whether its

center lies on the convex hull of the union of its center and
the points of contact with other particles [54,60–62]. Note that
this definition and the algorithm are necessarily recursive.

Isostaticity: A system in which every nonrattling parti-
cle is fully constrained with no excess constraints (states
of self-stress). In the thermodynamic limit of N → ∞, a
simple mechanical stability argument by Maxwell [34,63]
states that the average number of contacts per nonrattling
(hard) particle is 2d . More specifically, finite-size systems
with a finite bulk modulus require the average number of
contacts per nonrattling particle to be 2d − 2d/N + 2/N (see
Ref. [64] for more details). Such systems are sometimes
called iso + 1.

Jamming: A hard sphere system that is isostatic and
mechanically stable is jammed. Soft sphere systems are
deemed jammed if they are isostatic or if they have
additional constraints beyond iso + 1 (and are therefore
hyperstatic).

Inherent state (IS): A jammed state of an initial config-
uration found by an ideal crunch. Such a crunch is devoid
of processes that raise the jamming density, such as ther-
malization and rearrangements [4,36,65]. The inherent state
is therefore the lowest jammed density achievable through
bulk physical processes involving monotonic compression or
dilation [66].

Jamming threshold: In mean-field theory, the density at
which jammed states appear in sufficient number for a finite
complexity to be computed (see Refs. [8,67] and Ref. [22],
Sec. 7.4.3).

Dynamical transition: In the mean-field limit of d → ∞, a
hard sphere fluid is only ergodic up to the dynamical transition
density ϕd [21]. In finite d the dynamical transition is avoided,
and states beyond ϕd have a finite lifetime, at least up to the
putative Kauzmann transition ϕK [21].

State following transition: For hard sphere fluids equili-
brated above the state following density, a clear separation
of timescales between slow compression and structural relax-
ation allows for a quasiequilibrium mapping to the inherent
state [22,68].

III. COMPUTATIONAL METHODS

In this section, we describe the various computational ap-
proaches employed for obtaining IS of a MK fluid. We first
detail how to obtain efficiently equilibrated harmonic sphere
configurations. We then present a gradient descent scheme for
soft spheres and two different hard sphere crunching algo-
rithms:

(i) Gradient descent (GD): Soft particles are initially al-
lowed to overlap with a Hookean contact potential, and the
energy is minimized via a steepest descent algorithm. The
only free parameter, ε, controls the timescale for the smallest
step, set by the change in gradient.

(ii) Effective potential (EP): An iteration between particle
expansion and minimization of an effective attractive potential
between hard spheres. The hard sphere condition is there-
fore maintained throughout. These two steps are balanced
through the use of two free parameters, θ and τ , which rep-
resent the growth rate and the number of minimization steps,
respectively.
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(iii) Event driven (ED): Hard particles are inflated follow-
ing an overdamped dynamics, thus providing contact forces,
and hence equations of motion.

Each of these algorithms approximates an ideal crunch
differently, and therefore offers a distinct estimate of the jam-
ming line, and in particular of its low-density start, ϕJ0.

A. Planting for radially symmetric soft potentials

Equilibrium MK configurations can generically be planted
under any conditions, thus markedly reducing the computa-
tional cost of initializing systems. While hard spheres can be
planted by simple rejection sampling [59,69], more care is
needed for systems with soft interactions. We describe here
the process for a generic contact pair interaction with power-
law exponent α > 1. (The rest of this work only considers
harmonic spheres with α = 2.) The total energy U is then the
sum of all pair energies u for particles i and j, U = ∑

i j u(hi j ),
with

u(hi j ) = ε

α
(−hi j )

α�(−hi j ), (1)

where ε = 1 sets the energy scale, � is the Heaviside function,
and

hi j = d

( |ri − r j + �i j |
σ

− 1

)
(2)

is the dimensionless gap for monodisperse spherical particles
of diameter σ at positions ri with random pair offset �i j .
The factor d ensures that the potential remains finite when
d → ∞ [21,40,70]. For this family of systems, the random
offset �i j needs to be generically chosen from the probability
distribution

P(�i j |ri j ) = exp[−βu(|ri j + �i j |)]∫
d�i j exp(−βu(|ri j + �i j |))

= exp[−βu(|ri j + �i j |)]
Vb − Vdσ d

[
1 − d

∫ 1
0 ξ d−1e− dαβ

α
(1−ξ )α dξ

] (3)

at inverse temperature β = 1
kBT (with Boltzmann constant kB

hereon set to unity) in a simulation box of volume Vb, where
Vd = πd/2

(1+d/2) is the volume of a d-dimensional unit sphere.
For dαβ/α → ∞ the hard sphere MK model is recovered,
and for dαβ/α → 0 the ideal gas limit is recovered. Note that
the above expressions are independent of the simulation box
geometry. We specifically use simulations boxes here under
Dd boundary conditions (based on the d-dimensional gener-
alization of the d = 3 face-centered-cubic lattice) in order to
most efficiently sample systems of N particles [56,71,72].

Prior simulations of the soft sphere MK model have sam-
pled this distribution using the Metropolis-Hastings algorithm
[39,73], but both speed and accuracy can be improved by
using inverse transform sampling (ITS) (Ref. [74], Chap. 2.2).
Given the total probability that particle i is contained within
a distance σ of j, P(ri j < σ ) = d × Vd

∫ ri j

0 dq qd−1P(�i j |q),
the algorithm proceeds in two steps. First, a uniform variable
u1 ∈ (0, 1) is chosen. If u1 < P(ri j < σ ), then simple rejec-
tion sampling can be used, wherein �i j is sampled from the
uniform distribution and rejected if the particles overlap. If
u1 � P(ri j < σ ), then �i j is chosen from the ITS method,
for which the cumulative distribution function cdf(�i j ) =

∫ �i j

0 P(�i j |ri j )d�i j is calculated numerically, and a second
random variable u2 ∈ (0, 1) is chosen such that cdf−1(u2) =
P(�i j ). To obtain points uniformly distributed on the hyper-
sphere, each is then multiplied by a unit vector randomly taken
from a Gaussian distribution [75].

B. Gradient descent minimization

Instantaneous quenches of equilibrium configurations of
soft spheres are evolved under a gradient descent (GD) algo-
rithm. Particle motion is then overdamped, with a coefficient
of static friction ζ such that

ζ ṙi = Fi = −∂U

∂ri
. (4)

As such, Fi/ζ has units of a velocity, and therefore

�ri = Fi

ζ
�t . (5)

The characteristic time �t is chosen such that max(�ri ) re-
mains below a certain threshold fraction � of the diameter σ

(or the maximum overlap in the system),

�t = ζ�σ

fub
, (6)

where fub = maxi ‖Fi‖ is the maximum unbalanced force on
a particle. The integral equation is then

�ri = �σ

fub
Fi. (7)

To minimize the computational cost while closely approxi-
mating the exact GD minimization, we use an adaptive steep-
est descent algorithm, refashioned from that of Refs. [16,37].
The objective is to move slowly along the gradient direction,
such that the gradient orientation only changes by a small
fraction at each step. The time step �t is therefore chosen
initially by Eq. (6), but also follows the condition

N∑
i

Fi(t ) · Fi(t + �t )

‖Fi(t )‖‖Fi(t + �t )‖ = cos χt,t+�t < 1 − ε (8)

with 0 < ε � 1. If the condition is violated, the step is re-
jected and attempted again with � → �/n for n ∈ N. Special
care must also be taken to leave particles in zero-energy kiss-
ing contact as required by the GD dynamics. Progressively
smaller steps are therefore taken upon approaching each con-
tact breaking event, until the dimensionless overlap between
particles i and j is −hi j < 10−8. We note that while some con-
tact breaking events are associated with rearrangements, not
all of them are [76,77]. Particles are therefore allowed to os-
cillate in and out of contact without rearrangement. Lowering
the minimum step size in contact breaking events increases
the frequency with which these oscillations happen, leading
to dramatic computational slowdowns without a noticeable
effect on the relaxation times or the distribution of inherent
states.

To further improve numerical efficiency, we employ a
sticky algorithm which grows and shrinks the initial value
of � according to thresholding conditions. If n successive
steps produce cos χt,t−1 < 1 − ε, then � → n�, whereas if
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n steps in a row produce a � that must be decreased, then the
initial guess of � becomes � → �/n. Empirically, we find
that ε = 10−2 and n = 5 give stable results for the IS energy.
Because the process is chaotic [39], changing n or ε changes
an individual IS determination, but ensemble averages remain
unaffected.

A configuration minimizes either to a jammed (UNSAT)
or unjammed (SAT) state, as defined by the rigidity of its
contact network after (recursively) removing rattlers [54,60–
62]. Although in principle it is equally valid to determine
if a state is jammed by its energy, pressure, or stress being
nonzero, the numerical resolution of each of these quantities
is far lower than for individual contacts. One should, however,
note that during the GD minimization, several contacts are
transient [37,40,78], and that a change to the contact net-
work is not always associated with entering a new energetic
sub-basin [76,77]. The jamming transition ϕJ(N ) is then de-
termined using several systems equilibrated at a given density
and temperature. For each condition, the fraction of resulting
jammed states is measured. For a fixed temperature, this frac-
tion monotonically increases with ϕ, hence ϕJ(N ) is naturally
defined as the density for which half of all initializations jam.
Empirically, an error function is found to capture well the
growth of the fraction of jammed states with density, and is
therefore used as a fitting form [79].

C. Effective potential hard sphere crunch

Hard sphere fluids are crunched following the effective
potential approach (EP) of Ref. [47]. First, a regularization
step (which is particularly important at low densities) reduces
the smallest gap between particles to 1% of σ by adjusting the
density accordingly. This scheme then alternatively iterates
(i) an instantaneous expansion of particles, and (ii) a mini-
mization of an effective potential via FIRE minimization [80]
to open a (normalized) gap equivalent to the (normalized)
gap of the previous iteration. The process continues until an
isostatic structure is formed, as determined for gaps between
contacts being no greater than 10−8σ . The choice of effective
potential is taken to be a shifted and truncated logarithm of
the gaps [81], which becomes the effective thermal poten-
tial for hard spheres near jamming [82,83]. In particular, we
use U = ∑

i j u(di j ), where di j = −hi j/d is the dimensionless
overlap, with hi j given by Eq. (2), and

u(di j ) =
⎧⎨
⎩

∞, di j < 0,

− ln(di j ) + 1
hc

(1 + di j ), 0 < di j < hc,

0, di j � hc.

(9)

The cutoff hc is set such that there is an average of 2d con-
tacts per particle with u(di j ) > 0. Two parameters are then
adjusted to minimize the final jamming density: θ gives the
expansion factor relative to the minimum gap in the system,
and τ provides a cutoff on the minimization (and thus a cap
on the effective thermalization) of the FIRE algorithm. Step
(ii) terminates after τNd minimization steps if it cannot be
completed. For standard HS, it was found that τ = 2 and
θ = 0.9 were approximately optimal. In MK HS, the same
parameters appear to be near optimal, in that they minimize
the jamming density obtained, as illustrated in Fig. 1 for a
typical example.

(a)

(b)

FIG. 1. The hard sphere crunching algorithm developed in
Ref. [47] contains two optimization parameters, θ and τ , as described
in Sec. III C. Optimal values yield the lowest jamming density ϕJ0

while not undergoing algorithmic arrest (leading to nonrigid pack-
ings). We show here parameter optimization for N = 256 particles
in d = 3 with an initial liquid density ϕeq = 0.5 � ϕon, well below
the onset. (a) Using a fixed value of the cutoff τ = 2, the optimal
expansion factor minimizes the function, θ ≈ 0.9. (b) Using a fixed
θ = 0.9, the value of ϕJ0 depends only weakly on τ . However, as
for standard hard spheres [47], τ = 1 corresponds to states that often
lead to algorithmic arrest, and therefore they do not properly jam. We
use the lowest integer value for which algorithmic arrest is avoided,
τ = 2.

D. Event-driven hard sphere crunch

Hard sphere fluids are also crunched using a modified
version of an event-driven (ED) crunching algorithm devel-
oped by Lerner et al. to generalize the GD optimization
scheme to systems with hard interactions [84]. However, un-
like the affine field initially used to compress particles, here
we isotropically grow particles. Although these processes are
functionally similar, compression through an affine field re-
quires manipulating the field to maintain periodic boundary
conditions while isotropic growth presents no such difficulty.
(Wherever possible, variable names here nevertheless follow
those of Ref. [84].)

ED crunches require defining a velocity for each particle,
an integration scheme, and a definition of the interparticle
forces. For hard particles, forces only occur at kissing contact,
which in practice means within a small numerical error, which
here is O(10−12σ ). By considering instantaneous changes in
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distances between contacting particles i and j, with velocities
Vi and Vj , respectively,

ṙi j =
∑

k

∂ri j

∂�rk
· �Vk

=
∑

k

(δ jk − δik )�ni j · �Vk = ( �Vj − �Vi ) · �ni j, (10)

one can define the S-matrix

S = ∂ri j

∂�rk
. (11)

The ket notation here encodes vectors, with capitalized let-
ters denoting the N × d dimensional space of all particles,
and lower-case letters denoting the Nc-dimensional space of
contacts. From Eq. (11) one therefore obtains |ṙ〉 = S |V 〉. In
other words, the S-matrix acts on the space of velocities to
generate a space of contacts.

Through particle expansion at a rate γ̇ , contacting particles
remain in kissing contact unless forced out by other particles,
i.e.,

|ṙ〉 = S |V 〉 = |σ̇ 〉 = γ̇ |σ0〉 , (12)

where |σ0〉 is an Nc-element vector with all elements equal to
the particle diameter at t = 0.

As in Ref. [84], we apply a simple (and standard) model for
overdamped dynamics that involves embedding a system in
a liquid and accounting for Stokes drag, |F drag〉 = −ξ−1

0 |V 〉,
while ignoring other hydrodynamic forces. The contact force
between kissing contacts is then simply |F cont〉 = ST | f 〉,
where | f 〉 encodes contact forces fi j . Force balance dictates
|F drag〉 = − |F cont〉. Rearranging gives

|V 〉 = ξ0ST | f 〉 , (13)

which can be put into the form of Eq. (12),

S |V 〉 = ξ0SST | f 〉 = γ̇ |σ0〉 . (14)

Defining N = SST , which is invertible unless it is singular,
we can then solve for the forces

| f 〉 = ξ−1
0 γ̇N−1 |σ0〉 . (15)

Finally, inserting Eq. (15) into Eq. (13) yields the equation of
motion

|V 〉 = γ̇STN−1 |σ0〉 . (16)

Integration then follows the explicit formulation of
Ref. [84], which details how contact networks are defined
and updated and how the process is iterated until a jammed
configuration is reached. In particular, an isostatic structure
is formed with gaps between contacts which are no greater
than 10−8σ . The only difference here is that during each
integration step every particle uniformly expands its diameter
as σ → σ (1 + γ̇ �t ), which reduces the subsequent time to
collision. For particles separated by ��r and time t = 0 with
relative velocity ��v, this time of collision is given by

σ 2
(

1 + σ0

σ
γ̇ t

)2
= (��r + t��v)2, (17)

which can be rewritten as(
�v2 − σ 2

0 γ̇ 2
)
t2 + 2(��r · ��v − σσ0γ̇ )t + �r2 − σ 2 = 0.

(18)

The physical solution is then

t =
⎧⎨
⎩

�r2−σ 2

2(��r·��v−σ0σ γ̇ ) if |��v| = σ0γ̇ ,

σ0σ γ̇−��r·��v−√
κ

�v2−σ 2
0 γ̇ 2 otherwise,

(19)

where

κ = (��r · ��v)2 − �r2�v2 + (σ��v − σ0γ̇ ��r)2. (20)

As noted in Ref. [84], the natural choice of time units is
γ̇ −1 and force units is σ0γ̇ /ξ0. What is often less appreci-
ated is that throughout this scheme, numerical precision and
the nonlinearity of the problem introduce gaps and overlaps
between contacts, particularly over large integration times
in Eq. (19). To mitigate these effects, the algorithm intro-
duces two procedures, as detailed in the original work. First,
the integration time tint is taken in uniform intervals tintγ̇ =
10−4, until a collision takes place. Second, a gap correction
procedure is taken periodically to either force the closure
of accumulated gaps or to allow contacts to break. Taken
together, these procedures allow the systematic control of
allowed overlaps, which are taken to be numerically negligible
(in our case, less than 10−12σ ).

Note that the calculation of the equation of motion Eq. (16)
involves inverting (or solving a matrix equation of) a sparse
matrix of size O(dN ) at each step, the complexity of which
generically scales as O(d2N2) using optimal solvers on
generic sparse matrices. Additionally, the number of iterations
scales as at least O(dN ), set by the number of contacts, though
in practice this estimate is a drastic underestimation. The total
simulation time therefore scales at least as O(d3N3). This lim-
itation severely constrains the accessible size and dimension
range for comparing with the previous two approaches and for
extrapolating to the limit d → ∞.

IV. THEORETICAL ANALYSIS

In this section, we describe the analytical estimates for the
finite-d dynamical transition density and the replica symmet-
ric (RS) jamming threshold density for hard spheres under the
Gaussian cage approximation. These quantities help interpret
and contextualize the numerical finite-d results, and their role
in estimating d → ∞ quantities. Note that to compare volume
(and packing) fractions ϕ across dimensions, we correct for
their asymptotic d → ∞ scaling by considering ϕ̂ = 2dϕ/d .

In this context, note that the mean-field d → ∞ description
leaves out perturbative corrections in the small parameter 1/d
[8]. Because the MK model separates spatial structure from
other dimensional effects, leaving only the latter, characteris-
tic densities are expected to scale linearly with that parameter
(see Table I),

ϕ̂J0,on,th,d(d ) = ϕ̂∞
J0,on,th,d − ã/d + O(1/d2), (21)

where ã is a constant, and the subscripts refer to the jamming,
onset, threshold, and dynamical densities, respectively. Both
ϕ̂∞

J0,on,th,d and ã should therefore be accessible through a linear
fit from finite-d results.
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TABLE I. Parameters for the fits to Eq. (21) for the d → ∞
limit (̂ϕ∞) and the scaling prefactor with 1/d (ã). RS and 1RSB
calculations of ϕ̂∞ are exact and are reported here with the highest
published precision [22,87]; finite-d corrections to the 1RSB calcu-
lation have not been computed; all other quantities are fitted to data,
with parentheses giving the 95% confidence interval.

Quantity RS/1RSB ϕ̂∞ ã

ϕ̂d RS 4.8067... 0.440(3)
ϕ̂th RS 6.2581... 2.467(1)
ϕ̂th 1RSB 6.86984...

A. Dynamical transition density

A finite-dimensional estimate of the mean-field dynamical
transition for MK systems can be obtained under the Gaussian
cage approximation as [22,57,85]

1

ϕ̂d
= − max

A

2A

Vdσ d

∂

∂A

∫
qA/2(r) log qA/2(r)dr

= − max
A

2dA
∂

∂A

∫ ∞

1
rd−1qA/2(r/σ ) log qA/2(r/σ )dr,

(22)

where

qA/2(r) =
∫ ∞

0
dye−βu(y)

(
y

r

) d−1
2

e− (r−y)2

2A

√
ry

A
I d−2

2

(
ry

A

)
,

(23)

u(y) is the interparticle potential as a function of the interpar-
ticle distance y, and In(x) is the modified Bessel function. This
expression can be evaluated numerically for any d , u, and β.

For hard spheres, the potential is infinite for 0 � y < σ and
zero for y � σ , thus resulting in the lower limit of Eq. (23)
becoming σ and exp[−βu(y)] → 1. The resulting deviation
of ϕ̂d from the d → ∞ hard sphere result is remarkably
small, even in d = 2. Considering higher-order corrections
to Eq. (21) gives ϕ̂d = ϕ̂∞

d − ã/d + ã2/d2 + ã3/d3, where
ϕ̂∞

d = 4.8067, . . ., ã1 = 0.440(3), ã2 = 0.38(2), and ã3 =
0.91(4). Although non-Gaussian corrections are expected to
be sizable [86], thus possibly affecting the estimate of ϕ̂d,
numerical results generally agree with this prediction [69].

In harmonic systems, we instead analyze the dynamical
temperature, Td, which can be obtained by numerically solv-
ing for the function ϕ̂d(T ), and inverting to yield Td (̂ϕ).
Finite-d corrections are similarly small.

B. Finite-dimensional jamming threshold

Using the same Gaussian-cage approximation, it is also
possible to estimate the finite-d correction to the RS threshold
density, which has long been interpreted as the density at
which jammed states appear in sufficient number for a finite
complexity to be computed (see Refs. [8,67] and Ref. [22],
Sec. 7.4.3). It should be noted that the RS threshold is merely
an approximation of the proper d → ∞ threshold, which
significantly overshoots both the RLG and MK jamming tran-
sitions, thus calling into question the applicability of such
calculations to this problem (see Ref. [40] for a thorough

discussion). Nevertheless, its dimensional scaling here pro-
vides some insight into the magnitude of finite-d corrections
for similar quantities.

Specifically, the approximation gives [22,55]

1

ϕ̂th
= max

A

d

4A

∫ 1

0
rd−1(r − 1)2e− (r−1)2

4A dr, (24)

which can also be numerically evaluated for any d . Fitting the
asymptotic behavior, for d � 5, we find ã = 2.467(1), which
is nearly an order of magnitude larger than for ϕ̂d.

Because the RS threshold is unstable to further breaking of
the replica symmetry, a one-step replica symmetry breaking
(1RSB) estimate for d → ∞ has also been obtained, ϕ̂1RSB

th =
6.869 84 . . . [87]. Although this 1RSB threshold is itself un-
stable, higher-order replica symmetry breaking corrections are
assumed—by analogy to what is observed in certain spin glass
models [88]—to only lightly affect its numerical value. (In
any case, these corrections would only increase the resulting
density.) We thus consider here ϕ̂1RSB

th to be a reasonable ap-
proximation of ϕ̂fullRSB

th . Because computing 1/d corrections
to this approximation is quite involved, however, these are left
for future analysis.

V. RESULTS AND DISCUSSION

The numerical results for relaxation, crunching, and IS
memory in MK systems obtained as described in Sec. III are
compared here with the analytical results from Sec. IV and the
RLG results of Ref. [40].

A. Relaxation dynamics

We first consider GD dynamics of MK soft spheres, start-
ing from an infinite-temperature configuration with purely
random initial particle positions. By examining the relaxation,
aging, and the unstressed (SAT) or frustrated (UNSAT) nature
of the final state, we seek to validate comparable observations
for the RLG [40]. We specifically compare and contrast the
behavior of the two models far below (̂ϕMK = 2) and far above
(̂ϕMK = 6) jamming, after rescaling density, mean-squared
displacement � (MSD), and characteristic timescale as [40]

tMK = 2tRLG, �MK = 1
2�RLG, ϕ̂MK = 2ϕ̂RLG, (25)

such that the two models should coincide in the d → ∞
limit. We otherwise follow the definitions of Ref. [40] for
the various observables. For times to remain finite in the
limit d → ∞, and thus comparable across d , the friction
coefficient is scaled as

ζ̂ = σ 2

2d2
ζ , (26)

which then sets the characteristic time in Eq. (6). The MSD is
further made unitless and scaled with a factor of d to ensure
a finite value as d → ∞, such that

�̂(t, t ′) = d

Nσ 2

∑
i

〈[ri(t ) − ri(t
′)]2〉. (27)
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FIG. 2. Relaxation dynamics across dimension both (a)–(d) below jamming (at ϕ̂ = 2) and (e)–(h) above jamming (at ϕ̂ = 6) of the energy
per particle (a),(e) e(t ), (b), (f) velocity v(t ), (c),(g) isostaticity index (or scaled contact number) c(t ), and (d),(h) rescaled MSD �̂(t ). The MK
results (points) in d = 2, 3, 5, and 8 are compared with RLG results (lines) in d = 2, 5, and 8 taken from Ref. [40] [after rescaling to make
the two DMFT descriptions equivalent, as in Eq. (25)]. The inset in (f) shows the power-law scaling behavior given by Eq. (31) as a function
of d for two densities above jamming, ϕ̂ = 6 and 10. The insets in (d) and (h) show log-lin plots of the main panel data.

(The hatted quantity distinguishes the rescaled MSD from the
standard MSD, but directly corresponds to that measured in
Ref. [40].) The isostaticity index (or scaled contact number)
c(t ) is meanwhile the number of contacts per particle divided

by the number at isostaticity, 2d ,

c(t ) = 1

2dN

∑
i j

�( − hi j (t )), (28)
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FIG. 3. (a) Final contact number, c∞, in systems below jamming for various d and ϕ̂ for ε = 10−2. The low-density asymptotic prediction
c∞ ≈ ϕ̂MK/4 (dashed black line) is approached as d → ∞. (b) Same quantity in d = 2 and 6 for several ε, demonstrating that c∞ rapidly
converges at all densities for ε < 10−1 in d = 2 and for ε � 10−1 in d = 6. (c) At ϕ̂ = 2, c∞ shows a much stronger dependence on d than
on ε.

the per-particle energy is simply scaled as

e(t ) = ε

2dN

∑
i j

h2
i j (t )�( − hi j (t )), (29)

and the velocity follows as

v(t ) =
√

−∂e(t )

∂t
. (30)

That said, because the MK and RLG models present dis-
tinct numerical and theoretical challenges in finite d , features
that robustly appear in both almost surely also appear in the
DMFT.

Figure 2 shows that the initial time relaxation of the MK
and RLG models is essentially equivalent in all d , both below
and above jamming. This correspondence reflects the single-
particle nature of optimization at very short times. For t � 1,
the many-body nature of the MK model results in quantita-
tive dynamical differences, but as d increases, this difference
seemingly vanishes as well. In particular, for both models the
average energy per particle e and the average velocity v =
〈|v(t )|〉 decay exponentially below and algebraically above
jamming [39,40],

v(t ) ∼ t−ψ, e(t ) − e∞ ∼ t−(2ψ−1), (31)

where e∞ = limt→∞ e(t ). We find that the weak dimensional
dependence of ψ for two such densities [Fig. 2(f), inset] is
numerically consistent with previous reports for RLG [40]
and d = 3 inverse-power MK models [39]. Furthermore,
only minor deviations are observed in a variety of standard
non-MK interparticle potentials (including both d = 2 and
3 Kob-Andersen Lennard-Jones and inverse-power potentials
and d = 2–4 and 8 harmonic potentials) [39]. This relaxation
behavior should therefore be considered to be a robust feature
of the DMFT.

The MSD of the MK model likewise converges to that of
the RLG as d → ∞. Below jamming, � quickly plateaus
as a stable unjammed state is reached. Above jamming, by
contrast, the MSD continuously drifts upward. This drifting
regime coincides with the algebraic decay of the energy and
velocity, thus indicating that the system reaches ever lower
energy states. While the drift is partially obscured in the low-d
RLG, in the MK model the (sublogarithmic) growth is clearly
visible even in d = 2 [see Fig. 2(h), inset]. We therefore

confirm that whether a liquid jams or not following GD min-
imization results in two drastically different behaviors. The
former does so exponentially quickly; the latter slowly finds
ever lower energy states in a process of athermal aging, as pre-
viously reported in Refs. [38–40,89,90]. Within a context of
finite-precision calculations, the optimization process is nec-
essarily truncated (e.g., once the gradient falls below a given
threshold). This robustly universal scenario therefore chal-
lenges the traditional assumption that jammed states obtained
by simple minimization are purely static [79]. This effect,
while never reported in non-MK systems, is nevertheless ex-
pected to affect generic soft sphere systems, as evidenced by
the power-law behavior of the velocity in Ref. [39]. Confirma-
tion of this effect, however, is left for future work.

A key discrepancy between the RLG and MK results is
observed in the average contact number at long times, c∞.
In both systems, low-density states are expected to approach
c∞ ≡ limt→∞ c(t ) ≈ ϕ̂MK/4 in the joint dilute, ϕ̂ � ϕ̂J0, and
high-dimensional limits [40]. In the RLG, this relationship
holds until ϕ̂RLG ≈ 1.25 (̂ϕMK ≈ 2.5), and is therefore cap-
tured in Fig. 2(c), for which ϕ̂RLG = 1. The curves, however,
differ significantly, with cRLG

∞ → 0.5 and cMK
∞ → 0.425. (See

Ref. [40] for higher-dimensional data and a discussion of the
d → ∞ limit.) To make sense of this difference, we consider
two possible sources of discrepancy: the density and ε depen-
dence of cMK

∞ .
For ϕ̂MK � 0.5, the relationship c∞ ≈ ϕ̂MK/4 appears to

hold as d → ∞ [Fig. 3(a)], in agreement with the analytical
result for asymptotically low densities. However, significant
deviations develop beyond that point, which is far below
where they emerge for the RLG. Could it be that the multibody
nature of the MK model somehow reduces the quality of the
minimization compared to the single-particle RLG model? It
seems not. Decreasing the size of the smallest time step, ε,
by orders of magnitude results in only minuscule quantitative
changes compared to ε = 10−2—the value used in the rest
of this work. Figure 3(b) presents case studies in d = 2 and
6, and combined with Fig. 3(c), it shows that the effect only
weakens as d increases. The difference between the MK and
RLG contact numbers therefore persists in the slow mini-
mization, ε → 0, and thermodynamic, N → ∞, limits for
any finite d . Given the theoretical expectation that the two
should coincide in the d → ∞ limit, this difference might
be due to (stronger than expected) pre-asymptotic corrections
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in the RLG, thus obfuscating the dimensional extrapolation.
We note, in particular, that finite-d RLG minimizations below
jamming do not systematically result in configurations with
zero energy, unlike comparable MK minimizations.

Whatever the physical origin of this discrepancy may be,
it has marked consequences on the extraction of ϕ̂J0, which
corresponds to c∞ = 1 in these units. The pronounced devi-
ation of the MK results from the low density scaling c∞ ≈
ϕMK/4 results in a higher jamming density than for the RLG,
as can be qualitatively observed in Fig. 3. To quantitatively
estimate ϕ̂J0, in Sec. V B we follow the more computationally
efficient approach described in Sec. III B using the fraction of
systems jammed as a function of ϕ̂. The difference between
the approaches here and there amounts to swapping the high-
dimensional and thermodynamic limits, which is not expected
to result in any numerical difference, as long as the fraction of
rattlers, which decays exponentially quickly with dimension
[33], is sufficiently small.

B. Hard and soft sphere jamming

To extract the thermodynamic lowest density jamming
transition in a given dimension, ϕ̂J0(d,∞), we use a scaling
form (see Fig. 4)

ϕ̂J0(d,∞) − ϕ̂J0(d, N ) ∼ 1/N (32)

that satisfactorily describes the finite-size scaling for all d
and all algorithms considered. Equation (32), interestingly
contrasts strongly with the scaling form used for non-
MK systems, ϕ̂J0(d,∞) − ϕ̂J0(d, N ) ∼ N−ν/d with ν � 1
[47,79,91,92]. Such a difference is reminiscent of models with
Ising criticality, for which the finite-size scaling of the critical
temperature has α = ν̃d for constant ν̃ below the upper crit-
ical dimension and α = 2 above the upper critical dimension
[93,94]. However, given that the upper critical dimension for
jamming has been argued to be du = 2 [33,35,64], one might
have expected finite-size corrections for both MK and non-
MK models to scale similarly in d > 2. It is unclear why they
do not, though one possibility is that strong preasymptotic
corrections somehow associated with the complex structure
of hard sphere fluids (relative to the minimally structured
MK model) might obfuscate the proper critical scaling (see
Table II).

In all three cases, the dimensional scaling appears to follow
Eq. (21) [see Fig. 4(d) and Table III], with a roughly similar
dimensional prefactor. Just like for the Gaussian cage approx-
imation discussed in Sec. IV A, that scaling prefactor is about
an order of magnitude larger than for ϕ̂d. The (lack of) dimen-
sional dependence in ϕ̂d might therefore reflect a cancellation
of terms in Eq. (22). (The physical origin of that cancellation,
however, is not obvious at this point.) More significantly, all
three estimates for ϕ̂J0(d → ∞) are much lower than ϕ̂th, thus
confirming the distinctness of that theoretical quantity from
actual jamming densities.

The numerical results for the different algorithms, how-
ever, are not consistent with each other. In particular, the
EP scheme gives much larger jamming densities than soft

0 0.004 0.008 0.012 0.016
2.5

3

3.5

4

4.5

(a)

(b)

(c)

(d)

FIG. 4. Finite-size scaling of the jamming transition using
(a) gradient descent (GD) minimization as well as (b) effective
potential (EP) and (c) event-driven (ED) crunches. For each, linear
fits to Eq. (32) are given. (d) Comparison of the N → ∞ jamming
transition and threshold densities in MK systems with linear fits to
Eq. (21); see Table III for parameters.
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TABLE II. Comparison of ϕJ0 in MK systems. Extrapolations
to the limit N → ∞ are made using Eq. (32) with maximum N
reported. All values of ϕJ0 are found through finite-size scaling using
Dd boundary conditions [56,71].

d ϕJ0 ϕ̂J0 max N Method

2 1.51(2) 3.02(4) 256 ED
1.583(16) 3.17(3) 4096 SS
1.769(18) 3.54(4) 4096 EP

3 1.40(2) 3.74(5) 256 ED
1.453(10) 3.87(3) 4096 SS
1.625(7) 4.333(19) 2048 EP

4 1.020(4) 4.079(14) 256 ED
1.062(3) 4.249(11) 1536 SS
1.189(8) 4.76(3) 3072 EP

5 0.697(3) 4.46(2) 768 SS
0.790(3) 5.059(16) 1536 EP

6 0.437(4) 4.66(4) 768 SS
0.491(2) 5.24(2) 1024 EP

sphere GD and hard sphere ED. The difference might be
due to EP minimization permitting some degree of (effective)
thermalization compared to the other two. The minimiza-
tion step of EP indeed explicitly uses an effective thermal
potential to open up a gap large enough for the expansion
step to take place. As further support for this interpretation,
we note that a previous soft sphere estimate obtained using
a (FIRE) minimizer—known for having a higher degree of
thermalization than GD—resulted in even denser jammed
states [22]. Whatever the physical origin of this effect, it is
much more pronounced in MK than in non-MK models [95]
(see also Ref. [66]). This marked difference likely reflects
the lack of a well-defined liquid shell structure to accom-
pany caging in MK models, thus expanding the number of
possible relaxation pathways. Although this effect has not
yet been systematically studied—and is left as future work—
this analysis already makes it clear that the EP scheme is
generally ill-suited for identifying low-density jammed states.
(The recently described CALiPPSO scheme is expected to
fare even worse by this measure, given its built-in reliance on
thermalization [61].)

TABLE III. Summary of the d → ∞ limit of ϕ̂J0 as extracted
from results from GD minimization of the RLG, GD, and FIRE
minimization of the MK, as well as the effective potential (EP) and
event-driven (ED) hard sphere crunches.

ϕ̂J0 ã System Minimizer Ref.

4.2(1) RLG GD [40]
5.8 MK FIRE [22] (Fig. 9.2)
5.37(10) 4.5(3) MK GD this work
6.08(14) 5.3(5) MK EP this work
5.1(3) 4.3(7) MK ED this work

One might posit that the difference between HS crunches
and SS minimization originates from hard and soft spheres
experiencing significantly different landscapes, with some of
the barriers in the former turning into mere saddles in the
latter, for example. The ED crunching scheme results support
this interpretation, albeit only marginally. In low d , ED—the
GD analog for HS—reaches jamming at slightly lower densi-
ties than actual GD for SS. The extrapolation error, however,
is too large to discern whether the effect is systematic or
not in the limit d → ∞. In any event, this near coincidence
between two markedly different algorithms (see Sec. V A)
suggests that the d → ∞ jamming density estimate they pro-
vide might be closer to the relevant DMFT prediction than
that obtained from the RLG model. To compare jamming
density results with the RLG and DMFT analysis, the lowest
jamming density achieved using the different schemes is also
considered. For soft spheres, configurations are first equili-
brated at T = ∞, which corresponds to the canonical quench
of Refs. [40,54,79]. For hard spheres, all liquid configurations
equilibrated below an onset density ϕ̂on crunch towards the
same (lowest) jamming density.

C. Inherent state memory

Section V B considered infinite temperature quenches for
soft spheres and low density crunches for hard spheres, aiming
to achieve low-density jammed systems. We now consider the
impact of changing the equilibration temperature and density,
respectively, on IS determination.

(a) (b) (c)

FIG. 5. (a) Velocity evolution of d = 2 soft spheres undergoing a GD minimization from configurations initially equilibrated at T =
10−3–102. The change from exponential to algebraic decay is fairly sharp (dashed line), thus identifying TSF. (b) The inherent state energy for
d = 2 over the same temperature is found to vary only weakly with system size. Inset: The crossover Tx (crosses), as defined in the text, is
similarly only weakly d-dependent. (c) The inherent state energy in d = 2–8 presents a smooth d dependence. Inset: The weak dimensional
trends of both Tx and TSF are consistent with TSF � Td < Tx. As a guide to the eye, in (b) and (c) the inherent state energy is phenomenologically
described as log e∞ = a − bT −c, where a, b, and c are fit parameters.
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By analogy with abstract models of spin glasses, the GD
minimization of soft spheres is expected to exhibit two charac-
teristic temperatures: a state following temperature TSF and an
onset temperature Ton, with TSF < Td < Ton [17]. The first sep-
arates two relaxation regimes. For T � TSF, the relaxation to
the nearest minimum follows a nontrivial power law, whereas
for T < TSF, the relaxation to the nearest minimum is expo-
nentially fast. The second is such that systems equilibrated at
T > Ton (or ϕ̂eq < ϕ̂on) minimize to a statistically similar set
of inherent states, whereas those equilibrated at T < Ton (or
ϕ̂eq > ϕ̂on) result in IS that depend on T [3,48–51] (or ϕ̂eq

[43–47]). For crunching algorithms, a similar onset density is
expected, but the routines do not naturally lend themselves to
state-following analyses.

Results for the GD minimization of soft spheres for d =
2–8 are presented in Fig. 5. The systematic study of d =
2 systems suggests that finite-size effects are fairly weak.
Relatively small system sizes, N = 1024 for d = 2–5 and
N = 2048 for d = 6–8 [Fig. 5(c)], are therefore considered.
Strictly speaking, however, the value of TSF extracted is an
upper bound, as finite-size systems give rise to an exponen-
tial cutoff to an otherwise (expected) power-law decay. The
velocity decay results scale similarly in all dimensions, thus
allowing TSF to be straightforwardly extracted [Fig. 5(c), in-
set]. This dimensional trend validates the robustness of the
power-law relaxation regime previously reported for a wide
variety of glass formers—including d = 3 MK [38,39]. The
effect should therefore persist in the d → ∞ limit, and thus
be described by the DMFT.

The onset temperature is more problematic. Because the
IS energy varies for all T , no temperature cleanly separates
a T -independent regime in any finite d . In soft spheres, the
onset is therefore seemingly not a true transition, in agreement
with recent results from spin glass models which strongly
suggest that Ton = ∞ [17,41]. To characterize the dimensional
evolution of inherent state energy, we nevertheless define a
crossover temperature such that e(Tx) = f e∞ with arbitrary
parameter f . Here, we choose f = 0.9, but the dimensional
trend is robust to even fairly large changes to f . Empiri-
cally, we find that the logarithm of the resulting characteristic
temperatures scale linearly with 1/d ,

log T (d ) = log T ∞ + b̃/d, (33)

with T ∞
x = 0.73(18) with b̃ = 1.7(9) and T ∞

SF = 0.035(17)
with b̃ = −2(2). Using the results for Td from Sec. IV A, we
therefore confirm that TSF � Td < Tx as expected, though we
cannot conclude whether TSF and Td are distinct or not in
the d → ∞ limit. If a difference does persist in the DMFT,
however, it is likely quite small.

The HS crunching algorithms are more consistent with the
presence of a nontrivial onset, although ϕ̂on = 0 cannot be
excluded either (see Fig. 6). The IS density indeed seemingly
follows the same empirical form as standard HS [47],

ϕ̂J (̂ϕeq ) = ϕ̂J0 + ab log{1 + exp[(̂ϕeq − ϕ̂on)/b]}, (34)

where ϕ̂J0 is the lowest jamming density quoted in Sec. V B,
and a and b are fit parameters. Following Eq. (32) (and not-
ing only a light system size dependence), we can extract a
thermodynamic estimate of ϕ̂on for each d [Fig. 6(b)] on the

(a)

(c)

(b)

(d)
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FIG. 6. (a) EP and (b) ED crunching exhibit strong signatures
of inherent state memory, wherein ϕ̂J is a function of the initial
equilibrated density ϕ̂eq. Data are shown here for a variety of system
sizes in d = 3, fitted to Eq. (34) (solid lines). (c) From the fit in (a),
the onset density ϕ̂on is found to have only a weak N dependence.
The value extracted for ϕ̂J0 is shown in Fig. 4(d). (d) Comparison of
the hard sphere MK dynamical transition from Eq. (22) and the onset
density for the EP protocol from Eq. (34). Linear fits to Eq. (21)
(lines) suggest that the two remain distinct as d → ∞.
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EP data. The resulting estimate is well described by Eq. (21)
[Fig. 6(d)], thus yielding ϕ̂∞

on = 3.84(18) with ã = 5.2(6). As
expected, this value is well below ϕ̂d (see Sec. IV A) as for
standard hard spheres. The scaling form used, however, is
equally compatible with ϕ̂on being a crossover, and therefore
small deviations could well persist even in the low-density
limit.

Because ED crunches are so computationally costly, we
are here only able to demonstrate that ϕ̂on exists for small
system sizes. This observation nevertheless confirms that an
onset ϕ̂on is present in both crunching schemes considered
here, thus complementing the fast compression results for
d = 3 reported in Ref. [59]. We therefore expect the DMFT
to predict such an onset, distinct from ϕ̂d, be it trivial or not.

VI. CONCLUSION

The MK model presents a minimal spatial structure, thus
making it ideal for anticipating the DMFT behavior through
d → ∞ extrapolations. In particular, its finite-d corrections
to ϕ̂d and ϕ̂J0 are linear in 1/d , as in Eq. (21), which contrast
sharply with the highly nontrivial 1/d dependence of com-
parable quantities in standard hard spheres [56,66,95]. We
have here found that the MK model also appears to have a
distinct advantage over the RLG, in that the former exhibits
finite-dimensional corrections that converge faster than the
latter as d → ∞. In addition to providing stronger quan-
titative estimates of ϕ̂J0, we have also found that the MK
model is well suited to identify the onset and to differentiate
it from the dynamical transition in all dimensions. Because
as yet no sufficient solution to the out-of-equilibrium DMFT
exists, and because the MK and RLG models are expected
to converge in the d → ∞ limit, it nevertheless behooves us
to use whichever model is best suited to the DMFT quantity
of interest, while understanding that the differences between
these models may also provide a deeper physical understand-
ing of the DMFT.

Several questions that target the notion of jamming more
broadly also persist. First, both MK and RLG models exhibit
a (sublogarithmic) continuous growth of the MSD (Sec. V A)
upon GD quenches above jamming even in finite dimen-
sions, thus calling into question the notion that jamming is
purely static. Yet, to the best of our knowledge, this fea-
ture has not been reported in standard soft sphere models.
Second, while the power-law relaxation of the velocity in
systems prepared above jamming has been shown to be a
generic landscape feature of glasses [39,40], the universality
of the associated exponent has not been explained, nor has its
clear dependence on ϕ̂ − ϕ̂J0 in systems that exhibit jamming
[Fig. 2(f), inset]. Third, while near optimal in nonshifted hard
sphere models, the crunching algorithm via the log potential
here far overshoots the jamming density found through soft
sphere relaxation in all dimensions, making this approach
clearly suboptimal. ED crunches fare far better in this re-
spect, achieving a jamming density less than that of the soft
sphere MK following gradient descent, albeit at a very steep
computational cost. A clearer understanding of the algorith-
mic difficulty involved in identifying (low-density) jammed
hard spheres through crunching might finally offer some well-
needed insight into the classic experiments reporting random
close packing densities in various systems [66].
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